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Abstract

It has recently been shown that minimum-fuel 
powered descent guidance can be solved onboard 
as a convex optimization problem. It therefore 
presents itself as a promising technology to enable 
future planetary exploration missions. However, 
since this approach is formulated as a deterministic 
optimal control problem, the resulting guidance law 
is only designed for a single pair of initial and target 
states without external disturbances.

We attempt to extend this approach to the more 
general case of steering initial position and velocity 
distributions to target distributions, while 
considering Brownian motion process noise acting 
on the system.

System Model

Powered descent with random external force

Assume control structure

Mass change is given by

The mean trajectory therefore satisfies

The disturbance is given by the stochastic system

with state covariance subject to

and control covariance

In summary, by assuming mean control is much 
larger than feedback component we separate mean 
and disturbance into separate but interdependent 
systems.

Problem Formulation

We want to design a control pair              to achieve 
soft landing at final time 

Control is constrained to the set

Enforce constraint in probability (Gaussian dist.)

Minimize mean fuel cost

Simulation Results

MSL divert scenario: 1,500 m altitude, 125 m/s 
velocity at flight path angle -36.9 deg. Command 
divert to site 2,000 m behind vehicle in plane of 
velocity vector.

Enforce that control is in bounds with probability 
99.9%. Settings summarized below:

Closed-Loop Control Variance

Consider the scalar stochastic system

As gain increases to infinity, decrease variance to 
zero. The control is also a random variable

But we can minimize control variance
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Thrust Constraint in Probability

Probability constraint is equiv. to constraining the 
mean control vector to the set

Relax with max singular value 

Mean and Covariance Steering

• We separated the mean and disturbance into 
two interdependent systems
• Covariance depends on mass
• Mean thrust bound depends on closed-loop 

control covariance
• Solve mean steering as a convex program
• For given mass profile, there is a closed form 

solution to covariance steering problem:

Conclusions / Future Work

• Presented a stochastic extension to optimal 
powered descent that guarantees throttle 
constraints in probability

• Constraints on feedback control introduced a 
coupling between trajectory and control

• This work constrained that the control would not 
saturate, but a better constraint would be on the 
final state covariance (allowing saturation)

• May be possible to generalize theory to any 
minimum-fuel optimal control problem where 
there is feedback

• Handle parametric uncertainty
• Study possible application to entry guidance in 

an uncertain atmosphere

stochastic optimal control theory, referred to as Covariance Steering (CS),6–10 to use feedback of deviations
from a reference trajectory to control position and velocity covariances.

Two important physical constraints during powered descent are the minimum and maximum engine
throttle limits. In a deterministic setting, it can be shown from the Minimum Principle that the fuel-optimal
throttle setting is necessarily on either the minimum or maximum limit. If the state is instead a random
variable, the closed-loop control becomes a random variable as well. The situation then becomes more
complicated, since the statistics of the control variable depend on the reference (mean) control, the state
covariance, and the feedback gain. This issue is addressed in this paper by setting reference control throttle
bounds as a function of closed-loop control covariance.

The organization of this paper is as follows. In Section II, we introduce a stochastic model for powered
descent and show that, under certain assumptions, the dynamics can be separated into a deterministic
mean component and a stochastic deviation from the mean. In Section III, we formulate the stochastic
PDG problem, and then in Section IV, the probabilistic throttle constraint is analyzed and a conservative
relaxation is proposed. We then review the problems of mean and covariance steering in Sections V and VI.
An iterative approach to solve the stochastic PDG problem using mean and covariance steering is presented
in Section VII, and this approach is demonstrated in a numerical simulation in Section VIII.

A. Notation

Denote by R
n the set of n-tuples x = (x1, . . . , xn) of real numbers, and let k·k be the Euclidean norm on R

n.
Let E be the expectation operator and denote the mean of a random vector x by Ex = x̄ and the di↵erence
from the mean as x̃ = x� x̄. Write the covariance of a normally distributed random vector x as Px = E[x̃x̃T].
Write x ⇠ N (x̄, Px) when x is normally distributed with mean x̄ and covariance Px. For a square matrix A,
we write A > 0 (� 0) if A is positive (semi-)definite, i.e. xT

Ax > 0 (� 0) for all nonzero real vectors x.

II. System Model

Consider a spacecraft during powered descent modeled as a point-mass with position vector r 2 R
3 in a

surface-fixed inertial frame. The spacecraft motion is modeled by the stochastic di↵erential equation

dṙ = (u/m+ g)dt+ (�/m)dw, (1)

where m > 0 is the spacecraft mass, u 2 R
3 is the control thrust, g 2 R

3 is the gravitational acceleration,
and w is a 3-dimensional standard Brownian motion scaled by � > 0. Let x = (r, ṙ), and assume that the
initial position and velocity x0 ⇠ N (x̄0, Px0) is a 6-dimensional normally distributed random vector with
known mean x̄0 and covariance Px0 , and that the initial mass m0 > 0 is fixed and known. Assume a given
control structure so that at each time the control command is a function of a deterministic feedforward term
and a feedback term that depends linearly on the deviation of x from the mean. By Jensen’s inequality, we
know that E kuk � kEuk = kūk. We assume that the mean control is much larger than the deviation so
that we can approximate

E kuk = E kū+ ũk ⇡ kūk . (2)

It then follows that the mass change is entirely due to the mean control

ṁ = �↵ kūk . (3)

Since the initial mass is fixed, we conclude that the mass is deterministic. The mean acceleration satisfies
the ordinary di↵erential equation

¨̄r = ū/m+ g, (4)

while the deviation from the mean is given by the stochastic di↵erential equation

d ˙̃r = (ũ/m)dt+ (�/m)dw. (5)

Assume for the purposes of analyzing the disturbed system that mass is a fixed function of time. Let
K = K(t) be a real-valued 3 ⇥ 6 time-varying gain matrix such that ũ = Kx̃. The disturbed system (5)
can then be written as a linear time-varying stochastic di↵erential equation (dropping explicit dependence
on time for notational simplicity) as follows

dx̃ = (A+BmK)x̃dt+ �Bmdw, (6)
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It then follows that the mass change is entirely due to the mean control
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dṙ = (u/m+ g)dt+ (�/m)dw, (1)

where m > 0 is the spacecraft mass, u 2 R
3 is the control thrust, g 2 R

3 is the gravitational acceleration,
and w is a 3-dimensional standard Brownian motion scaled by � > 0. Let x = (r, ṙ), and assume that the
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A =

"
0 I

0 0

#
, Bm =

"
0

I/m(t)

#
. (7)

Since x̃0 is normally distributed with zero mean, and w is a standard Brownian motion, it follows from
Eq. (6) that x̃ is a zero-mean random process normally distributed at each time with covariance matrix
Px = E[x̃x̃T], which satisfies the matrix di↵erential equation

Ṗx = (A+BmK)Px + Px(A+BmK)T + �
2
BmB

T
m, Px(0) = E[x̃(0)x̃T(0)]. (8)

It also follows from (6) that the feedback control ũ = Kx̃ is a zero-mean random process with covariance

Pu = E[ũũT] = KPxK
T
. (9)

III. Problem Formulation

Our objective is to design a control (ū,K) that brings the spacecraft to a soft landing at the origin at
a final time tf > 0, which needs to be determined. Thus, we enforce the endpoint constraints on the mean
and the covariance

x̄(tf ) = 0, Px(tf ) = Pxf , (10)

where Pxf is a fixed symmetric positive-definite matrix.
The mass is constrained from below by the dry mass md > 0 at all times. The glide slope ✓gs, which is

the angle that the position vector makes with the vertical, is given as a function of the position1

✓gs(r) = arctan

✓p
r
2
2 + r

2
3

r1

◆
, (11)

where r = (r1, r2, r3) and r1 is along the vertical direction (see Figure 1). We constrain the mean glide slope
✓gs(r̄)  ✓gs0  ⇡/2 by enforcing

kSgsx̄k+ c
T
gsx̄  0 for all t 2 [0, tf ], (12)

Sgs =

"
0 1 0 0 0 0

0 0 1 0 0 0

#
, cgs =

h
� tan ✓gs0 0 0 0 0 0

iT

. (13)

The angle that the mean control vector ū makes with the vertical is constrained by a maximum pointing
cone angle ✓pc0 by

kūk cos ✓pc0 � e
T
1ū  0 for all t 2 [0, tf ], (14)

where e1 = (1, 0, 0).
Let ⇢2 > ⇢1 > 0 be fixed bounds on the control magnitude, and let the set

⌦ = {z 2 R
3 : ⇢1  kzk  ⇢2}. (15)

We enforce the probability that the random vector u is not in ⌦ (i.e., the control u violates the magnitude
constraints) be less than � > 0, that is,

Pr[u 2 ⌦] =

Z

⌦
f(z, ū, Pu)dz � 1� � for all t 2 [0, tf ], (16)

where f is the 3-dimensional Gaussian probability density function

f(z, ū, Pu) =
1

(2⇡)3/2 |detPu|
1/2

exp


�

1

2
(z � ū)TP�1

u (z � ū)

�
. (17)

Subject to the above constraints, we wish to minimize the fuel cost of the mean control

J(ū) =

Z tf

0
kū(t)k dt (18)
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f(z, ū, Pu) =
1

(2⇡)3/2 |detPu|
1/2

exp


�

1

2
(z � ū)TP�1

u (z � ū)
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Since x̃0 is normally distributed with zero mean, and w is a standard Brownian motion, it follows from
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It also follows from (6) that the feedback control ũ = Kx̃ is a zero-mean random process with covariance
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x̄(tf ) = 0, Px(tf ) = Pxf , (10)

where Pxf is a fixed symmetric positive-definite matrix.
The mass is constrained from below by the dry mass md > 0 at all times. The glide slope ✓gs, which is

the angle that the position vector makes with the vertical, is given as a function of the position1

✓gs(r) = arctan

✓p
r
2
2 + r

2
3

r1

◆
, (11)

where r = (r1, r2, r3) and r1 is along the vertical direction (see Figure 1). We constrain the mean glide slope
✓gs(r̄)  ✓gs0  ⇡/2 by enforcing

kSgsx̄k+ c
T
gsx̄  0 for all t 2 [0, tf ], (12)

Sgs =

"
0 1 0 0 0 0

0 0 1 0 0 0

#
, cgs =

h
� tan ✓gs0 0 0 0 0 0

iT

. (13)
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(z � ū)TP�1

u (z � ū)
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(z � ū)TP�1

u (z � ū)
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f(z, ū, Pu)dz � 1� � for all t 2 [0, tf ], (16)

where f is the 3-dimensional Gaussian probability density function
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Using radial symmetry,

Then if

the probability 
constraint is satisfied

where ⇢ is the radial distance of the mean from the origin along the z axis. This function integrated over ⌦
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Using Eq. (26) we can easily compute ⇢
�
1 and ⇢

�
2 since, by Eq. (24),
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Figure 3: Polar coordinate system description.

Note that for �2
u large enough, ⌦�

� may be empty and therefore (⇢�1 , ⇢
�
2 ) would not be defined. However,

we have made the assumption that the uncertainty in the control signal will be relatively smaller than the
mean control, so we will also assume that the new thrust bounds will always be defined. The relationship
between (⇢�1 , ⇢

�
2 ) is described in Figure 4. Finally, the probabilistic constraint (16) is conservatively restated

in the desired form as
⇢
�
1 (t)  kū(t)k  ⇢

�
2 (t) for all t 2 [0, tf ], (28)

where ⇢
�
1 and ⇢

�
2 as in (23).

V. Mean Steering

For the purposes of mean steering, assume that Pu, � are fixed, and hence ⇢�1 , ⇢
�
2 are also fixed. The mean

steering component of the PDG problem (19) thus reduces to the deterministic PDG problem by substituting
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and the covariance

x̄(tf ) = 0, Px(tf ) = Pxf , (11)

where Pxf is a fixed symmetric positive-definite matrix.
The mass is constrained from below by the dry mass md > 0 at all times. The glide slope ✓gs, which is

the angle that the position vector makes with the vertical, is given as a function of the position1

✓gs(r) = arctan

✓p
r
2
2 + r

2
3

r1

◆
, (12)

where r = (r1, r2, r3) and r1 is along the vertical direction (see Figure 1). We constrain the mean glide slope
✓gs(r̄)  ✓gs0  ⇡/2 by enforcing

kSgsx̄k+ c
T
gsx̄  0 for all t 2 [0, tf ], (13)

Sgs =

"
0 1 0 0 0 0

0 0 1 0 0 0

#
, cgs =

h
� tan ✓gs0 0 0 0 0 0

iT

. (14)

The angle that the mean control vector ū makes with the vertical is constrained by a maximum pointing
cone angle ✓pc0 by

kūk cos ✓pc0 � e
T
1ū  0 for all t 2 [0, tf ], (15)

where e1 = (1, 0, 0).
Let ⇢2 > ⇢1 > 0 be fixed bounds on the control magnitude, and let the set

⌦ = {z 2 R
3 : ⇢1  kzk  ⇢2}. (16)

We enforce the probability that the random vector u is not in ⌦ (i.e., the control u violates the magnitude
constraints) be less than � > 0, that is,

Pr[u 2 ⌦] =

Z

⌦
f(z, ū, Pu)dz � 1� � for all t 2 [0, tf ], (17)

where f is the 3-dimensional Gaussian probability density function

f(z, ū, Pu) =
1

(2⇡)3/2 |detPu|
1/2

exp


�

1

2
(z � ū)TP�1

u (z � ū)

�
. (18)

Subject to the above constraints, we wish to minimize the fuel cost of the mean control

J(ū) =

Z tf

0
kū(t)k dt (19)
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Let ⇧(t) be a 6⇥ 6 symmetric matrix that satisfies the matrix Riccati equation

�⇧̇ = A
T⇧+⇧A+Qx(t)�⇧BmQ

�1
u (t)BT

m⇧. (54)

Then K(t) = �Q
�1
u (t)BT

m⇧(t) solves the covariance steering problem (53), with the initial condition

⇧(0) =
�
2
P

�1
x0

2
� ��1

12 �11 � P
�1/2
x0

✓
�
4
I

4
+ P

1/2
x0

��1
12 Pxf�

�T

12 P
1/2
x0

◆1/2

P
�1/2
x0

, (55)

where

�(t, s) =

"
�11(t, s) �12(t, s)

�21(t, s) �22(t, s)

#
(56)

is the transition matrix for the Hamiltonian system

H(t) =

"
A �BmQ

�1
u (t)BT

m

�Qx(t) �A
T

#
, (57)

@�(t, s)

@t
= H(t)�(t, s), �(s, s) = I, (58)

and where "
�11 �12

�21 �22

#
=

"
�11(tf , 0) �12(tf , 0)

�21(tf , 0) �22(tf , 0)

#
. (59)

VII. Iterative CS-PDG

1) Initialize ⇢
�
i (t) = ⇢i for i = 1, 2 and all t

2) Solve the deterministic PDG problem (29) to obtain tf and m(t), t 2 [0, tf ]

3) Solve CS problem (53) to obtain Pu(t), t 2 [0, tf ]

4) Fix � > 0, and use Pu to solve (23) for ⇢�i (t), t 2 [0, tf ]

5) If third iteration, done, otherwise goto 2)

VIII. Numerical Simulation

In this section we present a numerical example of a powered divert maneuver for MSL. Suppose that the
1905 kg MSL descent stage is is at an altitude of 1500 m with a velocity of 125 m/s and flight path angle of
�36.9� when the target landing point is updated to a position 2,000 m behind the current position, in the
plane of the velocity vector. Assume an initial state covariance of

Px0 = diag(200, 200, 200, 10, 10, 10), (60)

and requited final covariance

Pxf = diag(10, 10, 10, 1, 1, 1), (61)

where velocity and distance are in units of m/s m. We enforce that the probability that an out of bounds
throttle command is given is 0.1% (� = 0.001). Properties of the MSL descent stage and a summary
simulation settings are given in Table 1.

For a baseline comparison, the throttle bounds are set to be constant values so that the probabilistic
constraint in control is still satisfied.
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Left: probability that ! is in Ω is plotted against the mean throttle percent at 
different times in the simulation. The values of #$%and #&% are determined by 
the left and right intersections of the probability curve with the dashed line 
for 1 − ) where ) = 0.001. Right: mean throttle percent and throttle 
histories from select Monte Carlo trials. The shaded region contains 99.9% of 
throttle histories. Bottom: Monte Carlo trials with 99.9% of trajectories in the 
shaded region.

and the corresponding control variance is k2sps. Intuitively, the state variance decreases to zero as the gain
increases to infinity, however, this is not the case for the control variance. Taking the derivative of the control
variance with respect to the state variance we find that

d(k2sps)

dps
=

a
2
� c

4
/4p2s

b2
, (51)

and therefore the control variance is minimized at ps,min =
��c2/2a

��. These values for a, b, c = 1 are given in
Figure 5.

Returning to the powered descent problem, which has endpoint constraints on the state covariance rather
than steady-state requirements, it is reasonable to assume that there exists a feedback that minimizes the
control covariance. The minimum control covariance will, in turn, maximize the mean control constraint set
⌦�

� , which, by Corollary V.2, will minimize the fuel required to solve the deterministic PDG problem (29).
In the next section it is shown that this is indeed the case.

Figure 5: Steady state variances for a, b, c = 1.

B. Finite Horizon Covariance Steering

Consider the stochastic system (6) with initial covariance Px0 at time t = 0. Let tf > 0 be fixed. We want
to find a gain matrix K(t) for t 2 [0, tf ] such that the state covariance in Eq. (8) is equal to Pxf at time
t = tf while minimizing the functional

J̃(ũ) = E

Z tf

0
ũ

T(t)Qu(t)ũ(t) + x̃
T(t)Qx(t)x̃(t)dt =

Z tf

0
trQu(t)Pu(t) + trQx(t)Px(t)dt, (52)

where Qu(t) is a positive definite control e↵ort weighting matrix and Qx(t) is a non-negative definite state
error weight matrix. This problem, which is referred to as the Covariance Steering (CS) problem, is formally
stated as follows

min
K

Z tf

0
trQuPu + trQxPx dt (53a)

s.t. Ṗx = (A+BmK)Px + Px(A+BmK)T + �
2
BmB

T
m (53b)

Pu = KPxK
T (53c)

Px(0) = Px0 , Px(tf ) = Pxf (53d)

This problem has been studied in Refs. 7–9, where it was shown that if the pair (A,Bm) is controllable,
then there exists a feedback gain K(t) that takes any initial covariance Px0 to a final covariance Pxf in finite
time. Furthermore, a closed form solution to the above problem was given in Ref. 9, which we will present
here.
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Conclusions

Future Work

Left: Gain required to maintain steady-state state variance. Right: Steady-
state control variance plotted against steady-state state variance.

⇢
�
1 = min{kūk : ū 2 ⌦�

�},

⇢
�
2 = max{kūk : ū 2 ⌦�

�}.

⌦Pu
� = {ū 2 ⌦ :

Z

⌦
f(z, ū, Pu)dz � 1� �}.

�
2
u = �

2
max(Pu),
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