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Curvature-Bounded Traversability Analysis in Motion
Planning for Mobile Robots

Raghvendra V. Cowlagi and Panagiotis Tsiotras

Abstract—We consider the geometric problem of deciding whether a
narrow planar passage can be traversed by a curve that satisfies prespecified
upper bounds on its curvature. This problem is of importance for path- and
motion-planning of autonomous mobile robots, particularly when vehicle
dynamical constraints are considered during planning. For a special case of
narrow passages, namely, rectangular channels, we present a fast numerical
algorithm to determine if a given channel may be traversed via curvature-
bounded paths. We demonstrate that the proposed algorithm can affirm
traversability in cases where the most recent result in the literature fails.

Index Terms—Mobile robots, motion planning, robot kinematics.

I. INTRODUCTION

C ONSIDER the following problem in planar geometry: Let P be
a polygon, with two of its edges designated as the entry and exit

edges. Determine if there exists a continuously differentiable curve
of finite length and with no cusps, such that this curve lies entirely
within the polygon P , the endpoints of this curve lie on the entry
and exit edges, and the curvature of this curve satisfies, pointwise, a
prespecified upper bound. The bound on the curvature may vary over
the region enclosed by P .
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Problems of this nature may be called traversability analysis prob-
lems to distinguish them from path- and motion-planning problems
[1] and are frequently encountered in mobile robotics applications.
Whereas the former class of problems emphasizes the existence of a
curve with special geometric characteristics, the latter class of prob-
lems emphasizes the construction thereof. In this paper, we discuss the
solution of a special case of a curvature-bounded traversability analy-
sis (CBTA) problem, and we highlight the role of CBTA problems in
motion planning for mobile robots.

A. Related Work

A fundamental result on CBTA is that the following problem is
decidable [2]: Given a polygon, find a curve that connects two prespec-
ified configurations (position and orientation), such that it lies entirely
within the given polygon, and satisfies a unit curvature bound. A deci-
sion procedure provided in [2] solves a special CBTA problem; namely,
the case of a uniform curvature bound and with prespecified initial and
final configurations. Note that if the CBTA of interest does not include
a specific initial or final configuration, then the decision procedure
of [2] is not directly applicable. In this context, the analysis of the
reachability of points within a polygon by curvature-bounded paths [3]
is more relevant.

In [4], CBTA of a polygon is discussed in the context of existence
of curvature-bounded paths in a neighborhood of a prespecified path
that traverses the polygon. This neighborhood is called a channel, and
it is the union of the family of discs of a constant radius w, with
centers along the prespecified path. The main result of [4] states that
unit curvature-bounded traversal of a channel is guaranteed if w ≥ τ ,
where τ ≈ 1.55. This condition is sufficient for traversability, but it is
not necessary; we provide an example where this condition is violated,
yet curvature-bounded traversal is possible, and established by the
proposed approach.

The literature on curvature-bounded path planning is significantly
wider than that on CBTA because the existence of such a path is
assumed. In the absence of obstacles, the shortest curvature-bounded
path between two prespecified configurations was shown to lie in a
finite family of paths (henceforth referred to as Dubins paths), first via
geometric arguments [5] and later via optimal control theory [6]. In
the presence of polygonal obstacles, the problem of finding a shortest
curvature-bounded path between two prespecified configurations was
shown to be NP-hard [7]. Algorithms for approximating the shortest
path in the presence of obstacles appear, for example, in [8]–[11]. Path
planning under the additional restriction of continuity in the curvature
of paths is discussed in [12]–[14].

B. Contributions

In this paper, we precisely state and solve the following CBTA
problem: Decide whether a rectangular channel can be traversed by
a curve that satisfies pre-specified upper bounds on its curvature. A
rectangular channel is a passage formed by a sequence of rectangles
with disjoint interiors. The main contributions of this paper are as
follows.

First, we propose a computationally fast technique to solve the CBTA
problem for the case of rectangular channels, which has been of great
research interest in the field of computational geometry [4]. Moreover, a
conservative solution to the CBTA of a general polygonal region can be
found by internally approximating the polygon by a rectangular chan-
nel. The proposed technique does not require specific initial and final
configurations, and hence, it is applicable in cases where the approach
of [2] is not. Stated differently, the proposed techniques achieve, via
discretization of one variable (namely, initial position), traversability

results that the approach of [2] would achieve via discretization over
four variables (namely, initial and final positions and initial and final
orientations).

Similarly, the proposed technique is capable of performing CBTA in
cases where the most recent result in the literature [4] fails to provide
any useful information. Furthermore, the proposed technique allows
nonuniform channel width, which is not addressed in [4], and it also
allows nonuniform curvature constraints, which are not addressed in
any of the CBTA-related papers [2]–[4], or in any of the path-planning-
related papers [8]–[11].

Second, we discuss the fundamental role and application of CBTA
to the problem of motion planning for autonomous mobile vehicles.
Real-time motion planning in the presence of complex vehicle dynam-
ical constraints is a problem of active research, and the use of geometric
methods is considered critical for computational efficiency [15]. In this
paper, we discuss how CBTA problems arise naturally in motion plan-
ning from the geometric traversal constraints imposed by the vehicle
dynamic constraints. We demonstrate how a CBTA-based technique
can be used to transform these constraints to convex constraints to
enable real-time implementation.

Finally, we discuss other robotics-related applications of CBTA (see
Section I-C), thus contributing to the practical use of ideas and results
from computational geometry for research and development in robotics
and autonomous systems.

Preliminary versions of the discussion and results presented in this
paper were previously presented in [16]. This paper presents detailed
algorithms for the solution of the CBTA problem, a complete proof
of Theorem 1, and applications of the proposed technique, neither of
which appeared in [16].

C. Applications of Curvature-Bounded Traversability Analysis

For motion planning of autonomous mobile vehicles, CBTA is im-
portant because the curvatures of planar geometric paths that a vehicle
can feasibly traverse are upper-bounded. The curvature of the path tra-
versed by a vehicle is κ = |θ̇/v|, where v is the speed, and θ is the
direction (heading) of the velocity vector of the vehicle. Bounds on this
curvature stem from 1) nonholonomic kinematic constraints in conjunc-
tion with bounds on velocity variables and 2) acceleration constraints
that result from limited force and torque inputs to the vehicle. An exam-
ple of the former category is the Dubins car [6], which is a model of a
vehicle that moves forward with constant speed and bounded turn rate.
Examples of the latter category are the aircraft navigational model [17]
with bounded load factor, and the half-car dynamical model [18] with
bounded magnitude of ground-tire friction forces at each tire. These
constraints on the tire friction forces are shown in [19] to be equivalent
to a state-dependent curvature bound on the motion of a point, called
the center of oscillation, associated with the half-car.

Optimal path- and motion-planning for vehicles with such kine-
matic and dynamic constraints is difficult, yet crucial, for vehicle au-
tonomy. Recently, we developed an optimal motion planner for such
vehicles [15]. This motion planner is based upon two key ideas: 1)
rectangular multiresolution cell decompositions that represent the en-
vironment map with a graph and allow the use of fast path optimiza-
tion techniques for graphs and 2) history-dependent transition costs in
the cell decomposition graph that allow the incorporation of vehicle
kinematic and dynamic constraints. As discussed in detail in [15], a
subproblem that is repeatedly encountered and solved in this motion
planner is that of analyzing the feasibility of the traversal of a “channel”
defined by a sequence of successively adjacent rectangular cells, and
then of finding a specific motion that enables this traversal.
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Whereas real-world features are approximated by rectangular cell
decompositions, path-planning algorithms based on such decomposi-
tions exhibit the property of resolution completeness [1]. This property
implies that the path-planning algorithm is guaranteed to find a path, if
it exists, in the limit as cell size approaches zero. Therefore, this prop-
erty provides a sound basis for using rectangular cell decompositions
in path planning and, consequently, reinforces the importance of the
proposed CBTA of rectangular channels.

Because of the aforesaid relation between bounds on the curvatures
of feasible paths that arise due to the vehicle’s kinematical and dy-
namical constraints, the analysis of feasibility of traversal across such
“channels” is a CBTA problem. In addition to establishing feasibility
of traversal, the results of this CBTA can also be applied to simplify
the search for a specific motion that enables this traversal [20].

In general, CBTA finds applications to problems in mobile robotics
whenever it is convenient and/or necessary to identify a region of feasi-
ble traversal. In the context of curvature-bounded traversal of polygonal
regions with polygonal obstacles, it is computationally efficient to find
a path consisting of straight line segments with a guaranteed “clear-
ance” distance from all obstacle boundaries [4]. Similarly, for semiau-
tonomous high-speed driving, the identification of a homotopic class
of curvature-bounded paths is discussed in [21]. The main idea in [21]
is to assist human drivers of ground vehicles by finding a region that is
guaranteed to be both safe and feasible for traversal. The approach con-
sidered in [21] for finding this homotopic class is heuristic, and a rigor-
ous approach for the same application may be developed using CBTA.
Finally, CBTA may be applied to motion planning for highly flexible
robotic manipulators such as flexible medical needles and catheters:
Curvature-bounded path planning for such manipulators has been con-
sidered, for instance, in [22], where the need for computing paths with
maximal clearance from obstacles—and, consequently, the problem of
identifying safe passages for the manipulator—has been emphasized.

The rest of this paper is organized as follows. In Section II, we define
the CBTA problem of interest and outline the proposed numerical
algorithm for its solution. In Section III, we provide examples that
illustrate the benefits of the proposed technique over existing results in
the literature and its applications to motion planning for mobile robots.
We conclude the paper in Section IV with comments on future work.

II. TRAVERSABILITY ANALYSIS

To fix ideas, we first establish some terminology. A path between
two points P and Q in the plane is a differentiable curve Γ := {s �→
[x(s), y(s)] ∈ R2 : 0 ≤ s ≤ 1} such that P = [x(0), y(0)] and Q =
[x(1), y(1)]. We will denote by Γ(s) the point [x(s), y(s)] ∈ R2 on
the path Γ, and by Γ′ (W ) the angle of the tangent to Γ at the point
W = [x(s), y(s)] for all s ∈ [0, 1]. In addition, we will denote by
(W, α) the configuration in C specified by the position W ∈ R2 and
the orientation α ∈ [−π, π]. A path between a configuration (W, α)
and a point X is a path Γ between the points W and X satisfying
Γ′ (W ) = α. Similarly, a path between two configurations (W, α) and
(X, β) is a path Γ between the points W and X satisfying Γ′ (W ) = α
and Γ′ (X) = β.

Definition 1: A rectangular channel R̄C is a sequence of rectan-
gles {Rn }C

n =1 , C ∈ N, with disjoint interiors, such that we have the
following.

1) Exactly one edge of Rn has a nonempty intersection with exactly
one edge of Rn +1 for each n ∈ {1, . . . , C − 1}.

2) For all m, n ∈ {1, . . . , C}, the edges of Rn and Rm do not
intersect or overlap whenever m /∈ {n − 1, n, n + 1}.

Next, we precisely define the CBTA problem for a rectangular chan-
nel, which is a simplification of the general problem introduced in

Fig. 1. Rectangular channels. (a) Example of a rectangular channel. (b) Chan-
nel obtained by shrinking the boundaries of a rectangular channel.

Fig. 2. Type 1 and Type 2 paths.

Section I. Rectangular channels [see Fig. 1(a)] naturally arise from
rectangular cell decompositions. Furthermore, the polygon obtained by
shrinking the boundaries of a rectangular channel [see Fig. 1(b)] is also
a rectangular channel. Therefore, the proposed CBTA technique can be
applied with no modifications to the new channel. The proposed CBTA
technique may, thus, be used in motion-planning algorithms that also
incorporate the shape of a mobile vehicle. Note that this approach of
shrinking channels has limitations for oblong or other irregular shapes.
CBTA-R Problem: Let R̄C be a rectangular channel, and let W be a
point on any one of the three edges of R1 that do not intersect R2 . Let
α ∈ [−π, π] be a specified angle. For any set of positive real numbers
rn > 0, n = 1, . . . , C , determine if there exists a path Γ such that we
have the following.

1) Γ(0) = W , and Γ′ (W ) = α.
2) The point X := Γ(1) lies on an edge of the rectangle RC (pre-

specified from among the three edges of RC that do not overlap
with any edge of RC −1 ), and Γ′ (X) lies in a specified set of
allowable terminal tangent angles.

3) The path Γ does not leave R̄C , i.e., (x(s), y(s)) ∈ ∪C
n =1Rn for

all s ∈ [0, 1].
4) For each n = 1, . . . , C , the curvature of Γ at any point within

the rectangle Rn is at most r−1
n .

In what follows, we will refer to any path Γ that satisfies the con-
ditions of CBTA-R as an admissible path. We propose a numerical
algorithm to solve CBTA-R that is based on a recursive CBTA of the
individual rectangles within the rectangular channel. Specifically, the
proposed algorithm is based on recursive backward propagation of so-
called target configuration sets. Informally, these sets are intervals of
allowable orientations associated with all points on the segments de-
fined by Rn ∩ Rn +1 , n ∈ {1, . . . , C − 1}. Next, we provide a precise
description of these sets.

Let ABCD be a rectangle. We attach a Cartesian axes system as
shown in Fig. 2. Let the dimensions of the rectangle be d1 and d2 , and
let r > 0 be fixed.

Definition 2: Let β(x), β(x), x ∈ [0, d2 ] be functions such that

− π
2 ≤ β(x) ≤ β(x) ≤ π

2 . Let Y = (d1 , y), Z = (d1 , z) be points on
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the segment BC with y ≤ z. A path Γ whose endpoints lie on the
segments DA and Y Z , respectively, is a Type 1 path if it satisfies the
following.

1) (Curvature Boundedness): The curvature at any point on Γ is at
most r−1 .

2) (Containment): All points of Γ lie in the closed interior of the
rectangle ABCD.

3) (Terminal Orientation): Γ′ (X) ∈
[
β(x), β(x)

]
.

A Type 2 path is defined analogously for traversal across adjacent
edges (see Fig. 2).

Definition 3: Let β(x), β(x), x ∈ [0, d1 ] be functions, such that

− π
2 ≤ β(x) ≤ β(x) ≤ π

2 . Let Y = (y, 0), Z = (z, 0) be points on the
segment DC with y ≤ z. A path Γ whose endpoints lie on the segments
DA and Y Z , respectively, is a Type 2 path if it satisfies the following.

1) The curvature at any point on Γ is at most r−1 .
2) All points of Γ lie in the closed interior of the rectangle ABCD.
3) Γ′ (X) + π

2 ∈
[
β(x), β(x)

]
.

Based on these definitions, we specify two CBTA problems for a
rectangle that will be solved repeatedly for the CBTA of the overall rect-
angular channel. Let β, β, Y, and Z be as in the preceding definitions.
Let W = (0, w) and r > 0 be fixed.

CBTA-S1 Problem: Find α, α such that for every α ∈ [α, α], there
exists a Type 1 path Γ with Γ(0) = W and Γ′ (W ) = α.

CBTA-S2 Problem: Find α, α such that for every α ∈ [α, α], there
exists a Type 2 path Γ with Γ(0) = W and Γ′ (W ) = α.

We describe next a recursive procedure to solve CBTA-R.

A. Recursive Constructions of Target Configuration Sets

We attach a coordinate axes system to each rectangle of R̄C in a
manner consistent with the axes system used in the statement of CBTA-
S1 and CBTA-S2 [see Fig. 1(a)]. Let the dimensions of each rectangle
along the x and y axes be denoted, respectively, by dn ,1 and dn ,2 .
We may identify rigid geometric transformations (i.e., a sequence of
rotations and reflections) that align the entry and exit segments of Rn

to the segments AD and BC , respectively, for traversal across parallel
edges, or to the segments AD and DC , respectively, for traversal across
adjacent edges. Let �n denote the minimum number of reflections
involved in the transformation associated with the rectangle Rn .

For each rectangle Rn , n = 2, 3, . . . , C − 1, we refer to the seg-
ments formed by the intersections Rn−1 ∩ Rn and Rn ∩ Rn +1 , re-
spectively, as the entry and exit segments, and we denote by Un and
Vn (respectively, Yn , Zn ) the endpoints of the entry (respectively, exit)
segment. Finally, we denote the coordinates of the points Un , Vn , Yn ,
Zn , by the corresponding lower case letters, i.e., Vn = (0, vn ), etc.

As previously noted, the algorithm to solve CBTA-R involves
the recursive backward propagation of target configuration sets. For
every point Q = (q, 0) [or Q = (dn ,1 , q), as applicable], on the
segment Yn Zn , n = 1, . . . , C , we denote by β

n
(q) and βn (q),

respectively, the lower and upper bounds of the allowable terminal
orientations for q ∈ [yn , zn ]. Similarly, for every point P = (0, p) on
the segment Un Vn , n = 1, . . . , C , we denote by αn (p) and αn (p),
respectively, the lower and upper bounds resulting from the solution
of CBTA-S1 (or CBTA-S2, as applicable), for p ∈ [un , vn ]. Note that
[αn (p), αn (p)] is the interval of allowable orientations at point P in
the effective target configuration set of the rectangle Rn−1 . The angles
αn (·), αn (·), β

n
(·), and βn (·) are measured in the coordinate axes

system attached to Rn .
The recursive algorithm for constructing the effective target config-

uration sets is provided in Fig. 3. Next, we focus on the solutions of
CBTA-S1 and CBTA- S2.

Fig. 3. Pseudocode of the recursive procedure to solve CBTA-R via compu-
tations of effective target configuration sets.

B. Curvature-Bounded Traversability Analysis of a Single Rectangle

CBTA-S1 (respectively, CBTA-S2) involves finding α and α such
that, if α ∈ [α, α], then there exists a Type 1 (respectively, Type 2) path
Γ with Γ(0) = W and Γ′ (W ) = α. To solve CBTA-S1, we construct
families of Type 1 paths Υx and Λx between the points W and X , for
every point X = (d1 , x) on the segment Y Z , satisfying the following
properties:

P1) Λ′
x (W ) ≤ Υ′

x (W ).
P2) For every α ∈ [Λ′

x (W ) , Υ′
x (W )], there exists a Type 1 path from

W to X with tangent angle α at W .
P3) The angles Υ′

x (W ) and Λ′
x (W ) vary continuously with x.

P4) There exists no other Type 1 path Γ from W to X satisfying
P1)–P3) such that Γ′ (W ) > Υ′

x (W ).
P5) There exists no other Type 1 path Γ from W to X which satisfies

P1)–P3) such that Γ′ (W ) < Λ′
x (W ).

We may define analogous properties for Type 2 paths to solve CBTA-
S2. The following result enables the solutions to CBTA-S1 and CBTA-
S2 based on the paths Υx and Λx . The constructions of Υx and Λx

are implicit in the calculations of the angles α and α. Properties P1)–
P5) are not assumed a priori; rather, Υx and Λx are constructed such
that these properties can be proven. Examples of the constructions
of Υx and Λx are provided in the Appendix, whereas the (laborious
and geometrically involved) proofs that these constructions satisfy the
properties P1)–P5) are available in [17].

Theorem 1: Suppose there exists a closed interval I ⊂ [y, z] such
that Type 1 (respectively, Type 2) paths Υx and Λx satisfying P1)–P5)
exist for each x ∈ I. Then, α and α defined by

α := minx∈I {Λ′
x (W )} , α := maxx∈I {Υ′

x (W )} , (1)

solve CBTA-S1 (respectively, CBTA-S2).
Proof: The numbers α and α are well defined by (1) because I is

closed and bounded, and because Λ′
x (W ), Υ′

x (W ) are continuous in
x by (P3). We claim that for every α ∈ [α, α], there exists xα ∈ I such
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that α ∈
[
Λ′

xα
(W ) , Υ′

xα
(W )

]
. To see this, suppose, for the sake of

contradiction, that no such xα exists. Then, by P1), for every x ∈ I,
exactly one of the following conditions must hold true:

α < Λ′
x (W ) ≤ Υ′

x (W ) (2a)

α > Υ′
x (W ) ≥ Λ′

x (W ) . (2b)

Because α ∈ [α, α], by (1), neither (2a) nor (2b) can exclusively hold
true for all x ∈ I. Consequently, there exists x̃ ∈ I such that condition
(2a) switches at x̃ from being true to being false or vice versa. By
continuity of Λ′

x (W ) in x, it follows that α = Λ′
x̃ (W ) ≤ Υ′

x̃ (W ).
Thus, for x̃, condition (2a) does not hold true, which implies that (2b)
must hold true, which in turn implies that α > Υ′

x̃ (W ). Thus, we reach
a contradiction, which implies that there exists xα ∈ I, as previously
stated. It follows by P2) that there exists a Type 1 path (respectively,
Type 2 path) Γ between W and X = (d1 , xα ) such that Γ′ (W ) = α,
and thus, α and α solve CBTA-S1 (respectively, CBTA-S2). �

By Theorem 1, the solutions to CBTA-S1 and CBTA-S2 may be
found by 1) constructing the families of paths Υx and Λx that satisfy
the properties1 P1)–P5) and 2) computing the angles Υ′

x (W ) and
Λ′

x (W ) and their maximum and minimum values, respectively, for
x ∈ I.

We will postpone the description of the geometric details of the
constructions of the paths Υx and Λx to the Appendix, and instead,
we will focus here on the computations of the tangent angles Υ′

x (W )
and Λ′

x (W ). For the sake of clarity of exposition, we will assume in
the rest of this paper that r > d := d1 and that d1 = d2 . Note that the
overall approach, as hitherto described, remains the same when these
assumptions are removed. The complete details of the constructions
of Υx and Λx and the computations of Υ′

x (W ) and Λ′
x (W ) without

these assumptions are available in [17, ch. 5 and App. C].
Fig. 4 shows the procedure for computing Υ′

x (W ) for the problem of
traversal across parallel edges (CBTA-S1), Fig. 5 shows the procedure
for Υ′

x (W ) for traversal across adjacent edges (CBTA-S2), and Fig. 6
shows the procedure for computing Λ′

x (W ) for (CBTA-S2). Note that
the computation of Λ′

x (W ) for CBTA-S1 may be performed using
the procedure shown in Fig. 4 by replacing w with d − w, β(x) with

−β(d − x), β(x) with −β(d − x), and by reversing the sign of the
result. The following notation is used in Figs. 4–6:

σ1 : = r cos β(x) + (x − w), σ4 := r sin β(x) − w

σ2 : = r sin β(x) − d, σ5 := −r cos β(x) − x

σ3 : = (d2 + (x − w)2 )/2r, σ6 := (w2 + x2 )/2r.

To summarize, we solve CBTA-R by recursively solving two sim-
pler CBTA problems, denoted by CBTA-S1 and CBTA-S2, which are
defined over a single rectangle. Next, we solve CBTA-S1 and CBTA-S2
by constructing families of special geometric paths that satisfy proper-
ties P1)–P5), followed by the application of Theorem 1.

C. Illustrative Example

To illustrate the solution of CBTA-S1 given by the procedure in
Fig. 4, we consider a square of size d = 10 and r = 45. We assume
that the exit segment Y Z is such that the point Y coincides with the
point C (i.e., y = 0) and that the point Z coincides with the midpoint
of the segment BC (i.e., z = 5), as shown in Fig. 7. For simplicity, we

1Note that properties P4) and P5) are not required to prove Theorem 1; they
ensure that the solutions to CBTA-S1 and CBTA -S2 are not conservative.

Fig. 4. Computation of Υ′
x (W ) for CBTA-S1.

Fig. 5. Computation of Υ′
x (W ) for CBTA-S2.

assume that the terminal orientation constraints, i.e., the maps β and

β have the constant values of β(x) = −40◦ and β(x) = 10◦ for all
x ∈ [y, z]. These constraints are indicated by the red and blue arrows
on segment YZ in Fig. 7.

Next, we execute the procedure in Fig. 4 repeatedly, for several
values of w ∈ [0, d]. These values may be chosen, for example, by
uniform discretization of the interval [0, d]. In the numerical calcula-
tions for this example and for Example 1 in Section III, we used a
uniform discretization with 20 points. Note that a discretization with
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Fig. 6. Computation of Λ′
x (W ) for CBTA-S2.

Fig. 7. Example of the solution of CBTA-S1.

Fig. 8. Intermediate calculations in the procedure shown in Fig. 4.

sufficiently high resolution is required for the correct determination of
traversability of a given channel.

For illustrative purposes, suppose w = 5. By line 1 in Fig. 4, we
compute α∗(w) = 27.26◦. Next, by line 2, we observe that 2r(d −
w) < d2 + (d − w)2 , and hence, n2 = d = 10. Next, by line 6, we
solve (3) for several values of x ∈ [0, 5]. In the numerical calculations
for this example and for Example 1 in Section III, we used a uniform
discretization with 20 points. The values taken by γ∗(x) for w = 5
are indicated by the blue-colored curve in Fig. 8(b). In Fig. 8(b), the
red-colored curves indicate, respectively, the (constant) values taken
by β(x) and β(x). We observe that β(x) < γ∗(x) < β(x) for every

Fig. 9. Example of a rectangular channel for which the result of [4] fails.

TABLE I
SIZES OF RECTANGLES AND CURVATURE CONSTRAINTS FOR EXAMPLE 1

x ∈ [y, z]. Hence, by lines 9 and 10, we compute Υ′
x (W ) by solving

(5), which is indicated by the black-colored curve in Fig. 8(b). The
values taken by γ∗(x) and Υ′

x (W ) for w = 1.25 and w = 8.75 are
indicated in Figs. 8(a) and (c), respectively.

As previously noted, this procedure may be used to compute Λ′
x (w)

by replacing w with d − w, β(x) with −β(d − x), β(x) with −β(d −
x), and by reversing the sign of the result. The values of α and α for all
values of w ∈ [0, d], computed using (1), are indicated, respectively, in
Fig. 8(d) by the red- and blue-colored curves.

The trigonometric equations (3)–(5) can be easily transformed to
quadratic equations in a new variable. Consequently, the solutions of
these equations are computationally fast: For example, the MATLAB-
based computation of α and α for 100 different values of w ∈ [0, d]
was performed in 60 ms on a computer with an Intel Core i7-2640M
processor, operating at 2.80 GHz with 8 GB of memory. These
computations will be significantly quicker when computations are per-
formed using a lower-level programming language such as C or C++.

III. CURVATURE-BOUNDED TRAVERSABILITY

ANALYSIS APPLICATIONS

In this section, we demonstrate the benefits of the proposed CBTA
technique with 1) an example that demonstrates the benefits of the
proposed technique over existing results in the literature and 2) an
example of the application of CBTA to robot motion planning via
model predictive control (MPC).

Example 1: To illustrate the benefits of the proposed technique over
existing results in the literature, we consider the CBTA of the rectangu-
lar channel shown in Fig. 9. The dimensions of each of the rectangles
and the specified minimum radii of turn r−1 in general units (inverse of
maximum curvature) within each rectangle are provided in Table I. We
apply the CBTA procedure given in Fig. 3. In this recursive procedure,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Target configuration sets for rectangles in the channel in Fig. 9.

we solve CBTA-S1 and CBTA-S2, as applicable, for each rectangle
using general versions of the procedures given in Figs. 4–6 (see [17],
App. C] for details).

The values taken by αn and αn , for some values of n ∈ {1, . . . , 18},
are indicated, respectively, by the red- and blue-colored curves in
Fig. 10. The areas between these curves represent the target config-
uration sets for each rectangle. Following the discussion in Section II,
the result of CBTA of the rectangular channel shown in Fig. 9 is the pair
of maps α1 and α1 shown in Fig. 10(a). For every point W = (0, w) on
the entry segment of R1 , and every angle α ∈ [α1 (w), α1 (w)], there
exists a curvature-bounded path that traverses the entire rectangular
channel. Note that these coordinates are in the axes system attached to
R1 , as shown in Fig. 2.

In contrast, the state-of-the-art result on narrow-channel traver-
sals [4] provides no useful information about the traversability of
the channel shown in Fig. 9. Specifically, the result in [4] states that
the curvature-bounded traversal of a channel (for a uniform curva-
ture bound r−1 ) is guaranteed if the width w of the channel satisfies
w ≥ τr, where τ ≈ 1.55, but provides no information about traver-
sal if the width of the channel violates the aforesaid condition. For
the example in Fig. 9, this condition is indeed violated. As previously
stated, not only does the proposed technique determine the traversabil-
ity of the channel, but it also considers nonuniform channel width,
and nonuniform curvature constraints, neither of which are addressed
in [4].

Example 2: To illustrate the practical significance of CBTA for robot
motion planning, we briefly discuss its application in simplifying mo-
tion planning for vehicles with dynamical constraints. As discussed in
Section I-C, motion-planning algorithms based on square or rectangular
cell decompositions (cf., [15]) repeatedly invoke a lower level trajectory
generation algorithm that finds control inputs to enable the vehicle’s
traversal through a finite sequence of rectangles (namely, through rect-
angular channels). MPC [23] is often used for trajectory generation.
For example, the motion-planning technique discussed in [15] requires
the solutions of trajectory generation problems defined over sequences
of length H + 2 of square cells, with each square of possibly different
dimension, where H = 1, 2, . . ..

Fig. 11. Tile motion-planning problem with H = 4.

To illustrate the application of CBTA in simplifying this trajectory
generation problem, we consider the model of a point-mass vehicle
subject to acceleration constraints. The dynamical model is described
by the differential equations

ẋ(t) = v(t) cos θ(t), ẏ(t) = v(t) sin θ(t) (3)

θ̇(t) = u2 (t), v̇(t) = u1 (t) (4)

where x, y denote the inertial position coordinates of the particle, θ is
the heading, v > 0 is the forward speed, u1 is the acceleration input,
and u2 is the steering input. The speed v is constrained to lie within
prespecified bounds vm in and vm ax . The set of admissible control inputs

is defined by U :=
{

(a, ω) : (vω/fm ax
r )2 + (a/fm ax

t )2 ≤ 1
}

, where

fm ax
r and fm ax

t are prespecified. The input constraint is an example
of a “friction ellipse” constraint that models the limited tire frictional
forces available for acceleration and steering of the vehicle. In what
follows, we denote by x = (x, y) the position vector of the particle and
by ξ = (x, y, θ, v) the state vector.

Let {c0 , . . . , cH +1} denote a sequence of geometrically adjacent
square cells, i.e., ck defines a square region for k = 0, . . . , H + 1, and
this sequence of cells is a rectangular channel, as illustrated in Fig. 11.
Let dk denote the size of the cell ck , and let xc

k denote the coordinates of
the center of the cell ck , for k = 0, . . . , H + 1. Consider the problem
of finding inputs u1 and u2 , and a time tf , if these exist, such that

(u1 (t), u2 (t)) ∈ U for all t ∈ [0, tf ] (5)

x(t) ∈
⋃H

k=1ck for all t ∈ [0, tf ] (6)

x(tf ) ∈ cH ∩ cH +1 (7)

with x(0) ∈ c0 ∩ c1 . The objective of this problem, called the tile
motion-planning problem [15], is to find control inputs that enable
traversal of the particle through the cell c1 , i.e., to determine the con-
trol inputs u1 , u2 : [0, t1 ] → U , where t1 is a time instant such that
x(t1 ) ∈ c1 ∩ c2 . The tile motion-planning problem is a low-level trajec-
tory generation problem that can enable a higher level search algorithm,
such as the algorithm described in [15], to find dynamically feasible
motion plans. In Fig. 11, the trajectory to be generated is indicated by
the solid black curve within cell c1 , whereas the dotted curve indicates
the requirement of satisfying constraint (6). Note that it suffices to guar-
antee that the trajectory indicated by the dotted curve exists, whereas
the trajectory indicated by the solid curve must be determined.

MPC is one approach to the solution of constrained trajectory gen-
eration problems, such as the tile motion-planning problem. The main
difficulty in the implementation of MPC to solve the preceding trajec-
tory generation problem is that constraint (6) involves, in general, a
nonconvex region in the workspace (namely, the interior of the rectan-
gular channel defined by the cells {c1 , . . . , cH }.

This difficulty with the implementation of MPC can be mitigated
using the proposed CBTA as follows. MPC algorithms can easily incor-
porate terminal set constraints, i.e., constraints that require the terminal
state to lie within a prespecified set. Consider the following reformu-
lation of the tile motion-planning problem: Find inputs ũ1 , ũ2 , and a
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TABLE II
SAMPLES OF TILE MOTION-PLANNING EXECUTION TIMES USING MPC

time t1 such that

(ũ1 (t), ũ2 (t)) ∈ U for all t ∈ [0, t1 ] (8)

x(t) ∈ c1 for all t ∈ [0, t1 ] (9)

ξ(t1 ) ∈ X1 (10)

where X1 ∈ c1 ∩ c2 is a so-called effective target set defined such that
for every state ξ ∈ X1 , there exist control inputs u1 , u2 : [t1 , tf ] → U
such that constraints (5)–(7) are satisfied. The advantage of this refor-
mulation of the tile motion-planning problem is that (9) is a convex
constraint. However, this advantage is achieved at the expense of intro-
ducing constraint (10), which in turn introduces the problem of com-
puting the effective target set X1 . Here, the proposed CBTA technique
is beneficial, because it efficiently computes the set X1 ∩ (R2 × S1 ).
Notice that the set X1 ∩ (R2 × S1 ) is, by definition, a target configura-
tion set that was previously discussed in Section II-A. Constraint (10)
can be convexified by replacing X1 by an interior convex set X̃1 ⊆ X1 .
Furthermore, mathematical details of an MPC implementation for this
tile motion-planning algorithm based on such a CBTA-based simplifi-
cation, are available in [20].

To further illustrate the computational benefits enabled by CBTA
in the MPC implementation of the tile motion-planning problem, we
performed numerical simulations of the tile motion-planning problem
on several channels of the form shown in Fig. 11 with different values
of H . Sample results of computational time required for the solution
of the tile-motion planning problem, with and without the previously
mentioned convexification enabled by CBTA, are shown in Table II. All
simulations were performed in MATLAB on a computer with an Intel
Core i7-860 processor, operating at 2.80 GHz with 16 GB of memory.
Whereas we did not find a clear trend of reduction in computation time
with increasing values of H , we consistently observed reductions by
an order of magnitude.

IV. CONCLUSION

In this paper, we have discussed the geometric problem of CBTA of a
polygonal region, namely, rectangular channels, formed by a sequence
of rectangles with disjoint interiors. More precisely, we proposed the
CBTA for establishing the existence of a differentiable curve lying
within a given rectangular channel, such that it satisfies an upper bound
on its curvature. We proposed a recursive numerical solution of this
CBTA problem based on the traversability analysis of a single rectangle.
We demonstrated via illustrative examples the significant benefits of
the proposed technique over comparable state-of-the-art results from
the literature.

We also discussed the application of CBTA for motion planning
of autonomous mobile vehicles. Specifically, we discussed the crucial
role of CBTA in the transformation of difficult trajectory generation
problems subject to dynamical constraints into easier geometric path-
planning problems. The proposed CBTA is suitable for online real-time
implementations because it involves simple algebraic calculations. Fu-

Fig. 12. Geometric considerations in the construction of Υx for CBTA-S1.

ture extensions of this study include CBTA with asymmetric constraints
on the curvature for left and right turns.

APPENDIX

As discussed in Section II-B, the proposed solutions to CBTA-S1 and
CBTA-S2 are based on constructions of the paths Λx and Υx that satisfy
properties P1)–P5). These constructions are based on concatenations of
circular arcs and straight line segments, based on the following result.

Lemma A.1 (Boissonnat et al. [10]): If there exists an admissible2

path of curvature at most r−1 , then there exists an admissible path
consisting of a concatenation of straight line segments and arcs of
circles of radius r.

In what follows, we will denote by C+ a clockwise circular arc, by
C− a counterclockwise circular arc, and by S a straight line segment.
When necessary, we will denote by C+

u , C−
u , or Su an arc of length u.

To construct the family of paths Υx underlying the procedure described
in Fig. 4, we use of the following preliminary technical results.

Lemma A.2: If 2r(d − w) ≤ d2 + (d − w)2 , then the maximum
possible tangent angle at W = (0, w) for any Type 1 path is given by
α∗(w), which is defined by

α∗(w) := cos−1 (1 − (d − w)/r) . (A.1)

Proof: See [17, pp. 146–147]. �
Lemma A.3: Let X be a point on the segment Y Z . If there exists a

Type 1 C+ path Γi,0 between W and X , then the tangent angle at W
of any Type 1 path between W and X is no greater than Γ′

i,0 (W ).
Proof: See [17, p. 152]. �
Corollary A.1: If there exists a Type 1 C+ path Γi,0 between W and

X , then the tangent angle at X of any Type 1 path between W and X
is no less than Γ′

i,0 (X).
Suppose that 2r(d − w) ≤ d2 + (d − w)2 , and consider the C+ arc

Γi,0 that passes through W with Γ′
i,0 (W ) = α∗(w). Let N2 = (d, n2 )

be the point of intersection of Γi,0 with line BC [see Fig. 12(a)]. It
can be shown that n2 is given by line 3 of the procedure in Fig. 4.
It follows that for any point X on the segment N2Z , there exists no
Type 1 admissible path from W to X . It can also be shown that if

2In [10], the term “admissible” defines a curvature-bounded continuously
differentiable path that satisfies specified initial and terminal conditions and is
contained within a specified polygon.
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2r(d − w) > d2 + (d − w)2 , the point of tangency of Γi,0 to the line
passing through segment AB lies outside the segment AB, and hence,
there exists a C+ arc from W to every point on the segment BC . These
observations underlie lines 2–5 of the procedure in Fig. 4.

Next, let X = (d1 , x) be a point such that x ∈ [y, n2 ] ∩ [y, z], and
let Πx be the C+ path between W and X . The existence of this
path is guaranteed by the choice of the point N2 and by the earlier
assumption of r > d. Let γ∗(x) := Π′

x (X). It can be shown using
elementary geometric arguments that γ∗(x) satisfies (3). We consider
the following cases of relations between γ∗(x) and the angles β(x) and

β(x):
1) γ∗(x) < β(x): Πx is not a Type 1 path. Define Υx as the C+ C−

path from W to X that satisfies Υ′
x (X) = β(x) [see Fig. 12(b)].

It can be shown that Υx is a Type 1 path and that Υ′
x (W ) satisfies

(4).
2) β(x) ≤ γ∗(x) < β(x): Πx is a Type 1 path [see Fig. 12(c)], and

we identify Υx = Πx . It can be shown that Υ′
x (W ) satisfies (5).

3) β(x) < γ∗(x): Πx is not a Type 1 path, and furthermore, by
Corollary A.1, there exists no Type 1 path between W and X
[see Fig. 12(d)].

The preceding constructions of Υx underlie the calculations in lines
6–12 of the procedure described in Fig. 4. The proofs that these con-
structions of Υx indeed satisfy the properties P1)–P5) described in
Section II are based on purely geometric arguments, and the details are
available in [17, App. C].
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On Intensity-Based Nonmetric Visual Servoing

Geraldo Silveira

Abstract—This paper considers the problem of vision-based robot sta-
bilization where the equilibrium state is defined via a reference image.
Differently from most solutions, this study directly exploits the pixel inten-
sities with no feature extraction or matching and uses only nonmetric in-
formation of the observed scene. Intensity-based techniques provide higher
accuracy, whereas not requiring metric information increases their ver-
satility. In this context, this paper further exploits the epipolar geometry
and its intrinsic degeneracies. Such degeneracies always occur when that
stabilization is sufficiently close to the equilibrium, regardless of the object
shape. This remarkable fact allows the development of new vision-based
control strategies with varying degrees of computational complexity and of
prior knowledge. Importantly, they are arranged hierarchically from the
simplest to the state-of-the-art ones, all in a unified framework. Three new
local methods are then presented, and their closed-loop performances are
experimentally assessed using both planar and nonplanar objects, under
small and large displacements, simulating and employing a six-degree-of-
freedom robotic arm.
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