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Abstract—Motion planning for mobile vehicles involves the so-
lution of two disparate subproblems: the satisfaction of high-level
logical task specifications and the design of low-level vehicle control
laws. A hierarchical solution of these two subproblems is efficient,
but it may not ensure compatibility between the high-level plan-
ner and the constraints that are imposed by the vehicle dynamics.
To guarantee such compatibility, we propose a motion-planning
framework that is based on a special interaction between these
two levels of planning. In particular, we solve a special shortest
path problem on a graph at a higher level of planning, and we
use a lower level planner to determine the costs of the paths in
that graph. The overall approach hinges on two novel ingredients:
a graph-search algorithm that operates on sequences of vertices
and a lower level planner that ensures consistency between the
two levels of hierarchy by providing meaningful costs for the edge
transitions of a higher level planner using dynamically feasible,
collision-free trajectories.

Index Terms—Autonomous mobile robots, consistency, graph
search, kinodynamic motion planning, motion planning.

I. INTRODUCTION

THE problem of motion planning and control for au-
tonomous mobile vehicles deals with finding appropriate

control inputs such that the vehicle’s resulting motion satisfies
the requirements of a specified task. This problem is inherently
complex because it involves two disparate subproblems: 1) the
satisfaction of the vehicular task specifications, which requires
tools from combinatorics and/or formal methods; and 2) the
design of the vehicle control laws, which requires tools from
dynamical systems and control theory. This inherent dichotomy
spawns a natural approach to the solution of the motion-planning
problem: a hierarchical separation of the aforementioned sub-
problems.

Consider, for instance, the vehicular task to traverse the envi-
ronment from a given initial point to a given destination, while
avoiding obstacles [1], [2]. For this problem, hierarchical sepa-
ration has often been used in motion planners to explicitly incor-
porate the vehicle’s kinematic and dynamic constraints [3]–[10].
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In such hierarchically separated schemes, the higher level is
mainly concerned with obstacle avoidance and with finding a
geometric, obstacle-free path from the initial point to the desti-
nation. We call this level the geometric path planning level. The
lower level accounts for the kinematic and dynamic constraints
of the vehicle: It sufficiently smoothens the geometric path and
imposes a suitable time parametrization along this path to obtain
a feasible reference trajectory. We call this level the trajectory
planning level. Additionally, a tracking controller generates the
control inputs that enable the vehicle to track this trajectory.

The principal advantages of such hierarchical separation in-
clude computational efficiency and simplicity of implementa-
tion. Geometric planners typically use a discrete representation
of the environment; hence, tools from combinatorics and/or for-
mal methods may be applied to ensure satisfaction of the vehicu-
lar task specifications [11]. A serious drawback of this hierarchi-
cal separation is that the geometric planner has no knowledge of
the vehicle’s kinematic and dynamical constraints; as a result, it
may produce either infeasible paths or unacceptably suboptimal
paths. This inadequacy in providing guarantees of consistency
between the higher and lower layers of planning and of optimal-
ity of the resultant trajectories has long been identified; conse-
quently, its resolution is of acute interest for the development
of autonomous mobile vehicles [11], especially for task specifi-
cations more complex than traveling from one point to another
and for vehicle dynamical constraints that are sufficiently com-
plex such that they cannot be ignored at the geometric planning
stage.

In this paper, we propose a hierarchical motion-planning
framework that addresses the aforementioned inadequacy of hi-
erarchical planners. The proposed framework, which is tailored
specifically for the planar motion of robotic vehicles, rests on a
novel mode of interaction between the geometric path planner
and the vehicle trajectory planner. This interaction is enabled by
a special shortest path problem on graphs involving costs that
are defined on multiple edge transitions, instead of the usual
single-edge transition costs. These transition costs are provided
by a low-level trajectory planner. The proposed framework is in-
tended as a basic step toward the design of hierarchically consis-
tent motion planners that combine discrete geometric planning
algorithms with trajectory generation algorithms.

A. Related Work

The geometric path planner in this paper is based on cell de-
compositions [1, Ch. 5], [12]. These involve a partitioning of the
environment into convex, nonoverlapping regions called cells.
A cell is classified either as FREE (if it contains no obstacles) or
FULL (if it contains no free space). A graph is associated with
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the cell decomposition such that each FREE cell is represented
by a vertex, and geometric adjacencies of the FREE cells are
represented by edges. A path from a prespecified initial cell to
a prespecified goal cell in this graph then corresponds to a se-
quence of FREE cells from the initial cell to the goal cell in this
graph.

Triangular and trapezoidal decompositions [1, Ch. 6], [13]
are widely used exact cell decomposition techniques for en-
vironments with polygonal obstacles, whereas quadtree-based
methods [14]–[16] (that employ recursive decompositions of
MIXED cells into four subcells until all cells are either FREE or
FULL) are popular approximate cell decomposition techniques.
Path planners using multiresolution cell decompositions have
also been proposed, for instance, in [17]–[19].

As previously mentioned, hierarchical1 approaches are often
used in motion planning [3]–[10] to separate the problem into
a high-level, discrete, geometric planning level and a low-level,
continuous, trajectory planning level. In the context of low-
level trajectory planning, in [20]–[23] time-optimal trajectory
planning along prespecified geometric paths for specific vehicle
dynamics is discussed. Other related works in the literature in-
clude [24], which uses a special history-based cost approach that
closely matches the approach taken in our study; [25], which
deals with kinodynamic planning for robotic manipulators; [26],
which uses a hybrid model to describe the motion of a rotor-
craft in terms of preprogrammed maneuvers; and [27], which
discusses trajectory planning that is based on the solution of the
Hamilton–Jacobi–Bellman equation.

An alternative to hierarchical motion planning, especially in
the context of the point-to-point trajectory generation prob-
lem, is to search directly in the state space of the vehicle.
Deterministic state space searches have been considered (cf.,
[28]); however, such approaches may be impractical for high-
dimensional state spaces. Probabilistic roadmap methods [1,
Ch. 7], [29]–[32] and methods that use rapidly exploring random
trees (RRTs) [33]–[37] are among the most popular, recent works
that address the vehicle’s kinematic and dynamic constraints
during motion planning. In these methods, random samples of
the obstacle-free space are connected to each other by feasible
trajectories, and the resulting graph is searched for a sequence
of connected samples from the initial state to the goal state.
Sampling-based algorithms require efficient low-level collision
detection and trajectory planning algorithms to find collision-
free trajectories between different samples [34].

Motion planners that use cell decompositions coupled with
feedback control laws [38]–[42] provide methods to generate
reference vector fields that guarantee feasible transitions through
any given sequence of cells without intersecting any other cell.
In [43], [44], and, in a slightly different context, [45], this idea
is also used to develop solutions that are guaranteed to sat-
isfy both aspects of motion planning and control: vehicular task
specifications that are expressed as temporal logic formulas and

1In addition to the “discrete-continuous” hierarchy that is considered in this
paper, hierarchical motion planning may also refer to a high-level continuous
geometric path planner coupled with a low-level time parametrization scheme.
In this paper, we regard the latter notion of hierarchy as a “low-level” trajectory
generation scheme.

kinematic and dynamic constraints that are expressed as differ-
ential equations. The common idea that is used in all of these
works is to make the geometric planner independent of the ve-
hicle dynamics, that is, to ensure that any sequence of cells can
be feasibly traversed from any initial vehicle state.

B. Contributions of This Paper

The principal contribution of this paper is a new motion-
planning framework that maintains the distinction between the
discrete planning and the trajectory planning strategies. The
advantage of this distinction is that either planner may be de-
veloped independently of the other: The discrete planner may
be tailored to satisfy vehicular task specifications (finding low-
cost, obstacle-free paths is an example of such a task), whereas
trajectory planning schemes that are based on control theoretic
ideas may be tailored to cope with complex vehicle dynam-
ics. However, in contrast with previous similar approaches, we
also provide a “protocol” to “interface” these two planners such
that compatibility of their solutions is maintained. The result
of a higher level geometric planner in the proposed framework
is a path that corresponds to a sequence of cells; consistency
between the two levels of planning is ensured by providing a
guarantee that this sequence of cells can be feasibly traversed
by the vehicle. The proposed framework is, thus, a step toward
the development of motion planners that systematically com-
bine results and techniques from different disciplines, such as
formal methods and control theory, to generate provably cor-
rect control laws that enable the vehicle to satisfy complex task
specifications, as envisioned in [11].

A secondary contribution of this paper is an efficient and flex-
ible algorithm of independent interest that finds a path in a graph
minimizing a cost that is defined on multiple edge transitions. A
basic version of this algorithm was originally reported in [46];
in this paper, we provide a more general, flexible version of this
algorithm, along with detailed numerical simulation results that
demonstrate its efficiency.

The rest of this paper is organized as follows: in Section II, we
introduce the idea of using history-dependent transition costs in
path planning. In Section III, we provide an efficient and flexible
algorithm that finds paths minimizing history-based transition
costs. In Section IV, we discuss the proposed motion-planning
framework that is based on the path-finding algorithm described
in Section III. In Section V, we discuss implementations of
the TILEPLAN algorithm that is used in the proposed motion-
planning framework, and in Section VI, we provide sample nu-
merical simulation results of the proposed approach, as well as
comparisons with other motion planners. Section VII concludes
with a summary of our contributions.

II. HISTORY-BASED TRANSITION COSTS

Geometric path planning algorithms that are based on
workspace cell decompositions provide no guarantees that the
resultant channel of cells can be feasibly traversed by a vehicle
subject to kinematic and dynamical constraints. At first glance,
one may argue that this is but an artifact of an unfortunate or
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Fig. 1. Counterexample for path planning without kinematic constraints.

Fig. 2. Problems with geometric path planning using cell decompositions.
(a) No pair of successive cells is itself infeasible. (b) Cells are too large; all cells
are MIXED.

inappropriate choice of the edge cost function in the associated
graph. We provide a counterexample against this argument.

A. Motivating Example

Consider the path planning problem that is depicted in Fig. 1,
where S denotes the initial position, G denotes the goal, and
the dark areas denote obstacles. Consider two vehicles A and B
whose minimum radii of turn are kinematically constrained by
rA
min and rB

min , respectively, such that rA
min ≤ d and rB

min > d.
Clearly, the dashed path in Fig. 1 is feasible for vehicle A, but
not for vehicle B. A path planning algorithm for B ought to
result in the bold path shown in Fig. 1.

Fig. 2 depicts the same problem with a uniform cell decom-
position. The channel that contains the dashed path in Fig. 1 is
denoted by cells with bold outlines. Such a channel is obviously
not traversable by vehicle B. However, notice that no pair of
successive cells is by itself infeasible, i.e., a channel that is de-
fined by two successive cells alone always contains a feasible
path. Stated differently, for any two adjacent cells, there is no
cell-dependent property associated with the two adjacent cells
that can be penalized by an edge cost function in order to pre-
vent the graph search from generating a channel such as the one
shown in Fig. 2(a).

It may be argued that a feasible path is guaranteed to exist
in any channel if the dimensions of the cells are large enough.2

The aforesaid counterexample also serves to illustrate the fact
that such a choice of cells may be too restrictive in practice.
Fig. 2(b) shows that large cells may not capture details of the
environment, i.e., the number of MIXED cells could be too large
for the cell decomposition to be useful for path planning.

In light of the preceding observations, we propose in this
paper an approach to find paths in the cell decomposition that
minimize a cost that is defined on multiple edge transitions—
called histories—instead of costs that are defined on single-edge
transitions.

2In [47], it is shown that a curvature-bounded path with local curvature that
is less than or equal to 1/rm in exists in a polygonal channel if the width w of
the channel satisfies w ≥ τ rm in , where τ ≈ 1.55.

B. Problem Formulation

Consider a cell decomposition of the environment that con-
sists of N cells. For now, we make no assumptions that concern
the geometry of the cells involved in the decomposition. The
topological graph associated with the given cell decomposition
is a graph G := (V,E) such that each element in the set of ver-
tices V corresponds to a unique, obstacle-free cell. Two vertices
are adjacent in G if the corresponding cells are geometrically
adjacent.3 The edge set E is the collection of all ordered pairs
(i, j) ⊂ V × V such that the vertices i and j are adjacent. For
the given initial and goal vertices iS , iG ∈ V , an admissible
path π in G is a finite sequence (j0 , j1 , . . . , jP ) of vertices
(with no repetition) such that jk ∈ V , (jk−1 , jk ) ∈ E, for each
k = 1, . . . , P , with j0 = iS , jP = iG . To formalize the concept
of histories, we define, for every integer H ≥ 0

VH := {(j0 , . . . , jH ) : (jk−1 , jk ) ∈ E, k = 1, . . . , H

jk �= jm , for k,m ∈ {0, . . . , H}, with k �= m} .

An element of the set VH +1 is called an H-history. In what
follows, we denote by [I]k the kth element of this (H + 1)-tuple,
and by [I]mk the tuple ([I]k , [I]k+1 , . . . , [I]m ), for k < m ≤
H + 1. We associate with each H a nonnegative cost function
g̃H : VH → R+ , and state a shortest path problem with transition
costs that are defined on histories as follows.

Problem 1 (H-cost Shortest Paths): Let H ≥ 0, and let
iS , iG ∈ V be the given initial and goal vertices such that any
admissible path in G contains at least H + 1 vertices. Let the
H-cost of the path π = (j0 , . . . , jP ) be defined by

J̃H (π) :=
P∑

k=H +1

g̃H +1 ((jk−H−1 , jk−H , . . . , jk )) . (1)

Find an admissible path π∗ in G such that J̃H (π∗) ≤ J̃H (π) for
every admissible path π in G.

Note that the H-cost of a path is defined as the sum of the
costs of H-histories in that path. According to this convention,
the 0-cost of a path is the standard notion of cost, i.e., the sum of
edge weights, because 0-histories are precisely the edges in E
with V1 = E. In other words, the H-cost shortest path problem
for H = 0 is the standard shortest path problem on a graph with
weighted edges.

It is possible to transform Problem 1 into an equivalent
standard shortest path problem on a “lifted” graph GH whose
vertices are the elements of VH . This transformation enables
a clear conceptualization of our proposed algorithm to solve
Problem 1 in light of the fact that the solution to the stan-
dard shortest path problem is well known. For instance, the
so-called label-correcting algorithms [48] provide efficient so-
lutions to the standard shortest path problem. Well-known exam-
ples of label-correcting algorithms include the Bellman–Ford,
Dijkstra [48], [49], and the A∗ [2], [50] algorithms.

We define adjacency relations between the elements of VH as
follows. Let I, J ∈ VH ; then J is adjacent to I if [I]k = [J ]k−1 ,

3In Section V, we consider rectangular cells and geometric adjacency in the
sense of 4-connectivity between cells.
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for every k = 2, . . . , H + 1, and [I]1 �= [J ]H +1 . Let EH denote
the edge set of the graph GH that consists of all ordered pairs
(I, J) such that J is adjacent to I .

For the given initial and terminal vertices iS , iG ∈ V , an
admissible path Π in GH is a finite sequence (J0 , . . . , JQ ) of
vertices (with no repetition) such that (Jk−1 , Jk ) ∈ EH , for
each k = 1, . . . , Q, with [J0 ]1 = iS , and [JQ ]H +1 = iG . Note
that every admissible path Π = (J0 , . . . , JQ ) in GH uniquely
corresponds to an admissible path π = (j0 , . . . , jP ) in G, with
P = Q + H and [Jk ]m = jk+m−1 , for each k = 0, 1, . . . , Q −
1, and JQ = (jP −H , . . . , jP ). We introduce a nonnegative cost
function gH : EH → R+ that is defined by

gH ((I, J)) := g̃H +1([I]H +1
1 , [J ]H +1), (I, J) ∈ EH .

It follows that Problem 1 is equivalent to the standard shortest
path problem on the graph GH , where the weight of an edge
(I, J) ∈ EH is given by gH ((I, J)).

III. PATH PLANNING WITH HISTORY-DEPENDENT COSTS

Problem 1 may be solved by first transforming it to a standard
shortest path problem on the graph GH , and then executing
a label-correcting algorithm such as Dijkstra’s algorithm. A
naı̈ve, brute-force implementation of this approach is ill-advised
because 1) |VH | and |EH | grow exponentially with H , and 2)
the explicit construction of the graph GH may be unnecessary
to find the shortest path in GH .

In this section, we describe an algorithm that indirectly exe-
cutes a label-correcting algorithm on GH , without constructing
the entire graph beforehand. Since |VH | and |EH | grow expo-
nentially with H , the execution time of any algorithm that solves
Problem 1 exactly grows exponentially with H . This fact holds
true for the proposed algorithm; however, we include in our al-
gorithm a user-specified parameter that can dramatically reduce
the execution time at the expense of (exact) optimality of the
resultant path, i.e., the proposed algorithm exhibits a flexibility
that allows the user to trade off execution time against optimality
of the resultant path.

For the sake of clarity, we first present a basic version of our
algorithm, namely, one that finds the optimal path and solves
Problem 1 exactly. In Section III-D, we introduce the aforemen-
tioned user-specified parameter and discuss the effects of this
parameter on the algorithm’s execution time.

A. Description of the Basic Algorithm

Recall that a standard label-correcting algorithm maintains a
set of vertices, which is called the fringe [51] (also referred to as
the set of OPEN vertices [48], [49]), whose labels can potentially
be reduced. The standard algorithm associates with each vertex
i ∈ V a label, which is an estimate of the least cost of a path
from iS to i, and a backpointer, which records the immediate
predecessor of each vertex in the optimal path from iS to i.

The definition of an admissible path in GH from iS to any ver-
tex i ∈ V requires only [JQ ]H +1 = i, where JQ ∈ VH is the last
vertex in this path. The first H elements of JQ are unspecified,
which implies that different admissible paths in GH may have
different terminal vertices in VH . In the proposed algorithm,

Fig. 3. Detailed pseudocode for the basic version of the proposed algorithm.

we recognize this fact by associating with each vertex i ∈ V
multiple H-histories instead of the backpointer in the standard
label-correcting algorithm. Each history of i is a unique element
I ∈ VH +1 such that [I]H +2 = i. The proposed algorithm is a
label-correcting algorithm that associates with each history of
each vertex i ∈ V a label. Accordingly, the fringe in the pro-
posed algorithm is a collection of pairs, where each pair consists
of a vertex in V and an index that refers to a particular history
of that vertex.

The pseudocode of the proposed algorithm is shown in Fig. 3.
In each iteration, the algorithm updates the label that corre-
sponds to a vertex–index pair, i.e., a particular history. Lines
8–11 update the fringe and the labels, similar to the standard
label-correcting algorithm. Line 5 chooses the index that corre-
sponds to the particular history (of the newly explored vertex j)
being updated in that iteration. We use the following notation:
For each vertex i ∈ V , Ti and Ni are defined by

Ti := {I ∈ VH : [I]H +1 = i} (2)

Ni := {I ∈ VH +1 : [I]1 = iS , [I]H +2
2 ∈ Ti}. (3)

Here, P denotes the fringe, and for each vertex i ∈ V and m ∈
{1, . . . , |Ti |}, h(i,m) denotes the mth history of i, and d(i,m)
denotes the label associated with the mth history of i. Finally,
the procedure HISTORY(i,m) returns the mth element of the set
Ti , and the procedure INDEX(I, i) returns the index of the history
I in the set Ti if I ∈ Ti , or returns 0 otherwise. The procedures
INSERT and REMOVE depend on the specific data structure that
is used to implement the fringe. In Section III-B, we consider a
list that is sorted by the current values of labels.
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Fig. 4. Graph and the history-based cost function used in Example 1.

The algorithm terminates when P = Ø (in Section III-B, we
note a condition to terminate the algorithm earlier). After ter-
mination, the algorithm returns the labels d and the histories h
for each vertex in V . For every vertex i �= iS in V , we may then
calculate the optimal path from iS to i by recursively tracing
the (H + 1)th element of histories recorded by h: a process that
is similar to recursively tracing the backpointer in the standard
label-correcting algorithm. We illustrate the execution of the
algorithm with a simple example.

Example 2: Consider the graph shown in Fig. 4(a), where
iS = 1. Let H = 1. Let g̃2 be a nonnegative cost function that
is given by the lookup table in Fig. 4(b) (for brevity, the values
of some of the elements of V2 are not shown). Note that

|Ti | =

⎧
⎨

⎩

2, i ∈ {1, 4, 13, 16}
3, i ∈ {2, 3, 5, 8, 9, 12, 14, 15}
4, otherwise

i.e., the algorithm maintains at most four histories and la-
bels for each vertex. Also note that N3 = {(1, 2, 3)}, N6 =
{(1, 5, 6), (1, 2, 6)}, N9 = {(1, 5, 9)}, and Ni = Ø for i ∈
{1, . . . , 16}\{3, 6, 9}.

We index the elements of Tj as 1, 2, 3, 4 corresponding to
UP, RIGHT, DOWN, LEFT edges of j, with reference to Fig. 4(a).
If a particular edge is absent, the corresponding index applies
to the next edge in the order that is listed earlier. For example,
the indices of (5,6), (10,6), (7,6), (2, 6) ∈ T6 are 1, 2, 3, and 4,
respectively, while the indices of (5, 1), (2, 1) ∈ T1 are 1 and 2,
respectively.

Line 3 of the INITIALIZE procedure results in P =
{(3, 1), (6, 1), (6, 4), (9, 3)}. From Fig. 4(b), Line 6 of the INI-
TIALIZE procedure results in

d(3, 1) = 5, d(6, 1) = 2, d(6, 4) = 6, d(9, 3) = 8

h(3, 1) = (1, 2), h(6, 1) = (1, 5)

h(6, 4) = (1, 2), h(9, 3) = (1, 5).

Next, suppose we remove (i,m) = (6,1) from the
fringe in Line 3 of the MAIN procedure. Then, P =
{(3, 1), (6, 4), (9, 3)}, and the for loop in Line 4 is executed
for vertices 2, 5, 7, and 10. In particular, for vertex j = 2,
Lines 5 and 6 result in n = 2, and J = (6, 2), respectively.
From Fig. 4(b), it follows that d(6, 1) + g̃2([h(6, 1)]2 , 6, 2) =
2 + 5 = 7 < d(2, 2) = ∞ (by Line 2 of the INITIALIZE pro-
cedure). Hence, Lines 9 and 10 result in d(2, 2) = 7, and
h(2, 2) = ([h(6, 1)]2 , 6) = (5, 6), while Line 11 results in P =
{(3, 1), (6, 4), (9, 3), (2, 2)}.

Similarly, the execution of the for loop in Line 4 of
the MAIN procedure for vertices 5, 7, and 10 results in
P = {(3, 1), (6, 4), (9, 3), (2, 2), (7, 1), (10, 4), (5, 2)}. The la-
bels and histories at the end of the first iteration are

d(5, 2) = 18, d(7, 1) = 9, d(10, 4) = 10

h(5, 2) = (2, 6), h(7, 1) = (5, 6), h(10, 4) = (5, 6).

B. Optimality and Performance

Different instances of label-correcting algorithms are ob-
tained by implementation of the fringe using different data struc-
tures. For example, implementation of the fringe as a LIFO stack
results in a breadth-first search; implementation of the fringe as
a list that is sorted by the current labels results in Dijkstra’s al-
gorithm. In this section, we consider an instance of the proposed
algorithm with the fringe that is implemented as a list which is
sorted by the current labels, i.e., the REMOVE procedure returns
(i,m) = arg min{d(i,m) : (i,m) ∈ P}.

Proposition 3: For every vertex i ∈ V , suppose there ex-
ists at least one admissible path from iS to i that contains
HISTORY(i,m), for any m ∈ {1, . . . , |Ti |}. Let π∗ be such an
admissible path in G with the least cost. Then the proposed
algorithm terminates with d(i,m) = J̃H (π∗). Otherwise, the
algorithm terminates with d(i,m) = ∞.

Proof: See [52]. �
Proposition 3 asserts that the algorithm computes the mini-

mum H-cost of paths from iS to every vertex i ∈ V and every
history in Ti . However, because we need to compute only the
minimum H-cost from iS to iG for any history in TiG , it is possi-
ble to terminate the algorithm earlier, as shown by the following
result.

Proposition 4: Each pair (j,m), j ∈ V , m = 1, . . . , |Ti | en-
ters the setP at most once during the execution of the algorithm.

Proof: See [52]. �
The conditions in Lines 8 and 11 of the MAIN procedure

imply that a pair (j,m) is inserted in P only when the value of
d(j,m) can be reduced. It follows from Proposition 4 that once
a pair (j,m) is removed from P , the value of d(j,m) cannot
be further reduced. The implication of this fact is that we may
terminate the algorithm after Line 3 if i = iG .

Note that Proposition 4 closely resembles a similar, known
result regarding the execution of Dijkstra’s algorithm: Namely,
each vertex enters the fringe at most once (see, for instance, [48],
[49]). We may use Proposition 4 to characterize the execution
time of the basic version of the proposed algorithm as follows:
In the worst case, every pair (j,m) enters the setP exactly once.
Thus, the maximum number of iterations (of the while loop in
the MAIN procedure) is upper bounded by

∑|V |
j=1 |Tj | = |VH | =

O(|V |H ).

C. Numerical Simulation Results

Table I shows sample examples comparing the times required
to construct the lifted graph GH and then executing Dijkstra’s
algorithm, with the execution times of the proposed algorithm.
In particular, the fourth, fifth, and sixth columns of Table I show,
respectively, the absolute values of the maximum, the minimum,



384 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 2, APRIL 2012

TABLE I
EXECUTION TIME RATIOS: SAMPLE VALUES

and the average ratios of execution times. The graph G that is
used in these simulations is the graph that arises out of a uniform
cell decomposition with 4-connectivity, i.e., a graph of the form
shown in Fig. 4(a). For each combination of H and |G|, 30 trials
were performed. In each of these trials, the structure of the graph
G was kept constant, and the costs to transition H-histories, i.e.,
the costs of edge transitions in GH , were assigned randomly.
The initial and goal vertices iS and iG were randomly assigned
in each trial.

Table I indicates that the proposed algorithm executes up to
three orders of magnitude faster, on average, and may execute
up to four orders of magnitude faster in the best case than the
alternative approach to first construct the lifted graph and then
execute the search. Furthermore, the memory that is required
to store the graph GH is approximately K times the memory
required by the proposed algorithm to store multiple histories
of each vertex j ∈ V , where K is the valency of the graph G.

D. Modifications for Further Efficiency

As mentioned previously, the execution time of the basic ver-
sion of the proposed algorithm increases exponentially with H ,
which may slow down the algorithm for large values of H . To
address this issue, we present in this section a simple modifi-
cation of the basic version of the algorithm that dramatically
reduces its execution time at the expense of optimality of the
resultant path.

The algorithm that is presented in Fig. 3 maintains, for each
vertex j ∈ V , a record of the costs-to-come to that vertex
through each of its histories. To reduce the execution time of the
algorithm, we may modify the algorithm such that it maintains,
for each vertex j ∈ V , the costs-to-come for a fixed number L of
histories. In particular, we will modify the proposed algorithm
by inserting the following statements between Lines 5 and 8 in
the MAIN procedure:

Li ← {d(i,m) < ∞ : m = 1, . . . , |Ti |}
if |Li | = L and Di,m ≥ max{Li} then

continue.

TABLE II
COMPARISONS OF EXEC. TIME AND SUBOPTIMALITY: SAMPLE VALUES

Accordingly, we delete from the set Ni that is defined in (3)
all but the first L histories, ranked by increasing H-costs.

Table II shows a few sample ratios of the execution times
of the proposed algorithm with the aforementioned modifica-
tions to the execution times without these modifications, and
the corresponding average suboptimality of the resultant paths
of the percentage increases in cost. For each combination of H ,
|G|, and L, 30 trials were performed. In each of these trials, the
structure of the graph G was kept constant and the costs to tran-
sition H-histories, i.e., the costs of edge transitions in GH , were
assigned randomly. The initial and goal vertices were kept fixed
in each trial: In particular, iS = 1 and iG = |G| were assigned.

Table II indicates that relatively small values of L speed up
the original algorithm by up to three orders of magnitude, with
relatively low increases in the cost of resultant paths. A similar
observation has been reported in [24], for the specific case of
H = 1 and L = 1.

IV. MOTION PLANNING WITH KINODYNAMIC

FEASIBILITY GUARANTEES

In this section, we present a hierarchical motion-planning
framework that is based on the H-cost shortest paths defined in
the previous section. In this framework, the high-level geomet-
ric path planner searches for H-cost shortest paths in the cell
decomposition graph G. This geometric planner repeatedly in-
vokes a special trajectory generation algorithm, which is called
the tile motion planner, to determine the costs of H-histories.
Because of the interaction between the geometric planner and
the trajectory planner, the search for a channel of cells from the
initial cell to the goal cell progresses simultaneously with the
(piecewise) construction of a trajectory from the initial vehicle
state to the goal state.

In this paper, we consider only vehicle dynamical models
where the vehicle configuration is described by its position in the
plane and its orientation, i.e., the configuration space C = R

2 ×
S

1 . This class of vehicle models includes all navigational models
of aerial and terrestrial vehicles that move in the horizontal
plane. Note that the vehicle state space D may be larger than
the configuration space.
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Fig. 5. General form of the tile motion-planning algorithm.

We consider a vehicle model that is described as follows.
Let (x, y, θ) ∈ C denote the position coordinates of the vehicle
in a prespecified Cartesian axis system, and let ψ denote any
additional state variables that are required to describe the state of
the vehicle. We assume that ψ ∈ Ψ, where Ψ is an n-dimensional
smooth manifold. The state of the vehicle is, thus, described
by ξ := (x, y, θ, ψ) ∈ D = C × Ψ. Let U ∈ R

m denote the set
of admissible control values, and for t > 0, let U[t1 ,t2 ] denote
the set of piecewise continuous functions that are defined on
the interval [t1 , t2 ] that takes values in U . We assume that the
evolution of the vehicle state ξ over a given time interval [0,
tf ] is described by the differential equation ξ̇(t) = f(ξ(t), u(t))
for all t ≥ [0, tf ], where u ∈ U[0,t f ] is an admissible control
input, and f is sufficiently smooth to guarantee global existence
and uniqueness of solutions. We denote by ξ(·; ξ0 , u) the state
trajectory that is the unique solution to the preceding differential
equation with the initial condition ξ(0) = ξ0 . Finally, we denote
by x(ξ) the projection of a state ξ on R

2 .
We introduce a special state trajectory planner called the tile

motion planner as follows. Consider two vertices I, J ∈ VH

such that (I, J) ∈ EH . We define the tile associated with the
edge (I, J) as the sequence of cells associated with the tuple
([I]1 , [J ]H +1

1 ) of vertices in G. In what follows, we use the
symbol τ to denote a tile, and we denote by (Iτ , Jτ ) the edge
in EH associated with this tile. TILEPLAN is then defined as
any algorithm that determines if a given tile may be feasibly
traversed by the vehicle from a specific initial condition. The
cost of traversal of a tile is the integral along the state trajectory
of a prespecified incremental cost �(ξ, u, t). The general form
of TILEPLAN is given in Fig. 5; in Section V, we outline a
specific implementation of TILEPLAN, when the workspace is
decomposed into square cells.

Fig. 6. Tile motion planning for square cells with H = 3.

Briefly, TILEPLAN determines if there exists a finite time tf
and a control u ∈ U[0,t f ] such that the corresponding vehicle
state trajectory satisfies constraints (4) and (5). Constraint (4)
states the requirement that the position components of the ve-
hicle state trajectory remain within the tile τ at all times in the
interval (0, tf ), whereas constraint (5) states the requirement
that the position components leave the tile in a finite time tf .
The algorithm returns the time t1 , which is required to traverse
the first cell of the tile τ , the time history u[0,t1 ] over the interval
[0, t1 ] of the control input u that enables traversal of the tile, the
vehicle state ξ1 at the boundary between the first and second
cells of the tile τ (see Fig. 6), and the cost Λ of traversal of the
first cell.

Note that expression (4) does not depend explicitly on θ or ψ.
This observation is consistent with our observation in Section I
that a higher level planner typically operates on a discrete rep-
resentation of the vehicle’s workspace (R2), and not on its state
space. In practice, θ or ψ may be subject to other constraints: For
example, if ψ = (ẋ, ẏ) represents the vehicle’s velocity, then
‖ψ(t)‖ may be subject to lower and upper bounds. However,
these constraints are of no concern at the geometric planning
level; their satisfaction will be ensured internally by TILEPLAN.

Suppose, for now, that a tile motion-planning algorithm satis-
fying the aforementioned requirements is available. Fig. 7 then
describes the overall motion-planning framework. It consists of
a geometric path planner that repeatedly invokes TILEPLAN to
determine H-costs of histories. The proposed motion planner
associates with each vertex I ∈ VH (in addition to the label d(I)
and backpointer b(I) of the standard label-correcting algorithm)
a vehicle state Ξ(I) ∈ D, a time of traversal Θ(I) ∈ R+ , and
an admissible control input Υ(I) ∈ U[0,Θ(I )] .

Informally, the proposed planner searches for a path in the
graph GH by traversing one edge during each iteration, while
simultaneously propagating the vehicle state forward. As previ-
ously mentioned, the choice of an appropriate control input to
propagate the vehicle state is left to TILEPLAN.

The proposed planner produces a path Π∗ = (J0 , . . . , JP ) in
GH , where [J0 ]1 = iS , and [JP ]H +1 = iG . As discussed previ-
ously, Π∗ corresponds to a sequence of cells, and the control
input to traverse this sequence of cells is given by

u(t) := Υ(Jk ), t ∈
[

k−1∑

m=1

Θ(Jm ),
k−1∑

m=1

Θ(Jm ) + Θ(Jk )

)

(8)
for each k = 1, . . . , P .

In the Appendix, we show that, with increasing H , the costs
of trajectories that result from the proposed motion planner are
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Fig. 7. Pseudocode for the overall motion planner.

nonincreasing. An informal interpretation of this result is that as
H is increased, the proposed motion planner erroneously rejects
fewer admissible paths in G as infeasible. This result guides the
selection of the value of H to implement the proposed motion
planner, in that it assures benefits (in terms of optimality of
the resultant trajectory) in return for expending computational
resources to use larger values of H .

V. TILE MOTION-PLANNING IMPLEMENTATIONS

The low-level trajectory planner TILEPLAN plays a crucial
role in the proposed motion-planning framework. In this sec-
tion, we present two specific implementations of TILEPLAN for
nonholonomic vehicles.

The implementation of TILEPLAN is difficult mainly because
(4) imposes a nonconvex constraint on the state trajectory. To
alleviate this difficulty, we take advantage of the fact that each
cell in the sequence of cells associated with a tile is a convex
region, using the idea of effective target sets, first introduced
in [53]. As described next, effective target sets enable the use of
MPC-based techniques to implement TILEPLAN by transforming
the constraint in (4) to a convex constraint that is defined over
a single cell (see [52] for the details of such an implementation
of TILEPLAN).

Let τ be a tile that corresponds to the edge (I, J) ∈ EH . We
define a sequence {Xk}H +1

k=1 of subsets of the vehicle state space
called the effective target sets as follows. Let

XH := (cell([J ]H ) ∩ cell([J ]H +1)) × [−π, π] × Ψ.

For each k = 1, . . . , H − 1, we define the effective target set
Xk as the set of all states ξk ∈ D such that

x(ξk ) ∈ cell([J ]k ) ∩ cell([J ]k+1) (9)

and such that there exists tk+1 ∈ R+ and an admissible
control input uk+1 ∈ U[tk ,tk + 1 ] such that the state trajectory
ξ(·; ξk , uk+1) satisfies

x(ξ(t; ξk , uk+1)) ∈ cell([J ]k+1), t ∈ (0, tk+1) (10)

ξ(tk+1; ξk , uk+1) ∈ Xk+1 . (11)

The preceding definition of effective target sets allows a sim-
plification of the tile motion-planning problem as follows. Sup-
pose there exist a time t1 and a control u1 ∈ U[0,t1 ] such that the
resultant state trajectory ξ(·; ξ0 , u1) satisfies

x(ξ(t; ξ0 , u1)) ∈ cell([J ]1), t ∈ (0, t1) (12)

ξ1 := ξ(t1 ; ξ0 , u1) ∈ X1 . (13)

Note that, due to (9), conditions (12)–(13) imply the satisfaction
of (4)–(5) for H = 1. Next, because ξ1 ∈ X1 , it follows by (10)–
(11) that there exists t2 ∈ R+ and an admissible control input
u2 ∈ U[t1 ,t2 ] such that

x(ξ(t; ξ1 , u2)) ∈ cell([J ]2), t ∈ (0, t2)

ξ(t2 ; ξ1 , u2) ∈ X2 .

In other words, the admissible control input u1−2 which is de-
fined as the concatenation of the inputs u1 and u2 by

u1−2(t) :=
{

u1(t), t ∈ [0, t1)
u2(t), t ∈ [t1 , T2 ]

where T2 := t1 + t2

enables the vehicle’s traversal through the cells corresponding
to the vertices [J ]1 and [J ]2 , i.e.,

x(ξ(t; ξ0 , u1−2)) ∈ cell([J ]1) ∪ cell([J ]2), t ∈ (0, T2) (14)

ξ(T2 ; ξ0 , u1−2) ∈ X2 . (15)

Note that, due to (9), conditions (14)–(15) imply the satisfaction
of (4)–(5) for H = 2. Continuing recursively the preceding ar-
guments, it follows that, for each H ≥ 2, there exist tk+1 ∈ R+
and admissible inputs, uk+1 ∈ U[tk ,tk + 1 ] for k = 1, . . . , H − 1,
such that the admissible input u defined by

u(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t), t ∈ [0, T1)

u2(t), t ∈ [T1 , T2)
...

...

uH (t), t ∈ [TH−1 , TH ]

where Tk :=
k∑

m=1

tm (16)

solves the tile motion-planning problem.
Thus, if the effective target setsXk , the corresponding times of

traversal tk+1 , and the control inputs uk+1 in (16) are known for
each k = 1, . . . , H − 1, then the tile motion-planning problem
is equivalent to the problem to find u1 and t1 as described
earlier. Crucially, (12) constrains the position components of
the state trajectory to lie within a convex set. Furthermore, we
may replace X1 in (13) by an interior convex approximating set
X̃1 ⊂ X1 , thus transforming the tile motion-planning problem
into the problem to find u1 and t1 subject to convex constraints.
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Fig. 8. Setup for Problems 8 and 9, which is used in the computation of effec-
tive target configuration sets. (a) Type 1 admissible path. (b) Type 2 admissible
path.

A. Computation of Effective Target Sets

Guidelines to construct the effective target sets are provided
in [53]. However, specific constructions may be tailored to the
specific dynamical model. In light of the fact that the vehicle
state includes the configuration (x, y, θ), we consider first the
computation of the intersections of the effective target sets with
the configuration space C = R

2 × S
1 . To this end, we define the

effective target configuration sets by Ck := Xk ∩ C and in what
follows, we outline a geometric scheme to compute the sets Ck .

Assumption 5: The geometric curves in the plane that can be
feasibly traversed by the vehicle satisfy a local upper bound on
their curvatures.

We will comment on the validity of Assumption 5 in Sec-
tion VI. Here, we use this assumption to compute the sets Ck by
solving the following problems (namely, Problems 8 and 9) in
plane geometry.

Let ABCD be a rectangle. We attach a Cartesian axes system
as shown in Fig. 8. Let the dimensions of the rectangle be d1
and d2 , and let r > 0 be fixed.

Definition 6: Let β(x), β(x), x ∈ [0, d2 ], be functions such
that − π

2 ≤ β(x) ≤ β(x) ≤ π
2 . Let Y = (d1 , y), Z = (d1 , z) be

points on the segment BC with y ≤ z. A path Π is a Type 1
admissible path if it satisfies the following properties.

1) (Curvature boundedness): The curvature at any point on
Π is at most r−1 .

2) (Containment): Π intersects the segment BC in exactly
one point X = (d1 , x) such that x ∈ [y, z], and it may

intersect segment AB and/or segment CD in at most one
point each.

3) (Terminal orientation): Π′ (X) ∈
[
β(x), β(x)

]
.

A Type 2 admissible path is defined analogously for traversal
across adjacent edges.

Definition 7: Let β(x), β(x), x ∈ [0, d1 ], be functions such
that − π

2 ≤ β(x) ≤ β(x) ≤ π
2 . Let Y = (y, 0), Z = (z, 0) be

points on the segment CD with y ≤ z. A path Π is a Type 2
admissible path if it satisfies the following properties.

1) (Curvature boundedness): The curvature at any point on
Π is at most r−1 .

2) (Containment): Π intersects the segment CD in exactly
one point X = (x, 0) such that x ∈ [y, z], and it may in-
tersect segment AB and/or segment BC in at most one
point each.

3) (Terminal orientation): Π′ (X) + π
2 ∈

[
β(x), β(x)

]
.

We state two geometric problems as follows. Let β, β, Y, and
Z be as in the preceding definitions. Let W = (0, w) and r > 0
be fixed.

Problem 8 (Traversal Across Parallel Edges): Find bounds
α, α such that for all α ∈ [α, α], there exists a Type 1 admissible
path with initial configuration (W,α).

Problem 9 (Traversal Across Adjacent Edges): Find bounds
α, α such that for all α ∈ [α, α], there exists a Type 2 admissible
path with initial configuration (W,α).

Problems 8 and 9 appear in the recursive computation of effec-
tive target configurations as follows. Suppose that the effective
target configuration set Ck+1 is known, for k ∈ {1, . . . , H − 1}.
Then, we may express Ck+1 as the product set of a line segment
on the boundary between cells cell([J ]k+1) and cell([J ]k+2)
and a set of allowable orientations on this line segment. In
other words, we may express Ck+1 in terms of the points Y,Z
and the functions β, β that are used in Definitions 1 and 2.
We may then solve Problem 8 or 9, as applicable for the cell
cell([J ]k+1), for each point on the line segment that forms
the boundary between cells cell([J ]k ) and cell([J ]k+1) and ob-
tain allowable orientations for each point on this line segment.
The product set of these allowable orientations and this line
segment is precisely the set Ck . The effective target configu-
ration sets may, thus, be computed recursively by repeatedly
solving Problems 8 and 9 as applicable for each cell, with
CH := (cell([J ]H ) ∩ cell([J ]H +1)) ×

[
− π

2 , π
2

]
.

The solutions to Problems 8 and 9 are based on detailed plane
geometrical analysis, and are beyond the scope of this paper.
We refer the reader to [52] for the analysis that is involved in the
solution of Problems 8 and 9. Here, we present a procedure that
uses the solutions to Problems 8 and 9 to recursively compute the
effective target configuration sets. Note that the sequence of cells
associated with a tile is, in general, a rectangular channel, that
is, a finite sequence {Rn}C

n=1 of disjoint rectangles of arbitrary
dimensions such that every pair of successive rectangles has a
common edge.

We attach a coordinate axes system to each rectangle Rn in
a manner consistent with the axes system that is used in the
statement of Problems 8 and 9 (see Fig. 10). The dimensions of
each rectangle along the x and y axes are denoted, respectively,
as dn,1 and dn,2 .
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Fig. 9. Recursive computation of effective target configuration sets.

For each rectangle Rn , we refer to the segments that are
formed by the intersections Rn−1 ∩ Rn and Rn ∩ Rn+1 , re-
spectively, as the entry and exit segments. For the rectangle R1
(resp. rectangle RC ), the entry segment (resp. exit segment) is
specified arbitrarily. We denote the endpoints of the entry seg-
ment by Un and Vn , and the endpoints of the exit segment by Yn

and Zn . We specify the coordinates of the points Un , Vn , Yn ,
Zn , by the corresponding lower case letters, i.e., Vn = (0, vn ),
etc.

For every point Q = (q, 0) (or Q = (dn,1 , q), as applicable),
with q ∈ [yn , zn ], on the segment YnZn , we denote by β

n
(q) and

βn (q), respectively, the lower and upper bounds on orientation
of the effective target configuration sets. Similarly, for every
point P = (0, p), p ∈ [un , vn ], on the segment UnVn , we denote
by αn (p) and αn (p), respectively, the upper and lower bounds
that result from the solution of Problem 8 (or Problem 9, as
applicable). Note that the angles αn (·), αn (·), β

n
(·), and βn (·)

are all measured with respect to the local coordinate axes system
attached to Rn . Finally, we denote by 
n the number of reflection
operations involved in the rigid transformations required to align
the entry and exit segments of Rn to the segments AD and BC,
respectively, for traversal across parallel edges, or to segments
AD and CD, respectively, for traversal across adjacent edges.

The recursive analysis to determine the existence of
curvature-bounded paths in rectangular channels is described
using the aforesaid notation in Fig. 9. To better explain the
procedure in Fig. 9, we illustrate its execution by an example.

Example 10: Let R̄4 = {Rn}4
n=1 be a rectangular channel

that consists of four rectangles, as shown in Fig. 10 , and let rn >
0, n = 1, . . . , 4 be given. The points Un, Vn , n = 1, . . . , 4, and
the points Y4 , Z4 are shown in Fig. 10. We note that Y1 = U2 ,
Z1 = V2 , Y2 = V3 , Z2 = U3 , Y3 = V4 , and Z3 = U4 .

Following the procedure in Fig. 9, we note that the last rectan-
gle R4 involves traversal across parallel edges, and we initialize
α5 and α5 as

α5(q) =
π

2
, α5(q) = −π

2
, q ∈ [0, d4,2 ] .

Fig. 10. Computation of effective target configuration sets.

Next, we execute Line 4 of the algorithm, and we note that
the entry and exit segments of rectangle R4 are aligned with
segments AD and BC, respectively, of Fig. 8. Thus, the total
number of reflections occurring in the transformations required
for R4 and (the fictitious rectangle) R5 is zero, and we set

β4 = α5 =
π

2
, β

4
= α5 = −π

2
.

To execute Line 9, we solve Problem 8 for each point Q = (0, q),
q ∈ [0, d4,2 ], on the segment U4V4 , and we obtain the values that
are taken by the functions q �→ α4(q) and q �→ α4(q).

Now we repeat Line 4 for rectangle R3 . Rectangle R3 involves
traversal across adjacent edges, and the entry and exit segments
of R3 may be aligned with segments AD and DC of Fig. 8
after a reflection about an axis parallel to the segment U4V4 ,
followed by a rotation through π

2 rad. Thus, the total number of
reflections occurring in the transformations required for R3 and
R4 is 1 (odd), and we set

β3(q) = −α4(y3 − (q − v4)), q ∈ [y3 , z3 ]

β
3
(q) = −α4(z3 − (q − u4))

where z3 = d3,1 , y3 = � (U3V4), v4 = d4,2 , and u4 = 0 (see
Fig. 10). To execute Line 9, we solve Problem 9 for each point
P = (0, p), p ∈ [0, d3,2 ], on the segment U3V3 to obtain val-
ues that are taken by the functions p �→ α3(p) and p �→ α3(p).
Proceeding further in a similar manner, we may obtain the val-
ues that are taken by the functions β

2
, β2 , and by the functions

β
1
, β1 . As discussed previously, the effective target configura-

tion sets Cn may then be expressed in terms of the functions β
n
,

and βn , for each n = 1, . . . , 4.

B. TILEPLAN for the Dubins Car

In this section, we discuss an implementation of TILEPLAN

for the Dubins car kinematic model that is described by

ẋ(t) = v cos θ(t), ẏ(t) = v sin θ(t), θ̇(t) = u(t)

where x, y, and θ are, respectively, the position coordinates
and the orientation of the vehicle with respect to a prespecified
inertial axes system, v > 0 is the (fixed) forward speed of the
vehicle, and u is the steering control input. The set of admissible
control inputs is U := [−1/r, 1/r], for a prespecified r > 0. As
it will be shown in Section VI, the upper bound on the curvature
of feasible geometric paths is κmax = (rv)−1 .



COWLAGI AND TSIOTRAS: HIERARCHICAL MOTION PLANNING WITH DYNAMICAL FEASIBILITY GUARANTEES 389

Fig. 11. Making U-turns with different curvature bounds. The curvature bound
in each case is r−1 . Here, H = 3. (a) r = 1. (b) r = 2. (c) r = 3.5. (d) r = 4.5.

Note that when the state space D is the same as the configura-
tion space C, the effective target sets coincide with the effective
target configurations sets, which can be computed via pure geo-
metric analysis as described in the previous section. In addition,
the feasible paths that are specified in TILEPLAN can also be
constructed geometrically, as discussed in [54], thus enabling a
solution to the motivating example of Section II.

Fig. 11 shows results of the simulations of the proposed al-
gorithm for a problem similar to the motivating example of
Section II. Note, in particular, that different channels are ob-
tained for different bounds on the curvature, whereas any cost
function that is defined on the edges E of the cell decomposition
graph G will result in the channel shown in Fig. 11(a). For this
example, the cost of traversal of a tile was chosen as the time of
traversal, i.e., �(ξ, u, t) := 1 in (7).

VI. RESULTS AND COMPARATIVE DISCUSSIONS

In this section, we present the results of implementation of
the proposed motion-planning framework for general vehicle
models, and we compare our results with those obtained us-
ing randomized sampling-based (RRT-based) motion planners.
As discussed in Section I-A, randomized sampling-based algo-
rithms that are based on RRTs [34] represent the state of the art
in kinodynamic motion planning.

We implemented the fringe as a list which is sorted by the
sum of the current label and a heuristic; specifically, we used
the Manhattan distance to the goal cell as a heuristic.4 We im-
plemented TILEPLAN using a trajectory generation scheme that
is based on model predictive control, similar to that reported
in [55]. Before discussing the results, we comment on Assump-
tion 5, which was used for geometrically computing the effective
target configuration sets.

The expression for the local curvature of the geometric path
that corresponds to feasible state trajectories is given by

κ(t) = |θ̇(t)/v(t)|. (17)

4One may also envision heuristics that are defined on vertices of GH instead
of vertices of G. For instance, one may consider a heuristic that is based on
coarse geometric considerations of the channels associated with the vertices of
GH .

An upper bound for the local curvature may then be com-
puted which is based on the specific vehicle model. For the
Dubins car model for example, |θ̇| = |u| ≤ 1/r, and by (17)
it follows that κ(t) ≤ (rv)−1 for all t ≥ 0, i.e., the upper
bound on the curvature of feasible geometric paths is κmax =
(rv)−1 . Similarly, for the dynamical model in Section VI-A,
note that |θ̇(t)| ≤ |u2(t)| ≤ fmax

r /v(t). It follows by (17) that
κ(t) ≤ fmax

r /v2(t). Thus, an upper bound on the curvature is
fmax

r /v2
max ; however, for each tile one may compute a local

bound v̄ on the speed valid for traversal across the tile, and
use the less conservative upper bound fmax

r /(min{v̄, vmax})2

to implement TILEPLAN.

A. Optimality of Resultant Trajectories

We consider a vehicle dynamical model described by

ẋ(t) = v(t) cos θ(t), ẏ(t) = v(t) sin θ(t)

θ̇(t) = u2(t), v̇(t) = u1(t),

where v > 0 is the forward speed of the vehicle, u1 is the accel-
eration input, and u2 is the steering input. The speed v is con-
strained to lie within prespecified bounds vmin and vmax ; these
bounds may be different for different regions of the workspace.
The set of admissible control inputs is

U :=

{
(a, ω) :

(
vω

fmax
r

)2

+
(

a

fmax
t

)2

≤ 1

}
(18)

where fmax
r and fmax

t are prespecified. The input constraint
defined by (18) is an example of a “friction ellipse” constraint
that models the limited tire frictional forces that are available
for acceleration and steering of the vehicle.

Fig. 12(a) shows the first of two environments used in the
numerical examples. This environment consists of “lanes” sepa-
rated by obstacles (black regions), with a different upper bound
on the allowable speed of the vehicle (lighter areas represent
higher upper bounds). The “friction ellipse” parameters were
fixed at fmax

r = 1, fmax
t = 0.25 over the entire environment.

The initial and goal cells are marked in Fig. 12(a). As before,
the objective is to find a minimum time trajectory from the
initial cell to the goal cell. We compared the proposed motion
planner with the following two RRT-based planners: 1) the stan-
dard RRT-based planner as reported in [34] and 2) the T-RRT

planner that has recently reported in [56]. The T-RRT planner
finds low-cost trajectories with respect to a prespecified state
space5 cost map. Note that the minimum-time criterion cannot
be expressed as a state space cost map; therefore, we execute
the T-RRT planner with the objective “travel as fast as possi-
ble,” which is immediately defined by the state space cost map
c(x, y, θ, v) = v.

Linear interpolation between two states does not, in general,
correspond to a feasible state trajectory. Hence, to extend known
states toward randomly selected new states, the RRT-based plan-
ners were programmed to randomly select an input vector from
the set of admissible inputs and integrate the vehicle model for

5In [56], the authors deal with a configuration space cost map, but their
approach extends easily to state spaces.
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Fig. 12. “Lanes” environment. Black colored regions denote obstacles; areas
with other colors represent different speed limits: vm ax = 1.25 units/s for the
darkest area, vm ax = 2 units/s, vm ax = 2.5 units/s, and vm ax = 3.5 units/s
for progressively lighter areas. The dark green curve denotes the geometric
path that corresponds to a sample trajectory returned by the T-RRT algorithm,
with δ = 1 s. The blue curve denotes the path that corresponds to the trajectory
returned by the proposed approach, with H = 6. (a) Geometric paths. (b) Speed
profiles.

a fixed time δ, as recommended in [34]. For the “lanes” envi-
ronment, we used three different values of δ, namely, δ = 0.5
s, δ = 1 s, and δ = 1.5 s, and we conducted 30 trials of both
algorithms (standard RRT and T-RRT) for each value of δ. For
comparison, we executed the proposed algorithm on the same
environment with three different values of H , namely, H = 4,
H = 5, and H = 6, with L = 10 in each case.

Fig. 14(a) shows comparative data for the trajectory costs (i.e.,
time of traversal) that result from the simulations described ear-
lier. The proposed motion planner returned trajectories with al-
most identical costs for each H . In particular, the trajectory cost
corresponding to H = 6 was 26.626 s. On the other hand, both
the standard RRT and T-RRT planners returned, on an average, sig-
nificantly costlier trajectories. For instance, the trajectory costs
that are returned by the standard RRT planner with δ = 1 were
in the best case 24% higher, on an average 78% higher, and in
the worst case 181% higher. Similarly, the trajectory costs that
are returned by the T-RRT planner with δ = 1 were in the best
case 8.9% higher, on an average 29% higher, and in the worst
case 46% higher.

Fig. 13. “Maze” environment. Black colored regions denote obstacles; areas
with other colors represent different speed limits: vm ax = 1.25 units/s for
the darkest area, vm ax = 2 units/s, and vm ax = 2.25 units/s for progressively
lighter areas. The dark green curve denotes the geometric path that corresponds
to a sample trajectory returned by the RRT-based planner, with δ = 1.5 s. The
blue curve denotes the geometric path that corresponds to the trajectory returned
by the proposed approach, with H = 5.

Fig. 12(a) shows the geometric path that corresponds to the
trajectory returned by the proposed planner with H = 6 (blue
curve) in comparison with the geometric path that corresponds
to a trajectory returned by the T-RRT planner in one of the 30
trials with δ = 1 (green curve). Fig. 12(b) shows the speed
profiles that correspond to these two trajectories. This example
illustrates that the “travel as fast as possible” objective is not
always a practically acceptable alternative to the minimum-
time criterion: Fig. 12(b) shows that the vehicle achieves higher
speeds along the T-RRT trajectory but the travel time is 35.2%
higher than the trajectory that is found by the proposed planner.
This result is a consequence of the input constraint (18), which
forces the vehicle to traverse paths of lower curvature at higher
speeds, thus producing longer geometric paths.

Fig. 13 shows the second, maze-like environment that is used
for our comparative analysis. As before, different upper bounds
on the speed were assigned to different areas in the environment,
and the friction ellipse parameters were fixed at fmax

r = 1 and
fmax

t = 0.25 over the entire environment. As before, the objec-
tive is to find a minimum-time trajectory from the initial cell to
the goal cell. We compared the proposed motion planner with
the standard RRT planner alone, because the T-RRT planner was
found to be impractically slow for this case. As shown in Fig. 13,
the environment has a narrow “short-cut” between the initial cell
and the goal cell.

Fig. 14(a) shows comparative data for the trajectory costs
for this maze-like environment. The proposed motion plan-
ner returned trajectories with almost identical costs for each
H; in particular, the trajectory cost that corresponds to H = 5
was 56.23 s. The trajectory costs returned by the standard RRT

planner were significantly higher, mainly because it failed to
traverse the aforementioned “short-cut” on several occasions,
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Fig. 14. Comparison of trajectory costs. For the RRT and T-RRT data, the blue
(left), red (middle), and green (right) bars represent, respectively, the maximum,
the minimum, and the average values over 30 trials. (a) Data for the “lanes”
environment in Fig. 12(a). (b) Data for the maze-like environment in Fig. 13.

TABLE III
EXECUTION TIMES FOR THE PROPOSED PLANNER

as illustrated in Fig. 13. For instance, the trajectory costs that
are returned by the standard RRT planner with δ = 1 were in
the best case 48% higher, on an average 107% higher, and in
the worst case 185% higher. Clearly, the average costs of trajec-
tories that are returned by RRT-based planners may be further
worsened in environments where the differences between the
costs of trajectories corresponding to “short-cuts” and the costs
of alternative trajectories are larger.

B. Performance of the Proposed Motion Planner

Table III presents the execution times of the simulations of
the proposed planner for the examples that are discussed in
the previous section. The simulations were implemented in the
MATLAB programming language; implementations in lower
level languages will execute much faster.

Fig. 15(a) shows on a logarithmic scale the number of states
explored by each of the algorithms discussed in the previous
section for the “lanes” environment. Fig. 15(b) shows similar
data for the maze-like environment in Fig. 13. In both cases, the
number of states explored by the RRT-based planners was higher
by at least an order of magnitude.

It should be noted, however, that the number of states ex-
plored is not a direct indicator of the computation time of either
of the approaches. This is because the time required for the
RRT-based planners to explore a new state (including the nearest
neighbor search and collision checking) is different from the ex-
ecution time of the MPC-based TILEPLAN. In our simulations,

Fig. 15. Comparison of number of states explored: for the RRT and T-RRT data,
the blue (left), red (middle), and green (right) bars represent, respectively, the
maximum, the minimum, and the average values over 30 trials. (a) Data for the
“lanes” environment in Fig. 12(a). (b) Data for the maze-like environment in
Fig. 13.

we found that the time required to explore a new state in the
RRT-based planners was approximately an order of magnitude
lower than the time required to explore a new state in the pro-
posed approach. A direct comparison of the execution times of
these planners showed no conclusive evidence of the superior-
ity of either planner over the other in that respect. However, as
indicated in Fig. 15, it is expected that the proposed planner will
be preferable in cases where the exploration of new states is
expensive, due to, perhaps, complicated vehicle dynamics that
will require a computationally expensive local planner.

C. Further Discussion

1) Comparisons With Randomized Sampling-Based Motion
Planners: The exploration of the state space is difficult with
standard RRT-based motion planners when the states and control
inputs are coupled via complex, nonlinear differential equations
[37], because linear interpolation between two states no longer
corresponds, in general, to an admissible state trajectory. While
[37] and similar earlier works focus on aiding the efficiency of
sampling-based algorithms using a discrete search, we focus
on the complementary aspect of optimality by ensuring that the
result of a discrete shortest path search remains compatible with
the vehicle dynamics.

In addition to the benefits of the proposed planner over ran-
domized sampling-based planners in terms of optimality, the
proposed planner also offers the benefit of a clear distinction
between the discrete and continuous layers of motion planning.
The idea of planning on the lifted graph, which is introduced
in Section II, allows this distinction to be maintained, while
providing guarantees of consistency between the two levels of
planning. Consequently, changes to the discrete planning strat-
egy and/or the (continuous) tile motion planning may be incor-
porated with relative ease. In this paper, we used the shortest



392 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 2, APRIL 2012

Fig. 16. Application of the proposed motion-planning framework to find
“low-elevation” paths: Lighter areas represent more favorable regions of the
workspace. The Dubins car kinematical model is used in TILEPLAN. The red
curve represents a path with r = 1, whereas the blue curve represents a path
with r = 2.

path search as a concrete, important example of a discrete search
strategy; in the future, we envision extensions of the proposed
planner where the discrete planner attempts to satisfy vehicu-
lar tasks that are specified as formulas of predicate or tempo-
ral logic [11] instead of solving a shortest path problem. On
the other hand, complex vehicle dynamics can be easily incor-
porated in TILEPLAN without affecting the discrete planning
strategy.

In the context of the shortest path problem alone, different
trajectory quality criteria can be incorporated easily to meet dif-
ferent motion-planning objectives. For example, Fig. 16 shows
the result of simulating the proposed planner by defining the
H-cost as a weighted sum of the time of traversal and the terrain
elevation. Consequently, the planner finds paths that traverse
low-elevation portions of the terrain (lighter regions in Fig. 16),
while ensuring kinematic feasibility guarantees of the resultant
paths. The Dubins car model was used for this simulation; the
two curves in Fig. 16 indicate the resultant paths for different
curvature constraints. It should be noted that the problem to
find low-cost trajectories with respect to configuration space
cost maps using randomized sampling-based methods has been
addressed in [56]. However, many important trajectory quality
criteria such as time optimality (considered in the preceding sec-
tion) and fuel optimality cannot be expressed as configuration
space cost maps.

2) Comparisons With Recent RRT-Based Motion Planners:
During the preparation of this study, we became aware of two
recent motion-planning methods that seem to be competitive to
our approach. In [57], an extension of RRT (the so-called RRT∗

algorithm) has been proposed to recover (asymptotically) op-
timality for RRT-based planners. RRT∗ improves incrementally
the path quality, and it has been shown to result in asymptoti-
cally optimal paths. Similarly, the SyCLoP framework [37] may
produce paths of better quality in comparison with the standard

RRT algorithm.6 In [37], a random exploration of the state space
is biased using a discrete search that is based on, say, geometric
decompositions of the environment. From the results of these
two references, we expect that the path quality of the proposed
framework will be comparable with that of the RRT∗ framework,
with significant benefits in execution time. Similarly, it is ex-
pected that the execution time of the proposed algorithm will be
comparable with that of the SyCLoP framework, with significant
benefits in path quality. Of course, detailed numerical compar-
isons in terms of execution time and path quality between the
proposed framework and the RRT∗ and SyCLoP frameworks, and
for different vehicle dynamical models, are needed to confirm
these observations.

3) Comparisons With Feedback-Based Motion Planners:
An underlying assumption in the feedback-based motion-
planning approach that is described in Section I-A is the com-
plete controllability of the vehicle dynamical model in the pres-
ence of obstacles, i.e., the assumption that there exists a feasible,
obstacle-free trajectory from any initial state to any goal state.
In the context of mobile vehicles, complete controllability in the
presence of obstacles is a strong assumption: Fixed-wing aircraft
that moves in the horizontal plane do not satisfy this assumption;
terrestrial vehicles constrained to move only forward, or high-
speed vehicles for which stopping and reversing the direction of
motion may not be desirable also do not satisfy this assumption.
In contrast with the planners presented in [38]–[42], the pro-
posed motion-planning framework does not assume complete
controllability in the presence of obstacles.

When the complete controllability assumption is violated, the
central tenet of the preceding feedback-based motion-planning
schemes is no longer valid: Arbitrary sequences of cell tran-
sitions cannot in principle be guaranteed from arbitrary initial
states. A simple example of a vehicle kinematic model that vi-
olates the complete controllability assumption in the presence
of obstacles is the Dubins car model. For any given sequence of
cell transitions in the workspace, there exists a set of initial states
of the vehicle from which it is impossible for the vehicle to ex-
ecute that sequence. The proposed framework does not require
this assumption because the geometric planner ensures the fea-
sibility of traversal of its resultant path (i.e., the sequence of cell
transitions from the initial position to the goal) by computing
an admissible control input, which is given in (8).

4) Applications to Shaped Robots: Although, for simplicity,
in this paper we assumed a point-mass vehicle model, in practice
it is important to incorporate the size of the vehicle. To do so,
TILEPLAN may be modified such that condition (4) constrains
the geometric path that is traversed by the vehicle to lie within
a shrunken channel inside the tile (see Fig. 17). Crucially, the
shrunken inner channel is also a rectangular channel; hence,
the geometric analysis that is presented in Section V-A can be
used to implement the modified TILEPLAN. The implementation
of TILEPLAN for robots of finite size is, thus, a relatively straight-
forward extension of the work presented in Section V.

6Although in [37], the authors claim improvements only in the efficiency of
motion planning.
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Fig. 17. Modification of cell traversal constraints in TILEPLAN to deal with
shaped robots. Note that the inner channel is also a rectangular channel.

5) Connections With Differentially Flat Systems: The idea
of attaching history-dependent costs while working solely with
workspace cell decompositions hinges strongly on the ability to
reconstruct the whole vehicle state trajectories from a path in
the workspace. This is closely related to the idea of differential
flatness [58]. The states and inputs of a differentially flat system
can be expressed in terms of the so-called flat outputs and their
derivatives. In this context, the proposed idea to attach history-
dependent costs along the path may be viewed as a method to
recover derivative (i.e., velocity) information about the vehicle
from its time-parameterized workspace path.

For a Dubins vehicle, for instance, this derivative information
allows the planner to calculate the vehicle orientation from θ =
tan−1 (ẏ/ẋ). In other words, time-parameterized trajectories in
the workspace (in this case, x and y coordinates) allow the
recovery of the missing state variable (in this case θ). As a result
of this observation, it is expected that the scope of the proposed
motion-planning framework may be expanded significantly by
investigating its application to differentially flat systems whose
flat outputs coincide with the workspace of the vehicle (or robot).

6) Completeness of the Proposed Motion Planner: We con-
clude the discussion of the proposed motion-planning frame-
work with a comment concerning its completeness.7 The pro-
posed motion planner is complete in the following sense: Be-
cause the number of cells is finite, there exists a finite H ∈ N

such that the initial vertex iS ∈ V and the goal vertex iG ∈ V be-
long to a single history, i.e., a single edge (IS , IG) of the lifted
graph GH . Then, assuming TILEPLAN is complete (i.e., TILE-
PLAN finds a path satisfying the specifications that are listed
in Fig. 5 if one exists), the algorithm finds a control input re-
quired to traverse the tile corresponding to the edge (IS , IG),
thus solving the motion-planning problem.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a hierarchical motion-
planning framework that comprises a discrete path planner and
a continuous trajectory planner. In light of the fact that obsta-
cles are typically defined in a lower dimensional workspace,
we emphasize the discretization of only the workspace, while
allowing the low-level trajectory planner to apply local control
algorithms specific to the vehicle model to find control inputs
that enable the vehicle’s desired motion.

7A motion planner is said to be complete if it finds in a finite number of
iterations a solution to the motion-planning problem whenever there exists a
solution or otherwise indicates failure after a finite number of iterations.

The proposed framework involves a precise characterization
of the interaction between the two levels of planning. Specifi-
cally, the high-level planner solves a special path optimization
problem on a graph—finding a path in the cell decomposition
graph that minimizes costs defined over multiple edge tran-
sitions (histories)—and the low-level trajectory planner deter-
mines the feasibility of traversal and the cost of traversal (if
feasibility is ensured) of the sequence of cells that correspond
to the given history of edge transitions. We provide an algorithm
to solve the aforementioned path optimization problem exactly,
along with a modification of the algorithm that executes faster,
albeit at the expense of optimality of the resultant path. Using
a four-state, two-input vehicle dynamical model, we compare
the proposed motion planner with two RRT-based planners and
provide numerical data that demonstrate the superiority of the
proposed planner in terms of the quality of the resultant trajec-
tories.

Future work will deal with the implementation of the pro-
posed framework using multiresolution cell decompositions,
and with the development of tile motion-planning algorithms
for more realistic vehicle dynamic models.

APPENDIX

DEPENDENCE OF PATH OPTIMALITY ON H

We assume here that the proposed motion planner solves an
H-cost shortest path problem, where the H-cost of an edge in
GH is determined by the tile motion-planning algorithm. We
discuss the variation of the minimum H-cost with respect to H
via the following results; we denote by P̄ the maximum number
of vertices in any path in G from iS to iG .

Lemma 11: Let π = (j0 , . . . , jP ) be an admissible path in G.
Then, for each H ∈ N

J̃H +1(π) ≤ J̃H (π). (A.1)

Proof: See [52]. �
Proposition 11: Let J ∗

H denote the minimum H-cost of paths
in G. Then, {J ∗

H }P̄
H =1 is a nonincreasing sequence.

Proof: Let π be an admissible path in G. By Lemma

J̃P̄ (π) ≤ · · · ≤ J̃1(π). (A.2)

For H ∈ {1, . . . , P̄}, let π∗
H denote the H-cost shortest path in

G. Then for each admissible path π, J ∗
H = J̃H (π∗

H ) ≤ J̃H (π)
by optimality. In particular, for π = π∗

H−1

J ∗
H = J̃H (π∗

H ) ≤ J̃H (π∗
H−1)

≤ J̃H−1(π∗
H−1) = J ∗

H−1 (due to (A.2)),

and the result follows. �
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