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Controllers for Unicycle-Type Wheeled Robots:
Theoretical Results and Experimental Validation

ByungMoon Kim and Panagiotis Tsiotras, Senior Member, IEEE

Abstract—Mobile robots offer a typical example of systems with
nonholonomic constraints. Several controllers have been proposed
in the literature for stabilizing these systems. However, few exper-
imental studies have been reported comparing the characteristics
and the performance of these controllers with respect to neglected
dynamics, quantization, noise, delays, etc. In this paper, we use a
Khepera mobile robot to perform experimental comparison of sev-
eral control laws. Khepera has two dc motor-powered wheels and
introduces many realistic difficulties, such as different motor dy-
namics for the two wheels, time delay, quantization, sensor noise,
and saturation. We emphasize the implementation difficulties of
two discontinuous controllers proposed herein, and we compare
their performance with several other controllers reported in the
literature. Ways to improve the performance of each controller are
also discussed.

Index Terms—Experimental results, nonholonomic systems, sta-
bilization, tracking, wheeled robots.

I. INTRODUCTION

A N UNDERACTUATED system is one with a smaller
number of control inputs than the number of independent

generalized coordinates. Often, underactuated systems arise
as a result of some nonintegrable motion constraints. In such
systems, it is not possible to choose generalized coordinates
equal to the number of degrees of freedom (DOF). The number
of generalized (i.e., Lagrangian) coordinates exceeds the
number of degrees of freedom by the number of independent,
nonintegrable constraints [14, p. 66]. Such systems are called
nonholonomic. Several examples which involve nonholonomic
constraints can be found in real-world applications, such as
mobile robots, bicycles, cars, underactuated spacecraft, under-
water vehicles, etc. Several approaches have been proposed
for stabilizing nonholonomic systems. One such approach
is to use time-varying controllers [15], [13], [11], [16], [10].
These time-varying control laws have typically slow rates
of convergence [9]. Experimental validation of time-varying
controllers can be found in [11]. An alternative approach is
to use time-invariant, discontinuous controllers such as those
in [4], [18], [8], [1], [19], [3], and [2]. These discontinuous
control laws ensure exponential convergence rates. A compar-
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ative study of controllers for nonholonomic systems and, in
particular, between time-varying and time-invariant controllers,
has not been done, at least as far as the authors know. This is
clearly of great interest. Moreover, the robustness properties of
these controllers is still a topic under investigation. This paper
provides a step toward this goal by comparing the stabilization
and robustness properties of several time-varying and time-in-
variant controllers for a wheeled robot. It should be noted that
a comprehensive investigation of the issues associated with the
experimental implementation of controllers for mobile robots
has also recently appeared in [6].

All controllers in this paper are implemented on a uni-
cycle-type robot called Khepera. This robot has two dc
motor-powered wheels and introduces many realistic diffi-
culties, such as different motor dynamics for the two wheels,
time delay, quantization, sensor noise, and saturation. The
performance of each controller was tested with respect to
convergence characteristics, speed of response, steady-state
error, robustness to sensor noise, etc. Suggestions on how to
improve each controller’s performance are also presented.

The paper is organized as follows. In Section II, we present
the mathematical equations used to describe the kinematics of a
unicycle-type wheeled robot. Two somewhat different state and
input transformations of these equations result in two slightly
different implementations (herein called System I and System
II) of the control laws. The effects of choosing either of these
two implementations is discussed in detail later in the paper. In
Section III, we present two discontinuous, time-invariant con-
trol laws. These control laws are based on the results of [19],
[17], and [2]. Proper implementation of these control laws re-
quires some care in order to avoid the singularity at the origin.
Section IV summarizes the controllers tested in this work. De-
tails for each controller can be found in the relevant references.
The description of the experimental setup and the problems en-
countered during the implementation of these controllers are
given in Section V. Sensor noise, quantization error, and motor
dynamics all affected the performance of the control laws. The
steps taken to reduce these effects are outlined in detail. To make
a fair comparison between all controllers, several robot missions
were devised. Considerable effort was devoted to finding the
best gains for each controller. Section VI summarizes the ex-
perimental results. Conclusions are given in Section VII.

II. K INEMATIC EQUATIONS

Consider a unicycle-type robot, as shown in Fig. 1. The kine-
matic equations of the robot are

(1)
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Fig. 1. Definition of configuration variables.

Fig. 2. Khepera robot.

The kinematic model of a differentially steered mobile robot
(such as the Khepera, shown in Fig. 2) has two control inputs,
the velocities of the left and right wheels, and . These are
related to the forward velocity and the angular velocity of
the robot by , where is half the dis-
tance between the two robot wheels. Therefore, the kinematics
of a differentially steered mobile robot can be described by the
unicycle kinematics (1). Equation (1) can be transformed to the
normal chained (or power) form by a state and input transfor-
mation. Using the state transformation [5]

(2)

one arrives at two slightly different systems, depending on the
input transformation used. System I is given by

(3a)

(3b)

and System II is given by

(4a)

(4b)

These two systems are completely equivalent when the inputs
are the linear velocity and the angular velocity . However,
they are different when the inputs areand . Compare (3a)
and (4a). Our experimental results have shown that the extra
term has a significant effect on the transient response of the
robot. Although it is easier to design a control law using System
I, our results have shown that practical implementation favors
System II. This fact has also been observed by M’Closkey and
Murray [11], [12] where they implemented their controllers (de-
rived based on System I) using System II. Fortunately, it turns
out that the extra term in (4a) does not destroy stability.
Our experiments actually showed that working with System II
was almost always beneficial.

III. T WO TIME-INVARIANT CONTROLLERS

In this section, we present two time-invariant, discontinuous
controllers. Their derivation uses ideas from invariant manifold
theory [17], [2], [8].

A. Controller 1

This controller was first proposed in [17] and uses the same
ideas as in [18]. A more general version of this controller has
been proposed in [2]. The control law is given by

(5)

where is given by . The derivative of
is readily calculated as

(6)

Consequently, the states correspond to the well-
known nonholonomic integrator of Brockett [4], [2].

The function defines a manifold in by
. It can be easily shown that is

an invariant manifold for (3a) with control (5). Moreover, for all
initial conditions , the state decays exponentially to
zero as . For initial conditions , the control law
(5) is such that with an exponential rate of convergence.

The controller given by (5) is not defined on theaxis, i.e.,
for . This is a singular case and a modification of
the control law in (5) around the axis is needed to avoid this
singularity. Such a modification is discussed later in this section.
As shown next, for all initial conditions ,
the system (3a) with this control law is “almost exponentially
stable” [2].

Proposition 1: The control law given by (5) almost exponen-
tially stabilizes (3a) for all initial conditions, such that

and , if and . Moreover, if ,
the control inputs and are bounded along the trajectories
of the closed-loop system.

Proof: See [17] or [2] .
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Remark 1: The notion of almost exponential stability (AES)
used here is the same as the one in [2]. That is, for any open
and dense set in AES implies: 1) existence of solutions
for all and for all initial conditions in ; 2) exponential
convergence of the closed-loop trajectories to the origin; and 3) a
Lyapunov-type stability with respect to the subspace topology
induced on by . Similarly to AES, one can introduce the
notions of almost asymptotic stability (AAS) if 2) is replaced by
asymptotic convergence to the origin. A system is locally AES
(LAES) or locally AAS (LAAS) if the set is bounded.

Next,we turnourattention toSystemIIwithcontroller (5).The
next proposition basically states that the extra term – in the

equation for System II does not destroy asymptotic stability.
Proposition 2: System (4a) with the control law given in (5)

is LAAS, if and . Moreover, if , the control
inputs are bounded along the closed-loop trajectories.

A complete proof of this result is given in the Appendix.
Singularity Avoidance:A modification of the control law (5)

in a neighborhood of the axis is necessary, since this control
law is not defined when . The modification used
here is similar to the one presented in [18]. The idea is to create
a region around the axis where the control law (5) is not used.
To this end, let the region where

(7)

With a slight abuse of notation, we let denote the set

. In the set , where is large, we can apply, for
instance, the control law1 , and where

is some constant chosen by the user. A simple calculation
shows that with this control law the system will leave in fi-
nite time. Moreover, it can be easily shown that for System I

and, hence, the region is
invariant. Thus, once the system enters it stays there for
all future times. Once in , the control law (5) can be used.
During controller implementation, was chosen by trial and
error so as to achieve reasonable control input and state tran-
sient responses. For System II, it is shown in the Appendix that

remains bounded along closed-loop trajectories and the re-
gion is positively invariant. This modification of Controller
1 was implemented in both Systems I and II.

B. Controller 2

The second time-invariant controller also uses ideas from in-
variant manifold theory. This controller, however, provides a
control input which is explicitly bounded by ana priori speci-
fied upper bound, regardless of the initial conditions. This con-
troller was originally developed for the stabilization problem of
underactuated axisymmetric spacecraft in [19]. It is modified
here for the case of a unicycle-type mobile robot.

The proposed control law is given by

(8)

1Notice that the system (3a) or (4a) is controllable on thex axis.

where and and are constants satisfying

if (9a)

if (9b)

The saturation functions are defined as

if

if
(10)

where .
Proposition 3: The control law given by (8)–(10) almost ex-

ponentially stabilizes System I. Moreover, the control input is
bounded by .

Proof: The proof is similar to the one in [19] and [2] and,
thus, is omitted.

Remark 2: The value of unity in (9) is chosen for the sake
of simplicity. Any other convenient bound can be selected
according to the desired decomposition of the state space.
Of course, the saturation function in (10) has to be modified
accordingly in this case.

Although Controller 2 guarantees ana priori upper bound for
, , and , it does not provide such a bound for[see (3b)].

Using System II for implementation, we explicitly ensure that
and remain bounded.

Proposition 4: For and , the control law in
(8) and (10) asymptotically stabilizes System II for all initial
conditions . Moreover, the control input is bounded by

.
Proof: See the Appendix.

It should be mentioned at this point that by defining instead

(11)

in (10) one obtains the bounded controller derived in [2] for the
nonholonomic Brockett integrator.

IV. CONTROLLERSTESTED

In this section, we give six additional controllers that were
implemented on the Khepera robot. Two of them are time in-
variant [8], [1] and the rest are time varying (periodic) [16], [10],
[15], and [12]. Table I summarizes the controllers tested. The
stability proofs of these controllers can be found in the relevant
references.

V. CONTROLLER IMPLEMENTATION

A. Khepera Robot

The implementation of all controllers was done on a Khepera
mobile robot. The Khepera robot, shown in Fig. 2, is a product of
the K-Team . It is a mobile robot
with two dc motor-driven wheels. The dc motors are connected
to the wheels through a 25 : 1 reduction gear box. Two incre-
mental encoders are placed on the motor axes. The resolution
of each encoder is 24 pulses per revolution of the motor axis.
This corresponds to pulses per revolution of
the wheels or 12 pulses/mm of wheel displacement. The algo-
rithm for estimating the velocity from the encoder outputs is
implemented on the robot. For dc-motor speed control, a native
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TABLE I
CONTROLLERSTESTED

PID controller is implemented on the Khepera robot. All one
then needs to do in order to control Khepera is to read posi-
tion signals and issue velocity commands via the RS-232 serial
port. The maximum sampling rate can be up to 100 Hz owing to
the limitation of the RS-232 serial communication (maximum
is 4.8 kB/s for the Khepera robot). For all experiments in this
paper, we used 50 Hz for sampling.

B. Implementation of Controllers on a Windows NT
Environment

A specially written C++ application running under Windows
NT was developed by the authors to control the robot via an
RS-232 serial port. A Pentium II 400 MHz class PC running
Windows NT 4.0 was used as the host computer. The velocity
commands were sent to the robot through the RS-232 serial port.
Position information was obtained through the encoders. Since
WinNT is not a real-time operating system, a timer handler was
called periodically to implement the control laws. The 32-bit
multimedia timer service for the Windows NT application level
was used. With this timer service, a resolution of up to 1 ms can
be achieved.

C/C++ was used to implement the control algorithms with a
nice looking, multitabbed dialog box interface, shown in Fig. 3.
Several tabs can be used to set up the stabilization or tracking
problems, change controller gains, sampling frequency, con-
figure the dc motors, etc. To record the history of the control
input and robot response without recording time limitations,
a double-buffered data storage algorithm was developed. The
robot motion can also be visualized by an independent OpenGL
Window that supports 6-DOF camera navigation using the key-
board (not shown in Fig. 3). The software is available from the
authors upon request.

C. Position Estimation

Since there is no direct measurement of the absolute position
and orientation of the robot, we need to estimate the position of

Fig. 3. Robot control program panel.

the robot from wheel displacement information. This common
procedure, calleddead reckoning, uses geometric relations of
the wheel displacements and the robot position to estimate the
position of the robot.

The position estimation error was checked by a series of ex-
periments. Before each experiment, the robot was placed at a
point with heading angle and was commanded to
go to the origin. At the end of each experiment, the actual po-
sition of the robot (measured on a 1 mm-resolution grid) was
compared with the estimated position and orientation using the
dead-reckoning scheme and the error was recorded. The mean
estimation error was deduced from a sequence of
five experiments for each set of initial conditions. The accuracy
of the dead-reckoning scheme was deemed to be adequate for
the objectives of our experiments.

D. Motor and Robot Dynamics

A common tacit assumption made for all controllers tested is
that the system has ideal response, i.e., there are no dynamics.
This is not true for the Khepera robot, which uses dc motors. dc
motors usually have poor transient response when compared, for
example, with step motors. Moreover, the left and right motors
may not have identical responses owing to nonhomogeneous
mass distribution over the robot body or differences in the mo-
tors themselves. We therefore used the following procedure to
characterize the dynamic behavior of the motors.

With the robot initially at rest, a right ( mm/s,
mm/s) and a left ( mm/s, mm/s) turn

were commanded, and the robot wheel velocities were recorded.
These are shown in Fig. 4. From this figure, it is seen that the
linear velocity has a typical step response, but the angular ve-
locity has an unusual response. During the right turn, small
velocity differences in and are evident. As a result, the
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Fig. 4. Step responses of linear and angular velocities.

angular velocity is relatively small for about 0.6 s. This can
be treated as a delay. Moreover, comparing the response of the
left wheel in a left and a right turn, one sees that the max-
imum overshoot time becomes smaller as the step input becomes
smaller. This implies nonlinearity in the motor dynamics of the
left wheel. Most importantly, because of this asymmetric re-
sponse of the wheels, the angular velocity is initially reversed
in a left turn. In fact, during the left turn, a negative angular ve-
locity is produced for about 0.5 s. In summary, the difficulties
caused by the motor dynamics are as follows: 1) there is rela-
tively high overshoot, moreover, the maximum overshoot time
depends on the magnitude of the applied step, hence some non-
linearities exist in the motor and 2) the left and right motor seem
to have different dynamics. As a result, the linear and angular
velocity responses are coupled.

Based on the motor velocity step responses, a parameter iden-
tification scheme was used to fit a second-order transfer func-
tion that approximates the motor dynamics from commanded to
output velocity. This dynamic model was used to validate the
often unusual behavior observed for some controllers when im-
plemented on the real system.

E. Velocity Output Quantization

The velocity command of the Khepera robot is quantized
by 8 mm/s. This is not important if the velocity is large.
However, as the states converge to the origin, quantization
becomes more important because the velocity command is
small around the origin. At the origin, quantization manifests
itself as a dead-zone problem, resulting in a steady-state error.

This steady-state error in was more severe for Controllers 1
and 4 (about 15–60 ). One simple, but effective, approach to
handling this problem is to use an inverted dead zone. That is,
the magnitude of the velocity commands was increased by the
amount of quantization. The improvement in the steady-state
error (especially for the heading angle) using the inverted
dead zone is shown in Fig. 5. The inverted dead zone was
implemented in software.

F. Scaling

A nonlinear system has different characteristics, depending
on the region where it operates in the state space. For certain
regions, it may exhibit small oscillations, fast convergence
rates, and good robustness, while for other regions it may
exhibit large oscillations and slow convergence rates. Since
the performance for nonlinear systems is not uniform, it is of
interest to properly scale the differential equations to account
for this behavior. Scaling is equivalent to choosing appropriate
units for the system variables or proper controller gains. By
proper scaling, one can avoid the regions of poor performance.
This helps to design better controllers. The importance of
scaling in improving transient response has also been noted by
other authors [11]. Fig. 6 shows how scaling was applied to the
Khepera robot.

G. Effect of Sensor Noise and Quantization

Typically, sensor noise and quantization result in a limit cycle.
Some controllers were much more sensitive to sensor noise than
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Fig. 5. Improvement of steady-state error using inverted dead zone for Controller 1 and System II.

Fig. 6. Block diagram of robot control system including scaling.

others. Fig. 7 shows the effects of sensor noise for Controllers
2 and 4. As shown in this figure, Controller 4 is especially sen-
sitive to noise. The sensitivity of Controller 4 to sensor noise is
elaborated upon later.

VI. EXPERIMENTAL RESULTS

To compare the controllers, we introduced four different mis-
sions. Due to the nonholonomic constraint, missions where the
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Fig. 7. Effects of noise on steady-state error.

TABLE II
INITIAL CONDITIONS FORROBOT MISSIONS

robot is commanded to move sideways (i.e., in violation of this
constraint) were assumed to be more challenging. We therefore
designed four missions: 1) easy mission: the forward distance to
be travelled is larger than the sideways distance; 2) normal mis-
sion: the forward and sideways distances are the same; 3) sin-
gular mission: the robot is commanded to move sideways (this
mission is customarily referred to as the “parallel parking ma-
neuver”); and 4) long-distance mission: the robot is commanded
to travel over a large distance. Depending on the aggressiveness
of the controller (most time-invariant controllers can be clas-
sified as such) the motors may saturate during a long-distance
mission. Moreover, this mission can be used to estimate the re-
gion of attraction for some controllers that only ensure local
asymptotic stability.

The initial conditions for all missions are given in Table II.
For all missions, the initial heading angleis chosen to be zero.
Starting from these initial conditions, and for all cases, the robot
was commanded to go to the origin.

A. Discussion of Results

Controllers 1 and 2: Figs. 8 and 9 show the plots of selected
trajectories for Controllers 1 and 2. As shown in these figures,
Controllers 1 and 2 may fail to achieve convergence for System I
for some cases. Subsequent analysis showed that the divergence
was due to motor dynamics. Numerical simulations including a
motor model (see Section V-D) validated the results of Figs. 8
and 9. For System II, however, both controllers achieved sta-
bility for all missions. Fig. 10 shows a comparison between the
actual and commanded velocities for Controllers 1 and 2 when
applied to System II. Controller 2 (which guarantees bounded
input commands) behaves as expected, whereas Controller 1 ex-
hibits large magnitude for.

Controller 3: Similarly to Controller 1, this controller
needs to be modified inside the region to avoid the
singularity when . The approach of Section III
was used to circumvent the singularity issue. Nonetheless, this
controller induces chattering, as can be verified from the top
left plot of Fig. 11. This figure shows the results for a normal
mission using System I and with gains , , and
scaling 100.

Controller 4: This controller does not use either System I
or System II. Instead, its derivation and implementation uses
polar coordinates [1]. The experimental results for Controller 4
are shown in Fig. 12. This controller has good convergence and
good transient response for all cases. Fig. 12 shows the results
for a singular mission with gains , , ,
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Fig. 8. Selected trajectories for Controller 1.

Fig. 9. Selected trajectories for Controller 2.

and scaling 1. A potential problem with this controller is a
steady-state error for the heading angle, due to the dead zone
in the velocity output (see upper right and lower left plots of
Fig. 12). Our simulations, with different levels of sensor noise,
indicated that Controller 4 was sensitive to sensor noise, re-

sulting in a limit cycle for the heading angle around the origin.
These simulations were verified by the experiments. Controller
4 basically implements a “turn–drive–turn” strategy. Although
this control strategy is intuitive and simple to implement, it may
lead to large angular velocity commands close to the origin. This
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Fig. 10. Commanded and actual velocity comparison for Controllers 1 and 2 applied to System II.

Fig. 11. Experimental results for Controller 3.

is because the angular velocity commandfor this controller
does not depend on the distance from the origin [1]. Therefore,
even small errors in and coordinates may produce large an-
gular velocity commands and, hence, steering angles. Since this
controller is inherently sensitive to noise and small perturbations
around the origin, we cannot apply the inverted dead zone to re-

duce this steady-state error. The sensitivity of this controller to
noise close to the origin has also been observed in [3]. Overall,
this controller can have a very good performance if a method to
avoid the heading oscillations is devised.

Controllers 5, 6, and 7:Controller 5 from [16] exhibited
very slow converge when implemented in both Systems I and
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Fig. 12. Experimental results for Controller 4.

Fig. 13. Trajectories of Controllers 5, 6, and 7 for the singular mission. The controller from [13] is also shown for comparison.

II. Controller 6 has been derived in [10] using System I. In this
paper, we used System II for the implementation since it leads to
better convergence. The advantages of using System II instead
of System I have also been observed by M’Closkey and Murray
[11], where the authors used center manifold theory to prove
local asymptotic stability for System II. It should be pointed out
that the controller of [11] was also implemented. The results of

these experiments were similar to the ones for Controller 6 and
are omitted. Controller 7 was implemented using System I. Im-
plementation on System II gave similar results.

Fig. 13 shows that the time-varying Controllers 5, 6, and 7
have very slow or oscillatory behavior. Their performance can
be improved by scaling the states or by choosing different gains,
but this has only a limited effect. The slow convergence of the
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Fig. 14. Robot trajectories with Controller 8 and System II (singular mission).

time-varying controllers can be shown rigorously [9]. In all ex-
periments and simulations in this paper, these controllers have
shown poor performance.

Controller 8: The convergence rates of the time-varying con-
trollers can be improved significantly using the scaling approach
of [12]. In simulations, this controller achieved stability for both
Systems I and II. The speed of converge was about 15–25 s, re-
gardless of the magnitude of the initial conditions. However, in
experiments, it failed to converge when the initial conditions
were larger than about 50 mm using System I (for singular and
normal missions). For the easy mission, the robot converged for
all initial conditions. Applying proper scaling and/or choosing
System II for implementation solved this problem. Then the
robot converged with good transient response. Nonetheless, its
convergence was still slower than the time-invariant controllers.
Results of the experiments with this controller for the singular
mission are shown in Fig. 14.

B. Summary

Table III summarizes the results of the experiments. In
Table III the letters “E”, “N”, “S” and “L” stand for easy,
normal, singular, and long-distance missions respectively. “E”
stands for “excellent,” which means good speed of response,
no oscillations either in , , or , reasonable control inputs
and natural trajectories. “G” stands for “good,” which means
that the convergence is acceptable, i.e., within 10 s. “S” stands
for “slow,” which means that it took the robot more than 20
seconds to converge. “C” stands for “chattering,” which means
that trajectories converged, but there was too much chattering
in the velocity commands. “O” stands for “oscillatory,” which
means that the trajectory oscillated around the origin. “U”
stands for “unstable/unsatisfactory” response.

TABLE III
SUMMARY OF EXPERIMENTAL RESULTS

As indicated by the table, Controller 2 (when implemented
on System II) gave the most satisfactory performance for all
missions. Its speed of response and the velocity commands
were always within acceptable limits. The implementation
complexity of all controllers was comparable, with the dis-
continuous Controllers 1 and 3 requiring the most care to
avoid singularities. Controller 2 has a built-in mechanism that
avoids singular regions. Controllers 2 and 4 generated natural
trajectories, i.e., similar to what a human operator would
attempt. However, as mentioned previously, Controller 4 was
sensitive to sensor noise, resulting in relatively large limit
cycles of the heading angle around the origin. Time-varying
controllers generated oscillatory paths, and all of them showed
slow convergence, especially close to the origin. Among
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the time-varying controllers, Controller 8 exhibited the best
performance and speed of response. The implementation of
this controller presented the most difficulties, however, because
of the requirement to update the parameterof the dilation
operator (see [12]) using a Newton method at each time step.

VII. CONCLUSIONS

In this paper, we have experimentally tested several stabi-
lizing controllers for a unicycle-type mobile robot. In theory,
all controllers ensure (at least) some form of local asymptotic
stability/convergence. In our experiments, several of these con-
trollers exhibited oscillatory or even unstable behavior. Several
issues contributed to this, including motor dynamics, sensor
and quantization errors, actuator dead zone, etc. By applying
several techniques (such as inverse dead zone, scaling, etc.),
the performance of most controllers improved significantly. All
time-varying controllers except the controller in [12] were too
slow and oscillatory for most practical purposes. In fact, this
controller was the only time-varying controller with acceptable
performance and speed of response. The two time-invariant con-
trollers presented in this paper showed consistently good per-
formance for all missions, if implemented properly. Of course,
more experiments are required to confirm these conclusions.

APPENDIX

In this section, we make use of the theory of homoge-
neous systems and dilation operators; see, for example,
[12] for a detailed discussion on the subject. For our pur-
poses, it suffices to say that for any set of positive scalars

, , the dilation operator is defined as
, . The homo-

geneous norm associated with the dilation is a continuous
function , such that 1) , and
if and only if ; and 2) . Such a norm
always exists. A vector field is homogeneous of
degree with respect to the dilation if .

We are now ready to provide the proof of Proposition 2.

A. Proof: Proposition 2

Let and
, where and as in (5). Then

the equation for System I is given by , and the
equation for System II is given by . Let

. The derivative of along the
trajectories of System II is given by
for all . It follows that the closed-loop
trajectories are bounded inside .

Let now . Along the closed-loop trajecto-
ries of System II with Controller 1, one can verify that

(A1)

Notice that the terms in parentheses are bounded in any neigh-
borhood of the origin. From the inequality

, it follows that the coefficient of in (A1) is non-
positive for large . Hence, for large , and since it

follows that (A1) cannot have finite escape times. Equivalently,
cannot become zero in finite time. It follows that the set

is positively invariant for System II with Controller 1.
In order to show convergence, let

. The derivative of along System I is
given by2

where . This shows that System I with
Controller 1 is almost exponentially stable with respect to the
set (recall that the set is positively invariant for System
I with Controller 1 [17] ).

The derivative of along the closed-loop trajectories of
System II is given by , where

A straightforward calculation shows that is bounded in
every neighborhood of the origin.

Consider now the dilation .
Using this dilation, one can verify that and

. Thus, the control law in (5) is homoge-
neous to degree one with respect to the dilation . Moreover,
since and ,
then and are homogeneous functions of degrees four
and six, respectively.

Consider now the homogeneous norm associated with
the given dilation .3 We claim that there exists such
that for all , . To prove this
result, we first show that

implies

To this end, let any such that , and consider the set of
points for . Notice that

. Conversely, for every with , there exists
such that with . From the

homogeneous properties of and , it now follows that

To complete the proof of our claim, let

(A2)

2As usual,L V denotes the Lie derivative of the functionV along the vector
field f .

3Choose, for instance,�(x) = (x + x + x ) .
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Since if and only if and is bounded
on every neighborhood of the origin, it follows that . If

, let and the result follows. Otherwise, let a positive
scalar such that and consider the set .
Noticing that , one obtains
that for any such that , the following holds:

Hence

Therefore, there always exists a neighborhood of the origin such
that . Since , this implies
that there exists such that
for all . This implies local al-
most asymptotic stability about the origin. Consequently,

.
In order to show that the control inputs remain bounded for

, it suffices to show that in (7) remains bounded
along closed-loop trajectories. From the previous analysis, it fol-
lows that cannot go to infinite in finite time. We next show that

remains bounded for all . First, notice that

Hence, as . Therefore, for every there
exists , such that for all .
A simple calculation shows that

where and . From the
inequalities , , and , it follows
that

(A3)

where and . Since and are
bounded, there exists such that for all ,
where . Consequently

(A4)

Therefore, if for any time , becomes larger than
, the derivative of is negative semidefinite. Since

is arbitrary, it follows that is bounded along the closed-loop
trajectories if .

B. Proof: Proposition 4

First, the fact that the control inputs are bounded by
follows directly from (8).

Next, consider the radially unbounded, positive-definite func-
tion . Its derivative along (4a) with control
law (8) is calculated as

(A5)

The previous equation holds, regardless of whether or
. In particular, if and only if .

Global stability follows.
Inequality (A5) implies that , , and remain bounded.

Since and are bounded, and are also bounded. Thus,
and are uniformly continuous. is also uniformly contin-

uous. Moreover, the limit of exists since is bounded from
below and nonincreasing. From Barbalat’s Lemma [7], it fol-
lows that . We conclude that and go to
zero.

From (A5), we have that and go to zero, and remains
bounded. Since has a limit, it follows that

. Suppose that for all . Then
and for all as well. Let us assume that

for all . Notice that in this case, cannot become
identically zero for , since from it follows
that , a contradiction. From the definition of ,
and substituting and in (8), it follows that

which is a contradiction. Hence, if , cannot converge
to zero in finite time. Continuing this reasoning, if , and
since and , the following expressions hold inside

(A6)

where denotes a term of order, i.e.,
if and where we have used the
fact that for , sufficiently small (but
nonzero). Using the previous expressions one obtains that

(A7)

where the first term in the previous expression is of order .
Hence, there exists a time such that for all . In
other words, if , there exists a neighborhood of the origin
in the space such that is nondecreasing
for all . This contradicts the fact that as .
Hence, necessarily .
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(A7) also shows that there exists a neighborhood of theaxis
(i.e., ), such that the vector field of the closed-loop
system points away from this axis. In addition, if (i.e.,

and ), the control law (8) reduces to
and with . Since , it follows that if

for some , and leaves . In
other words, with the control law (8), the set is repelling.
Since , it also follows that is invariant.
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