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Abstract—In the development of advanced driver-assist sys-
tems (ADAS) for lane-keeping, one important design objective is
to appropriately share the steering control with the driver. Hence,
the steering behavior of the driver must be well known before-
hand. This paper adopts the well-known two-point visual driver
model to characterize the steering behavior of the driver, and
conducts a series of field tests to identify the model parameters
to validate the two-point visual driver model in real scenarios.
Both an extended Kalman filter and an unscented Kalman filter
are implemented for estimating the unknown driver parameters,
using a joint-state estimation algorithm and a dual estimation
algorithm, and the results are compared.

I. INTRODUCTION
Driver modeling is an important part of modern, semi-

autonomous driver-vehicle-road systems [1], [2]. In order
to characterize driver behavior, researchers have proposed
different driver models based on several methodologies over
the past decades [3], [4], [5], [6].

This paper adopts the two-point driver model from [7],
which combines both the two-level visual strategy and the
high-frequency kinesthetic feedback of the driver that accounts
for the interaction between the driver’s arms and the steering
wheel [4]. The two-point driver model is derived from the
concept of the two-level steering mechanism [8], [9]. In [8]
Donges divided the driver’s steering task into a guidance level
and a stabilization level, and thereby built a two-level steering
model. The guidance level interprets driver’s perception and
response with respect to the oncoming road in an anticipatory
open-loop control fashion. The stabilization level interprets the
driver’s compensatory behavior with respect to the deviation
from the reference path in a closed-loop control mode. This
idea has been widely accepted and has been further developed
by subsequent researchers, such as [9], [10], [7], [11].

Although some work has been done to validate the two
point driver model and identify the driver parameters using
a simulator [7], it is still necessary to validate the model
using actual, field test data, especially when an effective
identification method is to be developed with the requirement
to work on line on commercial vehicles. This paper assumes
that all parameters of the driver model are identifiable, and
compares four methods — the joint E-/UKF and the dual E-
/UKF [12] — to estimate the driver model parameters. The
methods are validated against both simulation data and against
data collected through a series of field tests.

II. SYSTEM MODELING AND PROBLEM FORMULATION

The proposed driver-vehicle-road system consists of four
subsystems, as shown in Fig. 1: the driver model, the steering
column model, the vehicle model and the road and perception
model. The input to the system is the curvature of the road
ρref . The primary performance variable is the lateral deviation
of the so-called “near point” directly in front of the vehicle
from to the centerline of road, ∆y (see Fig. 1).
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Fig. 1. Human-vehicle-road closed-loop system.

A. Driver Model

In this paper we use the driver model initially proposed in
[7] and also used in [13].The structure of this model is shown
in the red rectangular box in Fig. 1. The transfer functions
Ga(s) and Gc(s) account for the anticipatory control and the
compensatory control actions of the driver, respectively. The
system Gnm(s) approximately describes the neuromuscular
response of the driver’s arms. The “Delay” block indicates
the driver’s processing delay in the brain and Gk1(s) and
Gk2(s) account for the driver’s kinesthetic perception of the
steering system. Tant and Tcom denote the driver’s steering
torques corresponding to the anticipatory control and the com-
pensatory control paths, respectively; δs denotes the steering
wheel angle; and the inputs θnear and θfar denote the near
field and the far field visual angles, respectively (see Fig. 2).
Finally, Tdr denotes the driver’s total steering torque delivered
to the steering wheel. The transfer functions of the blocks are
given below

Ga(s) = Ka, Gc(s) = Kc
TLs+ 1

TIs+ 1
, Gk1 (s) = KD

Tk1s

Tk1s+ 1
,

GL(s) = e−tps, Gnm(s) =
1

TNs+ 1
, Gk2 (s) = KG

Tk2s+ 1

Tk3s+ 1
,
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where Ka and Kc are static gains for the anticipatory and
compensatory control subsystems, respectively; KD and KG

are static gains for the kinesthetic perception feedback sub-
systems, respectively; TL and TI (TL > TI) are the lead time
and lag time constants, respectively; Tk1

, Tk2
and Tk3

are
the three time constants of the driver’s kinesthetic perception
feedback from the steering wheel, tp is the delay for the driver
to process sensory signals and TN is the time constant of the
driver’s arm neuromuscular system. The mathematical model
of the driver subsystem is then formulated as

ẋd = Adxd +Bdud, (1a)
yd = Cdxd +Ddud, (1b)

where the input is ud = (θnear, θfar, δs)
T and the output is

yd = Tdr = Tff
dr + T fb

dr , where Tff
dr and T fb

dr denote the two
components of the driver’s steering torque, resulting from the
feedforward path and the feedback path, respectively.

B. Road and Perception Model

The road and perception model interacts with both the
vehicle model and the driver model (refer to Fig. 1) and
achieves two functions: (a) it determines the vehicle’s position
and posture relative to the road geometry; and (b) it determines
the location of the driver’s near and far visual points on the
upcoming road. In Fig. 2 the frame XI-O-YI is fixed on the
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Fig. 2. Road geometries, vehicle states and driver’s visual perception.

road. It is assumed that the vehicle is cornering with a certain
lateral deviation from the road centerline. Let ψ denote the
vehicle’s yaw angle, let ψt denote the angle between the
tangent to the road centerline and the XI axis, and let M
denote the current position of the vehicle’s center of mass.
Let also A denote the driver’s “lookahead” point in front of
M at a distance `s along the vehicle’s heading direction, B
denote the intersection of OA with the road centerline, and
let C denote the point of tangency of the line along the gaze
direction on the road’s inner boundary. Furthermore, let Ls

denote the distance between C and M, θfar denote the far

point visual angle between the gaze direction of the driver
and the heading direction of the vehicle, θnear denote the near
point visual angle between MB and the heading direction of
the vehicle. Finally, in Fig. 2 ∆y denotes the length of the
line segment AB, Rref denotes the radius of the road’s inner
boundary, d denotes the distance from M to the road’s inner
boundary, and D denotes the width of the road. Henceforth,
it will be assumed that d and D are small compared to Rref .

From Fig. 2, the near and far distance visual perception
angles can be approximated as [8], [7]

θnear ≈
∆y

`s
, θfar ≈

Ls

Rref
+ ∆ψ ≈ Lsρref + ∆ψ,

where ρref = 1/Rref is the road curvature, and ∆ψ = ψt−ψ is
the angle difference between the tangent of the road centerline
and the vehicle’s heading direction. It can be directly shown
that ∆y and ∆ψ obey the following equations:

∆ẏ = −Vx(β −∆ψ)− `sr + Vx`sρref , ∆ψ̇ = ψ̇t − r,

where β is the vehicle sideslip angle and r is the yaw
rate. Furthermore, since ψ̇t can be approximated by Vxρref ,
it follows that ∆ψ̇ = Vxρref − r. Therefore, the road and
perception system can be formulated as

ẋr = Arxr +Brur, (2a)
yr = Crxr +Drur, (2b)

where xr = (∆ψ,∆y)T, ur = (ρref , β, r)
T and yr =

(∆ψ,∆y, θnear, θfar)
T. We use the same steering column

model and the same vehicle model as in [13].

C. Problem Formulation

For notational simplicity, let p1 = Ka, p2 = Kc, p3 = TL,
p4 = TI, p5 = TN, p6 = tp and p7 = `s. We further let p8 =
KD, p9 = KG, p10 = Tk1

, p11 = Tk2
and p12 = Tk3

for the
high frequency kinesthetic feedback in the driver model. Since
the human driver has physical limits, each model parameter is
restricted to lie within some compact interval, pi ∈ [pi, pi],
i = 1, 2, . . . , 12. Let p = (p1, p2, . . . , p12)T ∈ R12, and let
P = [p1, p1]× [p2, p2]× · · · × [p12, p12] ⊂ R12.

We consider the combined system of the driver model in
(1) and the road and perception model in (2),

ẋc = Ac(p)xc +Bc(p)uc, (3a)
yc = Ccxc, (3b)

where the input is uc = (ρ, β, r, δs)
T and the output is yc =

Tff
dr + T fb

dr . Assuming we can measure uc and yc, we can use
state estimation techniques to identify the driver parameter
vector p in (3a)-(3b). To this end, we define an alternative
parameter vector ν = (ν1, ν1, . . . , ν12) as follows

ν1 =
1

p4
, ν2 =

1

p6
, ν3 =

1

p5
, ν4 =

p1

p5
,

ν5 =
p2p3

p4p6p7
, ν6 =

p2

p4p7
, ν7 = p7, ν8 = p8,

ν9 = p9, ν10 =
1

p10
, ν11 = p11, ν12 =

1

p12
. (4)
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
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




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Vx 0 0 0 00 0 0 Vxν7 −Vx−ν7 0
0 ν6−

ν1ν5
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−ν1 0 00 0 0 0 0 0 0

4ν2ν4ν3 4ν5 4ν2−2ν2 00 0 0 4Lsν2ν4ν3
0 0 0
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0 0 0 0 10 0 1 0 0 0 0















.

(5)

Thenthesystemmatricesin(3)aregivenbyequation(5).
Ifwelet∆tdenotethesamplingintervalanddiscretizethe
systemin(3),weobtainthefollowingdiscretesystemsubject
tonoise

xck+1=A
c
D(ν)x

c
k+B

c
D(ν)u

c
k+wk, (6a)

yck=C
c
Dx
c
k+vk, (6b)

wherewk andvk aretheprocessnoiseandthe measure
noise,respectively.IncaseofusingthejointstateE-/UKF
forparameteridentification,weincludetheparametervector
νintothestatevectorandletx=[xcT,νT]T.Recallthatthe
parametervectorp∈P.Inthefollowingsectionsweestimate
thestatevectorofthesystembasedontheavailabledata(the
inputandtheoutput),subjecttothefollowingconstraints

pi gi(ν) pi, i=1,2,...,12, (7)

wheregi(ν)istheithelementofthevector-valuedfunction
g(ν),whichisgivenby

g(ν)=[1/ν1 1/ν2 1/ν3 ν4/ν3 ν5/(ν2ν6)

(ν6ν7)/ν1 ν7 ν8 ν9 1/ν10 ν11 1/ν12]
T. (8)

TheupperboundsandthelowerboundsthatdefinePare
giveninTableII. Notethat,someoftheparametersin
thecompensatorymodel,inparticularintheneuromuscular
system,canbeconsideredasconstants[4].

III.PARAMETERESTIMATION

InthissectionweusethejointE-/UKFandthedualE-/UKF
toestimatethesystemstatesandobtainthedriverparameters.
ThejointE-/UKFincludestheunknownparametersinto
theoriginalstatevectorandthenestimatesthenewstates.
ThedualE-/UKFseparatesthestatespacerealizationsof
theoriginalstatesandtheparameters,soastoapplythe
Kalmanfiltertoestimatetheoriginalstatesandtheparameters
separately.

A.ExtendedKalmanFilter

TheEKFisoneofthemostcommonapproachestosolve
nonlinearestimationproblems,bymeansoflinearizingthe
nonlinearstatetransitionmodelsandthenonlinearobservation
models.Thesystemstatesandthenoiseareassumedto
beGaussianrandomvariables.Forasystemgiveninthe
followingform,

xk+1=f(xk,uk,wk), (9a)

yk=h(xk,uk,vk), (9b)

wherewkandvkarezero-meansGaussianprocessnoiseand
measurenoise,respectively,theEKFcomputestheestimations
aboutthestateandthecovariancematrixusingthefollowing
algorithm:

EKFAlgorithm
1:Initializewith:
x̂0=E[x0]

P̂0=E[(x0−x̂0)(x0−x̂0)
T]

2:Prediction(timeupdate):
x̂k=f(̂xk 1,uk 1)
ŷk=h(̂xk,uk)

P̂k =Fk 1P̂k 1F
T
k 1+Qw

3:Measurementupdate:

k=yk−ŷk
Sk=HkP̂kH

T
k+Qv

Kk=P̂kH
T
kS

1
k

x̂k=̂xk+Kkk
P̂k=P̂k −KkSkK

T
k

Thematrix-valuedfunctionsFk 1andHkaretheJacobian
matricesoff(x,u)andh(x,u),andaregivenby

Fk−1=
∂f

∂xx̂k 1

, Hk=
∂h

∂xx̂
k

. (10)

B.UnscentedKalmanFilter

TheUKFisbasedontheunscentedtransformation(UT).
Hence,theUKFavoidscalculatingtheJacobianmatricesat
eachtimestep,andcapturesthetruemeanandcovarianceof
thestateGaussianrandomvariabletoatleastsecondorder
accuracy(Taylorseriesexpansion)foranynonlinearity. We
consideranL-dimensionalGaussianrandomvariablexwith
mean x̂andcovariancePx.Tocalculatethestatisticsofy=
g(x),weselect2L+1discretesamplepoints{Xi}2Li=0 which
arepropagatedthroughthesystemdynamics.
TheUKFredefinesthestatevectorasxak=[x

T
k,w

T
k,v

T
k]
T,

whichconcatenatestheoriginalstateandthenoisevariables,
andthenestimatesxak recursively.TheUKFequationsare
summarizedinthefollowingtable,whereλistheprincipal
scalingparameter,αdeterminesthespreadofsigmapoints
aroundthemean̂xandisusuallysettoasmallpositivevalue
(i.e.,1e-3),κisasecondaryscalingparameterwhichisusually
setto0or3−L,andβisusedtoincorporatepriorknowledge
ofthedistributionofx.ForGaussiandistribution,β=2is
optimal[12].(γ

√
Px)iistheithcolumnofthematrixsquare

root.



UKF Algorithm
1: Initialize with:

x̂0 = E[x0]
P0 = E[(x0 − x̂0)(x0 − x̂0)T]
x̂a0 = E[xa0 ] = [x̂T0 0 0]T

Pa
0 = E[(xa0 − x̂a0)(xa0 − x̂a0)T] =

 P0 0 0

0 Qw 0

0 0 Qv


2: Sigma-point calculation and prediction:

Xa
k−1 = [x̂ak−1 x̂ak−1 + γ

√
Pa
k−1 x̂ak−1 − γ

√
Pa
k−1]

Xx
k|k−1

= f(Xx
k−1, uk−1,Xw

k−1)

x̂−k =
2L∑
i=0

W
(m)
i Xx

i,k|k−1

P−k =
2L∑
i=0

W
(c)
i (Xx

i,k|k−1
− x̂−k )(Xx

i,k|k−1
− x̂−k )T

Yk|k−1 = h(Xx
k|k−1

, uk−1,X v
k|k−1

)

ŷ−k =
2L∑
i=0

W
(m)
i Yi,k|k−1

3: Measurement update:

Pykyk =
2L∑
i=0

W
(c)
i (Yi,k|k−1 − ŷ−k )(Yi,k|k−1 − ŷ−k )T

Pxkyk =
2L∑
i=0

W
(c)
i (Xx

i,k|k−1
− x̂−k )(Yi,k|k−1 − ŷ−k )T

K = PxkykP
−1
ykyk

x̂k = x̂−k +K(yk − ŷ−k )

Pk = P−k −KPykykKT

Note: xa = [xT wT vT]T, Xa = [(Xx)T (Xw)T (X v)T]T.

C. Nonlinear Inequality State Constraints
The Kalman filtering constrained state estimation problem

has been solved using a number of algorithms [14], [15], [16],
[17]. In this study, we use the estimate projection algorithm
and the first-order Taylor expansion approximation method
[14] to solve the state estimation problem with nonlinear
inequality constraints. Mathematically, we solve the following
minimization problem

x̃k = argmin
x

(x−x̂k)TW (x− x̂k), (11a)

such that g(x) 6 b, (11b)

where x̂k and x̃k are the unconstrained estimate and the
constrained estimate of the state, respectively, and W is the
weight matrix. We obtain the maximum probability estimate
of the state subject to the state constraints when W = P−1

k . If
we perform a Taylor series expansion of (11b) around x̂(k) and
ignore higher order terms, we obtain the linear approximation
of the constraint inequalities in (11b),

g′(x̂k)x 6 b− g(x̂k) + g′(x̂k)x̂k. (12)

The minimization problem of (11a) subject to the linear
inequality constraints in (12) can be solved using a standard
quadratic programming [5].

IV. FIELD TEST

The field tests were conducted at the Ford Dearborn Devel-
opment Center (DDC) test facility in November 2015. The
Ford DDC is about 1,750 meters long from the West end
to the East end and about 900 meters long from the South
end to the North end. The width of the double-lane is about

6 meters. Three kinds of tests were conducted, namely, the
steering handling course (SHC), the fixed-radius circling test
(FRC) and the public road test (PRT). Three vehicles were
used and the driving style of three types of the drivers were
mimicked (see Fig. 3). Due to the lack of space, this paper
only shows the results of the SHC tests, where the driver is
an expert driver and the experimental vehicle is the MKS.

Fig. 3. Vehicles and apparatus used in the experiments. 1st row: Fiesta (left),
MKS (medium), F150 (right); 2nd row: power source (left), power converter
(medium), CAN case (right).

All data were collected through a vector CANcase con-
nected to the OBD port of the vehicle, which transmits vehicle
signals for HS-CAN and INFO-CAN, both of which have at
a data rate of 500 [kB/s]. The HS-CAN connects to most
of the regular on-board electronic control units (ECU), such
as the anti-skip braking system (ABS), the electric power
assisted steering (EPAS) system and the restraints control
module (RCM). The INFO-CAN connects to the in-vehicle
communications and entertainment system that contains the
global position system (GPS) and the navigation module.

INFO-CAN

EPASRCMABSBCMEMSPCT …

OBD II

PC

CAN
collector

GPS SYNC-GEN3…

yaw
roll
pitch

SWA
SWT

wheel speed
slip ratio

…
……

longitude
latitude
…

… …

HS-CAN

Fig. 4. Illustration of the CAN network on MKS.

The collected data include the steering wheel angle, the
steering column torque, the yaw rate, the longitude and the
latitude of the vehicle, where the signals of the steering
wheel angle and the steering column torque are provided
by the electric power assisted steering (EPAS), the yaw rate
is provided by the restraint control module (RCM) and the
position information is provided by the GPS system. The CAN
bus network of the MKS is summarized in Fig. 4. The setups
of the test conditions for the SHC are summarized in Table I.

V. RESULTS AND ANALYSIS

The data from the test were processed by applying the joint
E-/UKF and the dual E-/UKF to estimate the parameters of the



driver model. Since the road curvature and the side slip angle
of the vehicle were not directly measured, we first obtain these
missing necessary values by processing the GPS data [18].
Fig. 5 shows the trajectory of the vehicle in the Earth-bound
West/South frame.
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Fig. 5. Trajectory of the vehicle in the SHC test.

The side slip angle and the road curvature are estimated
based on the trajectory of the vehicle and are given by Fig. 6:

A. Driver Parameter Identification
This section shows the results of the identified driver pa-

rameters. We processed the field test data using the joint EKF,
the joint UKF, the dual EKF and the dual UKF separately, so
that we can compare the identified driver parameters obtained
from different methods. We took the same set of data from
the SHC tests as used to obtain the Fig. 5-6. In every single
implementation, we use the first 60% of data for the parameter
training and use the remaining 40% of data for the validation.

By designing the appropriate Kalman filter parameters, such
as the process noise covariance, the measure noise covariance
and the initial state covariance matrix, we obtain reasonable
estimation for the parameters. The process noise covariance
is considered to be the most critical and therefore has to be
carefully tuned. Fig. 7 illustrates the steering wheel torque
from data, the training curve of the Kalman filter and the
simulated output corresponding to the identified model param-
eters. The green plots in Fig. 7 show how the prediction of
the steering wheel torque at the current time step agrees with
the current data. After about 1 minute or so the prediction
results get stabilized and agree well with data. The trajectories
of the estimated states (we only show the driver parameters,
and each parameter is scaled such that the initial value is
one) corresponding to the joint EKF are given in Fig. 8.
The red plots in Fig. 7, which are drawn to validate the
identified driver parameters, are very close and they agree
well with data. Although one sees some difference between
the validation plots and data, the results are reasonable, since
the parameters of the real driver may change with time. The
identified parameters are given in Table II.

TABLE I
STEERING HANDLING COURSE (CONSTANT VELOCITY).

Speed [mph] Novice Expert Racing
30 1 lane, unsmooth 1 lane, smooth 2 lanes, smooth
45 1 lane, unsmooth 1 lane, smooth 2 lanes, smooth
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Fig. 6. The side slip angle and the road curvature in the SHC test.
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Fig. 8. The trajectories of the driver parameters during the training process.

Based on these results, we refined the model by assuming
the process noise for the vector ν is colored and letting

ν̇ = ζ, ζ̇ = ξ, (13)

where ζ and ξ are the process noise. The equations in (13)
drive the parameter vector to change with time. We implement
the Kalman filfter again (i.e., the joint UKF) and record the
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Fig. 9. The data, the training curve and the simulated curve from the Joint
UKF.

TABLE II
DRIVER MODEL PARAMETERS; (JEKF=JOINT EKF, DEKF=DUAL EKF,

UB=UPPER BOUND, LB=LOWER BOUND)

Parameter JEKF JUKF DEKF DUKF UB LB
Ka 22.10 21.62 21.29 21.29 100 5
Kc 149.87 152.35 151.88 150.96 200 5

TL [sec] 0.33 0.34 0.33 0.33 5 0
TI [sec] 0.26 0.26 0.26 0.26 0.5 0
TN [sec] 0.18 0.19 0.19 0.20 0.3 0.01
tp [sec] 0.11 0.11 0.11 0.11 0.5 0.01
`s [m ] 12.06 12.16 12.25 12.07 15 3
KD [m ] 0.37 0.27 0.11 0.31 1.5 0.1
KG [m ] -0.74 -0.64 -0.79 -0.43 -0.4 -1.5
Tk1 [m ] 1.50 1.54 1.97 1.57 6 1
Tk2 [m ] 3.82 3.71 3.42 3.81 6 1
Tk3 [m ] 0.01 0.01 0.01 0.01 0.03 0.01

estimates for the driver parameters at each time step, and
then we perform the simulation with the time-varying driver
parameters (see Fig. 9). Fig. 9 indicates that the parameterized
driver model with time-varying parameters can characterize
the driver’s steering behavior more accurately. Due to the lack
of space, we only show how the driver parameter Kc changes
with time in Fig. 10.
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Fig. 10. The trajectory of Kc during the training process.

VI. CONCLUSIONS

This paper adopts the parameterized two-point visual driver
model to characterize the steering behavior of the driver and
conducts field tests to validate the model. We have separately
implemented the joint EKF, the joint UKF, the dual EKF
and the dual UKF to estimate the parameters based on field
test data conducted at Ford’s Dearborn Development Center
(DDC) test facility. The validation results agree well with
the data. All four versions of Kalman filters used in this
paper show close estimation results. The UKF is considered
to be more accurate than the EKF in propagating the Gaussian
random variables, but the difference was not obvious in this
work. The Kalman filter parameters, especially the process
noise coviarance, must be well tuned or appropriately chosen

in order to obtain good results. The results of our investigation
indicate that the driver parameters are not exactly constant, but
they rather vary slowly during a driving task more that few
minutes long. The next step would be to analyze how the
driver parameters change under different test conditions, and
further categorize the drivers into different groups based on
these identified driver parameters.
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