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ASYNCHRONOUS OPTIMAL MIXED
P2P SATELLITE REFUELING STRATEGIES

Atri Dutta* and Panagiotis Tsiotras'

Abstract

In this paper, we study pure peer-to-peer (henceforth abbreviated as P2P) and mixed
(combined single-spacecraft and P2P) satellite refueling in circular orbit constellations com-
prised of multiple satellites. We consider the optimization of two conflicting objectives in
the refueling problem and show that the cost function we choose to determine the optimal
refueling schedule reflects a reasonable compromise between these two conflicting objec-
tives. In addition, we show that equal time distribution between the forward and return
legs for each pair of P2P maneuvers does not necessarily lead to the optimum cost. Based
on this idea, we propose a strategy for reducing the cost of P2P maneuvers. This strategy
is applied to pure P2P refueling scenarios as well as to mixed refueling scenarios. Further-
more, for the case of a mixed scenario, we propose an asynchronous P2P strategy that also
leads to more efficient refueling.

INTRODUCTION

It has long been recognized that servicing and refueling spacecraft in orbit has the potential
to revolutionize spacecraft operations by extending the useful lifetime of the spacecraft, by
reducing launching and insurance cost, and by increasing operational flexibility and robust-
ness.' ™ Several studies have been conducted over the past decade investigating the relative
merit of satellite refueling when compared to satellite replacement.’?% Crucial technologies
that enable replenishment of satellites with propellant have already been tested or are in the
process of being evaluated.” 12

Most of the previous studies in the literature have assumed that a single spacecraft alone
undertakes the task of refueling the whole constellation. That is, a single service spacecraft
plays the role of the sole supplier of fuel.l» 1314 Recently, an alternative scenario for distributing
fuel amongst a large number of satellites has been proposed.'’® 7 In this scenario, no single
spacecraft is in charge of the complete refueling process. Instead, all satellites share the
responsibility of refueling each other on an equal footing. We call this the peer-to-peer (P2P)
refueling strategy.'6:17
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A P2P refueling strategy is, by definition, a distributed method for replenishing a constella-
tion of spacecraft with fuel/propellant. Consequently, it offers a great degree of robustness and
protection against failures. For instance, with a P2P strategy a failure of a single spacecraft
will have almost no impact on the refueling of the rest of the constellation. On the contrary,
a failure of the service vehicle in a single-spacecraft scenario will result in the failure of the
whole mission.

Although a stand-alone P2P scenario may seem unconventional at first glance, it arises
naturally as an essential component of a mized refueling strategy. By mixed refueling strategy
we mean a strategy which involves at least two stages. During the first stage a single spacecraft
refuels only a certain fraction (perhaps half) of the satellites. During the second stage the
satellites that received fuel during the first stage act as go-betweens, and distribute the fuel
to the rest of the constellation in a P2P manner. That is, a P2P refueling strategy can be
implemented as the final distribution phase of a single-vehicle refueling strategy. In Refs. 18,19
it has been shown that a mixed refueling strategy is more fuel-efficient than a single-spacecraft
strategy, especially for a large number of satellites in the constellation and for short refueling
periods. As a matter of fact, it is not difficult to come up with cases for which the single-
spacecraft scenario is infeasible (due to the time constraint), while a mixed refueling strategy
is still possible.

Pure P2P refueling for circular spacecraft constellations was originally proposed in Ref. 20
as a means to equalize fuel. In that work two P2P cases were analyzed. In the first case the
rendezvous costs were negligible when compared to the total amount of fuel exchange taking
place. This situation arises only when the satellites are very closely spaced or when the time
for refueling is sufficiently large.'® The optimal matching in this case is very simple, i.e., it is
a symmetric matching. For the majority of cases encountered in practice however the cost
incurred during the transfers is significant and cannot be neglected in the optimization process.
In order to achieve fuel equalization in this case, an optimization problem was formulated in
Refs. 17,19, where the absolute value of the deviation of each satellite’s fuel from the initial
average fuel in the constellation is penalized. Ideally, one would like to minimize the deviation
of each satellite’s fuel from the final average fuel in the constellation. However, without any
additional constraints, the later approach may lead to solutions where the satellites perform
wasteful maneuvering just to equalize fuel. This undesirable situation does not occur in the
formulation used in Ref. 19. By minimizing the deviation from the mean fuel before refueling
takes place (as opposed to the mean fuel after refueling takes place) we eliminate this possibility.
However, this is a rather heuristic way of addressing the objective of a P2P strategy, which is
to both equally distribute fuel in the constellation and to ensure as little fuel expenditure as
possible in the process.

Fuel equalization and minimum fuel expenditure are two conflicting objectives. Fuel equal-
ization requires transfer of fuel from one satellite to another and hence consumption of fuel
because of the required orbital maneuvers. Minimizing total fuel consumption on the other
hand, implies few and long transfers. In fact, if the fuel equalization requirement is missing,
the optimal solution to the fuel maximization problem is simple: do nothing. No satellites are
involved in refueling rendezvous. If, on the other hand, the requirement for fuel minimization

$In a symmetric matching the satellite with the most amount of fuel pairs up with the satellite with the least
amount of fuel, the satellite with the second most amount of fuel pairs up with the satellite with the second
least amount of fuel, etc.



is missing, the opposite occurs: all eligible satellites are involved in refueling rendezvous. In
Refs. 16,17 and 19 the satisfaction of the previous two objectives was addressed via the in-
troduction of a rather artificial cost function that minimizes satellite fuel deviation from the
mean fuel in the constellation before refueling takes place. A correct formulation of the prob-
lem should involve an explicit incorporation of the two previous conflicting objectives. It is
one of the objectives of this paper to fill this gap.

In the first part of the current paper we re-formulate the P2P refueling problem as a
minimization problem of a cost function that is a convex combination of the previous two
conflicting objectives. The cost function introduced this way is parameterized by a single
nonnegative scalar 0 < a < 1 that plays the role of the relative weight of the two elementary
optimization objectives. The choice of @ thus becomes a design parameter to be tuned for best
performance. This is a more direct method for formulating the P2P refueling problem than the
one used in Refs. 16,17,19. Nonetheless, we show that the cost in Refs. 16,17,19 corresponds
to the cost used herein for a proper choice of the parameter a. This analysis justifies the
methodology followed in Refs. 16,17,19.

In the second, and major, part of the paper we revisit the P2P refueling problem, with
the goal of further improving the transfer costs. Specifically, we relax two of the assumptions
made in Refs. 17,19 while calculating the fuel burnt for the orbital transfers during each
fuel transaction. One of the assumptions for the P2P refueling problem studied in Ref. 19 is
that when there is a fuel exchange between two satellites in a constellation, the time for the
forward journey equals the time for the return journey for all satellite pairs. In the current
paper, we will allow for unequal time sharing between the forward and return journeys, and we
show that equal time sharing does not lead to optimal fuel consumption. We use this fact to
formulate an algorithm that considerably reduces the cost of P2P maneuvers. This algorithm
is also applied to a mixed refueling scenario in order to make it a more competitive option
to the single-spacecraft refueling scenario. It is also shown that allowing asynchronous P2P
maneuvers in such a mixed scenario further brings down the refueling cost. With the help of
numerical examples, we demonstrate the improvements over Ref. 19 and we also show how the
incorporation of the extensions proposed in this paper make the mixed refueling scenario a far
better option than a single spacecraft strategy, particularly when the number of satellites is
large.

THE P2P PROBLEM FORMULATION

The Constellation Graph

Given a collection of n > 3 satellites C = {si,...,s,} with unequal amounts of fuel, the
satellites with fuel greater than the average amount of fuel are termed fuel-sufficient satellites,
whereas the satellites with fuel less than or equal the average amount of fuel in the constellation
are termed the fuel-deficient satellites. We use Cs to denote the set of all fuel-sufficient satellites,
and C4 to denote the set of all fuel-deficient satellites. Clearly, C = Cs U Cy. It is assumed that
all satellites are in the same circular orbit, but they do not have to be evenly distributed along
the orbit. By a fuel/refuel transaction herein we assume a sequence of events that involves: (i)
a satellite firing its thrusters so as to change its orbit and rendezvous with another satellite in



the constellation, (ii) exchange of fuel between the two satellites, and (iii) return of the first
satellite to its original slot.

It will be assumed that during a refueling transaction, only one satellite, called the seller,
can give fuel to another satellite. The latter is called the buyer. The set of seller satellites
will be denoted by S and the set of buyer satellites will be denoted by B. Depending on the
amount of fuel between the two, either of these two satellites can initiate a fuel transaction,
i.e., perform a rendezvous with the other satellite, exchange fuel and return to its original
orbital slot. The former satellite is said to be the active satellite and the latter satellite is said
to be the passive satellite. The set of active satellites will be denoted by A and the set of
passive satellites will be denoted by P. Note that, in general, SU B C C since not all satellites
may be involved in fuel transactions. Similarly, AU P C C for the same reason. Also note
that it is not necessarily true that S = A or that B = P, although this typically will be the
case. For instance, it may happen that a satellite, say s;, initiating a fuel transaction receives
fuel (i.e., s; € AN B) or that a passive satellite is the seller (s; € PN S). Furthermore, it is
not necessarily true that a fuel sufficient satellite will be active (i.e., Cs Z A). However, a fuel
deficient satellite is always a buyer, that is Cg C B.

Given now the set C we may construct a graph G having as nodes (or vertices) the
satellites of C. We call G the constellation graph. Associated with G is a set of vertices
V = {s1,52,...,5,} and a set of edges L = {(i,j) : s;,s; € V} connecting the nodes of G.
Without loss of generality, we enumerate the vertices such that i «<» s; for all 1 < ¢ < n. This
allows us in the sequel to refer to “vertex” s; instead of ¢ without the danger of confusion. We
will make no distinction between the edge (j,7) and the edge (i, j). That is, G is a undirected
graph. This point needs some clarification. Since the propellant required for satellite s; to ren-
dezvous with satellite s; is not equal to the propellant required for satellite s; to rendezvous
with satellite s;, G is, in principal, a directed graph. By assigning the minimum fuel required
between the two transfers s; — s; and s; — s; to the edge (i,7) we obtain an undirected
graph. This is elaborated upon in the sequel. In the graph G, an edge between two vertices
exists if a fuel transaction between the corresponding satellites is permissible. The number of
elements of a subset of set X will be denoted by |X|. Clearly, |V| = n and for a complete graph
L] =n(n—-1)/2.

The set of vertices connected to vertex s; is called the set of neighbors of s;, and it is
denoted by N;. The edge neighborhood of s; is defined by Q; = {(i,j) € L : s; € N;}. Note
that if s; has no neighbors then no edges are connected to this vertex and Q; = &. For
example, we may impose that certain satellites are not involved in any fuel transactions due
to operational constraints. By removing all satellites which are known a priori that cannot be
involved in fuel transactions due to operational restrictions we get the core constellation graph
Gg°. For simplicity, in the sequel we assume that G = G°. It should be kept in mind however
that the following developments hold verbatim if we replace G with G¢.

To each edge (i,j) € L we will assign a (positive) weight that reflects the cost associated
with a fuel transaction between the satellites connected by this edge. By an assignment or
matching over the graph G we mean a partition of V into two sets V, and V), such that
Va| = |Vs| along with a subset M C £ and a one-to-one mapping o : V, — V), such that
M ={(i,4) : si € Va4, s; € V), and s; = o(s;)}. Given the positive weights on each edge, we
seek the matching that maximizes the sum of the weights of all edges involved in this matching.



In the next section we show how the problem of finding the optimal pairings of satellites can
be reduced to a problem of computing the maximum weighted matching in the constellation
graph.

Construction of the Constellation Graph

Let, for convenience, Z denote the index set of the vertices in the (core) constellation graph.
That is, i € Z for s; € G. Let f; and f;r denote the fuel contained in each satellite before
and after a fuel transaction, respectively. The average amount of fuel in the constellation
before and after all fuel transactions will be denoted by f~ and f*, respectively. That is,
f~=(1/n) Y icr fi » and similarly for ft. Let pg denote the fuel burnt by satellite s; € A
in order to rendezvous with satellite s; € P and return to its original orbital slot. Notice
that, in general, pg =+ pz Also note that in a fuel transaction between s; and s; either one
can be the active satellite, provided that it has enough amount of fuel to rendezvous with the
inactive satellite and return to its original orbital slot. Hence, the fuel cost assigned to a single
rendezvous between satellites s;, s; € G is given by

v, if s; can be active, but s; cannot,
- p;-, if s; can be active, but s; cannot,
mln{p{,p;-}, if either s; or s; can be active,

o0, if neither s; nor s; can be active.

The objective is to minimize the square deviation of the fuel distributed among all satellites
in the constellation. Therefore, the cost function to be maximized is given by

Jo=—Y IfF = F P (2)
i€l
The contribution of all matched vertices of G in Eq. (2) is easily computed as
—Z Z 5 = T 1Py, (3)
i€T (i,j)€Q;

where z;; is a binary variable associated with each edge as follows

1 if (i,5) e M,
Tij = < >. (4)
0 otherwise.
In order to ensure that each satellite is involved in at most one fuel transaction with another
satellite we impose the inequality

Y wy<l, i€l (5)

(4,)€Q;

If satellite s; is not involved in a fuel transaction, then f; = f; . As aresult, x;; = 0 for
all (i, j) € Q; and the corresponding edges are not part of the optimal matching. As a matter
of fact, we have that z;; = 0 for all (i,j) € L\M.



The contribution to J, from all unmatched vertices is
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The term ) ;7 |fi — f ~|? in the previous expression is constant, and thus it has no effect on
the optimization process and it can be neglected. From Egs. (3) and (7), and summing up the
contributions from all satellites, we finally have

To=>" (i =FP=1fi" = F Py (7)

€T (i,j)€Q:

Recalling that each edge (i,j) € £ has contributions from two vertices i,j € Z of the graph,
and rewriting the summation in Eq. (7) as a summation over all edges in the constellation
graph, the objective function to be maximized is given by

To=3" (i =FP=1f =T P+l = P=1f = T Py (8)

(i,4)EL

Letting m;; denote the coefficient of z;; in the previous sum, the problem becomes one of
maximizing
Jo=Y_ mijtij. (9)
(t,5)eL
subject to (4) and (5).

Since the objective of the refueling process is to equalize the fuel among all satellites in the
constellation, we impose the constraint that after each fuel transaction between any pair of
satellites, the two satellites end up with the same amount of fuel. In other words, we impose
the condition that f;r = fj+ for all © € Z at the end of the refueling process. Noting that the
difference between the total fuel in the satellites before and after refueling can be related to
the total fuel burnt during the rendezvous,'” one obtains

fr =17 = U I ) (10)

Using (10), the weight of each edge in the constellation graph becomes

mp =7 =P+ =P - %\fi_ + £ —2f =iyl (11)

Given these weights on the edges of the constellation graph, we seek a matching M that will
maximize the sum of the weights of all edges in M. This is a standard maximum weight
matching problem in graph theory.?! The solution to this problem provides the pairs of
satellites involved in the optimal distribution of fuel using a P2P refueling scheme.

AN ALTERNATIVE COST MINIMIZATION FORMULATION

As already mentioned, the two objectives to be satisfied during a P2P refueling scenario are:
(i) minimization of the fuel deviation among all satellites in the constellation, and (ii) mini-
mization of the fuel expenditure during the orbital rendezvous transfers. These two objectives



are conflicting in nature. For instance, we can fulfil only the first objective by performing con-
tinuous orbital transfers until all satellites have the same amount of fuel (perhaps even null).
On the other hand, we can satisfy the second objective by not performing any orbital transfers
at all. The cost function in Eq. (2) was introduced rather heuristically so that implicitly takes
into account both of these objectives. In this section we show that this rationale is valid. We
do this by introducing an optimization criterion J; that incorporates explicitly the previous
two conflicting objectives, and by unraveling the relationship of the cost [, with the cost J,
in Eq. (2).

Since we seek to minimize the fuel deviation among all satellites in the constellation at the
end of the refueling process, we introduce the following cost function to be maximized

J1 Z—Z|f¢+—fﬂ2‘ (12)
1€
Since we also want to minimize the cost incurred during the orbital maneuvers required for
the fuel transfers, we also introduce the following cost to be maximized

Ja=— > D (13)
(v,p)eM

Given J; and Jy, we assign a relative weight between these two costs, and we combine them
into a single cost function to be maximized, as follows

Ty =adi + (]_ — Oé) Jo, (14)
where 0 < a < 1 takes care of the relative importance assigned to the two objectives.
The contribution to (12) from the satellites participating in fuel transactions is
—Z Z 5 = TPy (15)
i€T (i,5)€Q;
The contribution to J; from the satellites not participating in fuel transactions is
S (1= X el TP (16)

Combining the contributions from the participating (matched) and nonparticipating (un-
matched) satellites into (12), one obtains

J1= —Z Z ff = Py — Z If7 = 1P+ Z Z \f7 = FPay. (17)
€7 (i,7)€Q; i€l €7 (i,5)€Q;
The average fuel available in the constellation before and after refueling are related by
- - 1
t_
fr=1r—-- > b (18)
(V) eM
Using Eq. (18), we may rewrite Eq. (17) as

Jl:z Z (‘fi__f_‘z_‘ff—f_ﬁ"‘%(fi__f;r) Z pv#)xij_zyfi__f+’2' (19)

i€l (i,j)€Q; (v,uyeM €7



A simple calculation yields

Sl - FP= (- F P2 =T Y )

i€l i€l (v,pu) EM
( Z p[/u + Z yom Z pmk) .
(V) EM (v,pu)eM (m,kyeM\(v,1)
Note also that ~
S -F)=0
i€

Moreover, the term » ;7 |f;” — f~|? is constant for a given constellation, and plays no role in
the optimization process. Excluding this constant term, we have

Z’fi__f+|2 < Z puu"i_ Z Pvp Z pmk)-
€T (v,u)EM (v,pu) M (m,kye M\ (v,u)

Hence the cost function to be maximized can be written as

- O‘Z Z <‘fl’_—f_|2_’fi+ f ‘2 ( _f+) Z pl/u>xij

€T (i,j)eQi (vp)em
( Z puy, + Z Puvn Z prnk) 1 - a Z pz/p (20)
(vp)eM (ppyeM  (mE)eM\(v,p) (wpyeM

Writing the above summation as a summation over the edges and using Eq. (10), it follows
that the criterion to be maximized takes the form

Go= o S (U= F Pl = F P glf + f —py—2F Py

(i.j)eL
(6% (6%
+ S by D PmkTmktiy— (1 —a— ) > Pt (21)
(i,J)EL (m,k)EL\(i,5) (v,uyeL

This expression consists of both linear and quadratic terms in the decision variables x;;. This
makes the problem a quadratic binary programming problem. One way to solve this problem
is by introducing new variables in lieu of the quadratic terms. This also introduces new
constraints involving the new and old variables. Formulating these as linear constraints, the
problem can be converted to a linear binary programming problem for which efficient algorithms
exist,.

To this end, consider the quadratic term z;;x,,, where x;; and x,,; are binary variables.
Note that two edges that are part of the matching cannot share the same vertex, that is, if 7,
J, m € I, and z,, = 1, then x;; = 0 for all (i,j) € L, j # m. Thus, we may only consider
quadratic terms of the form z;;xmk, (i,7), (m, k) € £ and i, j, k, m € Z, all distinct. Let now
T’ be a set of indices (of cardinality |£|) generated as follows

g=nxi+j, forall (i,j) € L, i,j €. (22)

Conversely, given ¢ € 7’ the corresponding indices 7 and j are obtained via integer division by
n using (22). We can therefore establish a one-to-one correspondence between elements of Z'
and £, and we write g ~ (i, j) to denote this correspondence.



Considering now distinct indices i,7,m,k € Z, and p,q € I’ such that p ~ (i,j) and
q ~ (m, k) we introduce new variables defined by

Tpqg = TigTmk- (23)

These new variables are also binary since

(24)

1, when z;; =1 and zy,, = 1,
€T =
b 0, otherwise.

The restrictions in Eq. (24) can be imposed on the new variables by introducing the following
three linear constraints

Tpq < Tij, (25)
Tpq < Tk, (26)
—Zpg + Tij + i < 1. (27)

The first two constraints ensure that whenever x;; = 0 or z,,;; = 0, we have x,, = 0. The last
of the previous three constraints ensures that x,, = 1 when x;; = 1 and z,,,, = 1. Hence, the
problem of minimizing the two objectives absorbed in Eq. (14) is equivalent to the following
linear binary integer programming problem

D S (e T A T P

« 2a
—(1 - — E) Z p%jxij + 7 Z DijPmkTpq, (28)
(i,j)€L (La)ec
(m, k) EL\(4,5)

subject to the constraints given by Eqgs. (25), (26), (27), and Eqgs. (4)-(5).

The parameter « in Eq. (14) weighs the relative importance for the fulfilment of the two
performance objectives we have set for a P2P refueling scenario. If o = 0, no fuel equalization
is desirable (J, = J3), and we only minimize the rendezvous costs. Obviously, in such a
case the optimal solution involves no satellite pairings: all satellites remain at their initial
orbital slots and the matching set M is empty. Equivalently, M| = 0. As we increase
the value of «, fuel equalization becomes increasingly important and after a certain value of
a = a > (0 at least one pair of satellites performs a fuel transaction. The matching set M is
non empty, and consequently |[M| > 0. For a = 1 fuel equalization is the only optimization
objective (Jp = Ji), which is achieved with a (perhaps) unacceptably large number of fuel
transactions. A compromise between the performance objectives J; and Js is achieved via
an intermediate value of a. To investigate the effect of a in the optimal number of satellite
pairings, and compare with the original “two-in-one” cost 7,, several numerical examples have
been conducted.

Numerical Example

In this section we investigate numerically the relationship between the solutions obtained via
the two costs (2) and (14). Specifically, we show that solutions obtained via (2) correspond



to solutions obtained via (14) for a range of values of « that achieve a balanced compromise
between the original conflicting optimization objectives J; and Js.

Figure 1 shows a typical variation of 7, with « for the two constellations Cy and Cg in
Table 1. The plots are piecewise linear, with each linear portion corresponding to a particular
set of pairings of the satellites in the constellation.

Plot of.]b VS o

1000 T

2001 ~ — .~ Constellation C, 4

Constellation C3

0 I I I I I I I I I
[ 01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: Typical variation of J}, with respect to a.

Typical variations of the values of the two objective functions J; and .Jo are shown in
Figures 2 and 3 for the constellations Cy and Cg, respectively. Each point on the curve in
these plots is optimal, corresponding to a particular choice of a. The range of values of « for
which the same pairings of satellites occur as with the optimization of 7, is also shown on
these plots. Note that for this range of « the pairings of satellites are the same, hence the
values of J; and Jy are also the same.

For this range of values of a we have a reasonable compromise between the two performance
specifications J; and Jo. Moreover, from these plots it is concluded that the use of the simpler
cost J, in lieu of 7, is justified, as the former results in solutions which are identical to those
obtained via J, for values of a that provide a balance between the objectives J; and Js. The
case for using 7, instead of 7 is made stronger in light of the fact that the calculation of the
optimal matching using the cost J, is computationally more intensive than using the cost 7,
owing to the larger number of decision variables and the associated constraints; see (23)-(27).
As a result, in practice one can confidently bypass the optimization of J; and deal only with
the optimization of 7, when computing the optimal satellite pairings in a P2P scenario. We
will make use of this observation in all our subsequent computations from now on.

10
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Figure 2: Variation of Jy with respect to Ji (constellation Cy).

PURE P2P REFUELING STRATEGIES

It is well known?% 23 that coasting can significantly reduce the fuel expenditure during a ren-
dezvous. Therefore, during each transfer, initial or final coasting intervals play an important
role in the overall optimal rendezvous cost. Figure 4 shows a typical variation of the ren-
dezvous cost between two satellites (in terms of non-dimensionalized AV') with respect to the
transfer time. In this figure the initial separation angle between the satellites is 60 deg and
both satellites are in the same circular orbit. The dotted line shows the cost if coasting is not
allowed, while the solid line shows the cost when initial coasting is allowed. In the latter case,
the active satellite stays for some time in its original orbit and the actual transfer occurs over
a smaller time period. Therefore, by allowing a coasting period during an orbital transfer we
can reduce the overall cost. The idea of allowing coasting intervals is utilized in this section to
propose a strategy for reducing the overall P2P rendezvous cost.

As it is evident from Figure 4 the optimal cost when coasting is included is a non-increasing
function of time. That is, the inequality

AV (tp) < AV(tge), for tp >tpo (29)

holds for any two transfer times 71 and ty5. Note that this monotonicity of AV versus the
transfer time does not hold if there are no coasting intervals.

In our previous investigation of P2P refueling strategies?” it was assumed that given the
total amount of time to complete each fuel transaction, the time was equally divided between
the forward and return orbital transfers for each fuel transaction. Here we relax this restriction.
In particular, we show that by allowing unequal transfer times between the forward and return
journeys for each fuel transaction, one can reduce the transfer cost.

To see why this is true, let us consider a single refueling maneuver between two satellites
s; and s;, and let s; € A be the active satellite, and s; € P be the passive satellite. Note

11
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Figure 3: Variation of Jy with respect to J; (constellation Cy).

that either of the two satellites can be the seller or the buyer during the fuel transaction. The
amount of fuel spent by s; to rendezvous with s; is given by?4

pfz = (msi + fz_)(l - eiAVij/COi)a (30)

where my; is the mass of the permanent structure of satellite s;, f; is the initial fuel of satellite
Si, fj_ is the initial fuel of satellite s;, and AVj; is the velocity increase required to transfer from
the orbit of satellite s; to the orbit of satellite s;. The parameter cy; is defined by co; = goZspi,
where g is the acceleration due to gravity at the Earth’s surface, and Iy is the specific thrust
of satellite s;.

The amount of fuel consumed by satellite s; to return back to its original position after a
fuel exchange has taken place¥ is given by

1— 6—AV}z‘/COi)
(1 4 e~ AVii/coi)’

pri = (2ms + f; 4+ f; —pri) (31)

where AVj; is the optimum rendezvous cost for the return journey. Note that, in general
AVj; # AVi;. Using the previous equations the total fuel used by satellite s; during the two
transfers is given by

Dij = Dfi + Pri- (32)

Now let us denote by ¢;; the total time allowed to complete both legs of the fuel transaction
between satellites s; and s;. Moreover, let tlfj denote the time for the forward journey and &
denote the time for the return journey, so that

tij = t]; + 1. (33)

It is assumed that during the exchange of fuel the seller satellite gives enough fuel to the buyer satellite so
that both have the same amount of fuel at the end of the fuel transaction.*®
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Plot of AV vs t for r1:r2:1 90 =60 deg

14 T T T

without coasting
with coasting

AV

* Time of flight t, | ’
Figure 4: Variation of rendezvous cost with transfer time. Transfer from and to a circular
orbit with an initial separation angle of 60 deg.

In case of an equal partition of the total time between the forward and return transfers, we
have tzfj = t;"j = t;;/2. In the sequel we use the superscript I, to denote quantities associated
with such an equal time partition transfer. For simplicity, we assume a coasting period for
the forward leg, and we will use the superscript II to denote the quantities associated with a
transfer with unequal time partition of ¢;; such that the forward and return legs are completed

within the time intervals t{j = tij/2 — t; and t}; = t;;/2 + t;;, where t;; denotes the optimal
coasting time for the forward leg. Similarly, we will use the superscript III to denote the
quantities associated with a transfer with unequal time partition of ¢;; such that the forward
and return legs are completed within the time intervals tlfj = tij/2 + t; and t; = t;;/2 — 1]},
where t;'j denotes the optimal coasting time for the return leg. Let us concentrate on the case
where coasting is part of the forward leg.

Note that since coasting periods do not have any effect on the cost, one obtains,

11

which implies, according to (30) that
pg% = p?i' (34)

For the return flight, and since #;;/2 +t;; > #;;/2 we have, via (29), that

1 1T
AV > AV,
7A[/j1i/601' < efA‘/inI/COZ'.

I )
_A‘/jqj/c()z

which implies that e —AVji/coi >

1-— e_AVJ‘IiI/CO"

Using this inequality, it follows that 1—e

11 X
_AV77, /CO’L .

,and also 1 +e <l+4e These two inequalities together yield

I R

_AVJ'Ii/COi

—AV]-IiI/COi (35)

>
1+e l1+e
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which, via (31), yields

Phi 2 Py (36)
From equation (34) and inequality (36), the identity (32) yields
Py > ph. (37)

A similar analysis holds when a coasting period of length ¢ is part of the return leg, in
which case one can show that
Pl > phil. (38)
We have therefore shown the following proposition.

Proposition 1. For each fuel transaction between two satellites in the same circular orbit,
and a giwen total time for the transaction to take place, an equal time allocation between the
forward and return legs of the two associated rendezvous transfers is suboptimal.

We will next utilize this idea to devise a coast time allocation (CTA) algorithm for reducing
the fuel coast during each fuel transaction.

Coast Time Allocation Algorithm

The main idea behind the formulation of a fuel-reducing strategy is to allow for unequal time
distribution between the forward and the return legs for each fuel transaction. To this end, we
consider the following three cases:

o Case-I: t{j =t;; =tij/2
e Case-1I: tlfj = t;;/2 — ti; and t; = t;;/2 + t;;
o Case-IIl: ¢, = t;;/2 + 1! and ], = t;;/2 — 1!,

Assume a fuel transaction between satellites s; € A and s; € P and let p{I, p{H and p{m
denote the fuel spent for satellite s; to rendezvous with s; and return back to its original
position, for each of the previous three cases, respectively. The optimal time sharing is the one
that satisfies

j : 1 4114100
p." =min{p],p ,pl }. (39)
The corresponding time allocation is then given by
o 1
(tij/2,i5/2), if p;” = p},
o -
(thth) = Q (832 — th, /2 + ty), i pl* = pi",
e g 111
(tij/2+tgj,tij/2—t;/j), lfpg*ng .
We can similarly compute the cost of a single fuel transaction for the case s; € P and s; € A.
Finally, the optimum fuel consumption between any two satellites s;, s; € G is given by

pg*, if s; can be active, but s; cannot be active,

. pz-*, if s; can be active, but s; cannot be active,
pi; = . x4 e . .
J mln{pg*,p;*}, if either s; or s; can be active,

00, if neither s; nor s; can be active.
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We demonstrate these results next via a numerical example. Let us consider a single fuel
transaction between two identical satellites in the same circular orbit. We assume that the
mass of permanent structure for satellites is ms = 60 units, and the characteristic constant of
the rocket engine is cg = 2943 units. The initial fuel of the active satellite is 100 units and of
the passive satellite is 10 units. The allowed time to conduct the fuel transaction is chosen to
be 12 units.

Figure 5 shows a comparison between the three cases as a function of the separation angle
between the two satellites. For all separation angles, an equal time allocation for the forward
and return legs of a fuel transaction (Case I) always results in more or equal fuel expenditure
than an unequal time allocation (Cases II or III).

Fuel expense in single P2ZP maneuver

M Casel OCasell @mCasell

Fuel expense

20 60 150 220 300 330 350
Initial lead angle {deg)

Figure 5: Effect of CTA algorithm to a single P2P maneuver.

The effect of the CTA algorithm when refueling a constellation using a pure P2P strategy
is evaluated by the introduction of the following figure of merit

(i jyem Pis — 2 jyemPig)

G = -
2 i yem Pij

x 100 %, (40)

where M is the matching edge set for the optimal time allocation, and M’ is the matching
edge set for the refueling strategy under evaluation. We call G the net percentage gain of the
refueling.

Several circular constellations with a varied number satellites of physical characteristics
have been studied, and the final fuel distribution and rendezvous costs associated with both
pure P2P and mixed refueling strategies have been computed. The CTA algorithm has been
applied to a complete P2P refueling scenario for the constellations given in Table 1. In this
table, the initial fuel for each satellite is shown, along with the total allowed time T for the
forward and return trips. Note that for all numerical results below one unit of time corresponds
to one period of the circular orbit of the constellation.
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The corresponding gains are shown in Figure 6. The results in Figure 6 indicate considerable

P2P refueling costs in constellations

| O Without Strategy m With Strategy ‘

160 G=10.04
140 [ ]

120 G =6.59

100
80
60
40

sl B8 5l SH §

C1 c2 C3 C4 c5 cs6

Constellations

G =285

G =8.34

Fuel Expenses

G =572 G=712

Figure 6: Effect of CTA algorithm to an entire constellation; see also Table 1.

amount of fuel savings if the CTA algorithm is adopted. Note that in most cases, the application
of the CTA algorithm has no effect on the satellite pairings. However, for constellation Cg, it
was also found that the entire set of optimal pairings of satellites change when the algorithm
is applied. This shows that the CTA algorithm can altogether affect the scheduling of the
refueling process in order to reduce the cost.

MIXED REFUELING STRATEGIES

So far we have discussed pure P2P refueling strategies for the purpose of equalizing fuel among
all satellites in the constellation. Although significant unequal fuel distribution between iden-
tical satellites in the same orbit are rather unlikely (except in case of failures), and hence pure
P2P strategies seem to be exceptional, nonetheless they arise naturally as a second stage of
mixed refueling strategies. This has been demonstrated in Refs. 18,19, where it was shown
that a mixed strategy will typically outperform a single-spacecraft refueling strategy, as the
number of satellites in the constellation increases.

Let us consider a constellation in a circular orbit with an even number of satellites s;, i €
Z ={1,2,...,2n}. For the sake of simplicity, we may assume that all satellites are initially
depleted of fuel, that is, s; € C4 for all ¢ € Z. Given a maximum refueling period, say 1T', we
wish to refuel all of the satellites from a service vehicle sg, such that after time T they all end
up with approximately the same amount of fuel. In the process, we also want to minimize
the total fuel expenditure during the ensuing orbital maneuvers. Equivalently, we want to
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Table 1: SAMPLE CONSTELLATIONS.

Label Description
Ch 14 satellites, same structure and specific thrust
fi:(07): 38.8,36,35.2,32.8,29.6,27.6,26.8,17.6,14,8,6.8,6.4,5.6,0.4
T=12
Cy 6 satellites different structure and specific thrust
fi(07): 5,45,86,31,12,90
T =16
Cs 18 satellites, same structure and specific thrust
£:(07): 62,50,40,98,70,25,88, 20,72, 30,82, 54,42, 66, 35, 10, 90, 45.
T=28
Cy 8 satellites, same structure and specific thrust
fi(07): 85,30,95, 20, 65,40, 75,10
T=12
Cs 20 satellites, same structure and specific thrust
fi(07): 65,70,72,65,92, 44, 32,16, 15, 28, 56, 88,90, 92, 86, 30, 25, 36, 52, 60.
T =10
Cs 7 satellites, different structure and specific thrust
fi(07): 25,40,70, 82,12,95,42
T=28
Cr 9 satellites, different structure and specific thrust
1:(07): 85,30, 50,95, 20,65,40,75,10
T=12
Cy 10 satellites, different structure and specific thrust
f:(07): 25,40, 50, 70,82, 45,12, 95, 30,42
T=28

maximize the total amount of fuel that can be delivered to the constellation. We have two
alternatives for solving this problem.

The first alternative is for sq to refuel (perhaps sequentially'®) all other satellites in the
constellation. This scenario is shown in Figure 7. The second alternative is a mixed refueling
strategy, consisting of two stages. During the first stage, the service vehicle sg delivers fuel to
half the satellites in the constellation. During the second stage, these satellites share their fuel
with the remaining satellites in P2P fashion. This alternative refueling scenario is shown in
Figure 8.

Let 7Z; denote the index set of the satellites refueled during the first stage by the service
vehicle sg in a mixed strategy, and let Zo = Z\Z; denote the remaining satellites which are
to be refueled during the second stage. Without loss of generality we may assume that 7; =
{1,2,...,n}and Zo = {n+1,n+2,...,2n}. Let also T()) denote the time allotted for the first
stage and T =T — T the time allotted for the second (P2P) stage in a mixed strategy.

During 7™M the service vehicle s delivers fuel sequentially to the n satellites s; (i €Zy) in
an optimal fashion. The optimal time distribution for these transfers, denoted by tgll)ﬂ (i =
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1,...,mn — 1) then satisfies

n—1

th i+17 (41)

=1

(1 )

where the optimal values t; /| are calculated by solving a binary integer programming prob-

lem.?° Note that the CTA algorlthm can be implemented during this second stage to reduce
the cost of the P2P maneuvers as was elaborated in the previous section.

In Ref. 19 we showed that a mixed strategy will, in general, outperform a single-spacecraft
strategy, especially as the number of satellites in the constellation increases. In Ref. 19 we
assumed only synchronous implementation for the P2P second stage, that is, all P2P maneuvers
during the second stage of the mixed refueling scenario, occur simultaneously and they all take
time 73 to be completed. However, we can further improve on the fuel savings incurred
during the second stage by allowing asynchronous P2P maneuvers, as described next.

AV1011  AV9,10

A\y mk m‘\ m’\AVSQ

AV3a AVi4s

Figure 7: Single-spacecraft refueling scenario.

Asynchronous P2P Refueling

In a synchronous P2P scenario all the satellite rendezvous take place simultaneously. In a
mixed refueling strategy, this implies that all fuel deficient satellites (at the end of the first
stage) are refueled within the time T3 . Note, however that the time T® is binding only for
satellite s, (the last satellite to be visited by s¢ during the first stage of a mixed strategy). All
other satellites s; (i = 1,...,n — 1) have available T + > tSkH time units to perform
their fuel transactions. Thus, the time available for s; to complete the P2P maneuver with its
matching satellite s; is given by

1 . .
J if 1 =n.

2 Vsl it e T\ {n},
<>_{ ; Spieh \{n} )
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Figure 8: Mixed refueling scenario.

We refer to this strategy as asynchronous P2P refueling, since not all satellite pairs complete
their corresponding fuel transactions within the same time period. Since tz(f-) > T for all
satellite pairs, and referring again to Eq. (29), it is clear that each rendezvous between two
satellites will require less fuel than a synchronous implementation. Consequently, the overall
fuel consumption for the whole constellation will also be reduced by using an asynchronous
P2P implementation. This is demonstrated next via numerical examples.

NUMERICAL EXAMPLES

We next apply the CTA algorithm along with an asynchronous (mixed) P2P refueling strategy
to sample constellations. With the help of numerical examples we show how these improve-
ments for a mixed refueling strategy make the latter a competitive alternative to a refueling
strategy using a single service vehicle or to mixed synchronous P2P strategies.

To this end, we assume a circular orbit constellation with an even number of satellites. The
service spacecraft, denoted by s, starts with an initial amount of fuel fy(0~) = 500 units. We
assume that sg is initially at a higher circular orbit than the constellation orbit. It is required
to return to the same orbit after completing the refueling process with fo(7") = 10 units of
fuel, where T" = 20 is the maximum allowed time for completing the whole refueling process.
Hence, the total amount of fuel to be delivered to the satellites in the constellation including
the fuel to be used during the corresponding orbital transfers is 490 units. The mass of the
permanent structure for each satellite is my; = 60 units and the characteristic constant of the
engine is cg; = 2943 units for all satellites.

In the first example, we consider a constellation with six satellites evenly distributed in
the circular orbit. The service vehicle sg visits all these six satellites and distributes the fuel
equally among all satellites in the constellation. There are five rendezvous segments, and
the maximum time of transfer allowed for each rendezvous segment is 6 time units. The
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optimal time distribution for each of these five rendezvous segments, and the corresponding
fuel expenditure are given in Table 2.

Table 2: OPTIMAL FUEL CONSUMPTION WITH A SINGLE SERVICE VEHICLE. SIX SATELLITE
CONSTELLATION.

Segment tij AV;: | Fuel Expense
i=1,j=214.1607 | 0.1676 30.6311
1=2,7=231|4.1607 | 0.1676 24.8345
1=3,j=414.1607 | 0.1676 19.4244
1=4,j= 4.1607 | 0.1676 14.3751
1=5,j= 3.3570 | 0.2204 12.5754

At the end of this process, each of the six satellites ends up with an equal amount of fuel
f;r = 56.31 (i = 1,2,...,6). The total amount of fuel used during all these transfers is thus
490 — 6 x 56.31 = 152.14 units. Note that these values do not include the fuel consumption for
the initial (AV = 44.2619) and final (AV = 6.0094) transfers of sg to and from the constellation
orbit, which are constant and thus not part of the optimization process.

Table 3: OPTIMAL FUEL CONSUMPTION DURING THE FIRST STAGE OF A MIXED REFUELING
STRATEGY. SIX SATELLITE CONSTELLATION.

Segment tg;) AV;; | Fuel Expense
i=1,7=2|4.8279 | 0.1444 22.0481
i=2,j=3| 3.8421 | 0.1826 16.3783

Table 4: OPTIMAL FUEL CONSUMPTION DURING THE SECOND STAGE OF A MIXED REFU-
ELING STRATEGY. SIX SATELLITE CONSTELLATION.

Pairs T TW /TR | Fuel Expense
(s1,56) | 20.00 | 10.17/9.83 9.0299
(s2,54) | 15.17 | 7.85/7.32 23.4042
(s3,56) | 11.33 | 6.00/5.33 31.3522

The optimum solution for a mixed refueling strategy yields that the first step, during
which sg delivers fuel to satellites s1, so and s3 requires two rendezvous segments with total
time TW = 8.67 time units. The optimum time distribution and the corresponding fuel
consumption for this step are given in Table 3. The three satellites refueled by sg have 133.76
units of fuel each before performing the P2P maneuvers with the remaining satellites sy, s5
and sg. The available time and the corresponding fuel expenditures for the P2P maneuvers
are given in Table 4. The final fuel content of each satellite at the end of the refueling process
are f1(TT) = fe(TT) = 62.37, fo(T+) = fo(TF) = 55.18 and f3(T") = f5(T") = 51.21. The
average amount of fuel in the constellation then is equal to 56.25 units. The total amount of
fuel burnt is 490 — 6 x 56.25 = 152.50 units, which is 0.24% more than the amount of fuel
burnt if the satellites are refueled by a single spacecraft. A single-spacecraft refueling strategy
is marginally better than a mixed refueling strategy in this case.
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For the second example we consider a constellation with twelve satellites evenly distributed
in a circular orbit. The total time allowed for refueling is again 7" = 20 time units. There
are eleven rendezvous segments with a single-spacecraft refueling strategy. The optimal time
distribution for each of the five rendezvous segments and the corresponding fuel consumption
are given in Table 5. At the end of this process, each of the six satellites end up with an equal
amount of fuel ff = 17.31. The total amount of fuel used during all the transfers is thus
490 — 12 x 17.31 = 282.28 units.

For the mixed strategy, there are five rendezvous segments during the first stage, which
are all completed within 7(}) = 9.59 units. The optimal time distribution for each of the five
rendezvous segments and the corresponding fuel consumption are given in Table 6. The six
satellites refueled by sg have fuel 55.53 units each before performing the P2P refueling part.
The time available for the P2P maneuvers and the corresponding fuel consumption are given
in Table 7. The final fuel content of the satellites are fi(T) = fio(T) = 23.50, fo(TT) =
Ju(TF) = 23.04, f5(T*) = fra(TT) = 2245, fo(TT) = fr(TF) = 2174, f5(T) = fs(TT) =
20.71, fo(TT) = fo(T") = 19.35. The average amount of fuel in the constellation is 21.80 units.
The total amount of fuel burnt using the mixed refueling strategy is 490 — 12 x 21.80 = 228.4
units, which is about 19% less than the amount of fuel burnt if the satellites are refueled by a
single spacecraft. Clearly, the mixed scenario outperforms the single service vehicle option in
this case.

Table 5: OPTIMAL FUEL CONSUMPTION FOR REFUELING WITH A SINGLE SERVICE VEHICLE.
TWELVE SATELLITE CONSTELLATION.

Segment tij AV;; | Fuel Expense
i=1,7=2 | 1.9084 | 0.1821 35.9746
1=2,7=3 1.9084 | 0.1821 32.1287
1=3,j=4 | 1.9084 | 0.1821 28.5604
1=4,7=5 1.9084 | 0.1821 25.2497

1=295,7=6 | 1.9084 | 0.1821 22.1779
1=06,5=7 | 1.9084 | 0.1821 19.3278
1=7,7=8 | 19084 | 0.1821 16.6834
1=8,7=9 | 1.9084 | 0.1821 14.2299
1=9,7=10 | 1.9084 | 0.1821 11.9535
1=10, 7 =11 | 1.9084 | 0.1821 9.8414
1 =11, 7 =12 ] 0.9163 | 0.3805 15.8334

Table 6: OPTIMAL FUEL CONSUMPTION FOR FIRST STEP OF MIXED REFUELING STRATEGY.
TWELVE SATELLITE CONSTELLATION.

Segment tg;) AV;; | Fuel Expense
1=1,7=21]1.9174 | 0.1822 33.2517
1=2,7= 1.9174 | 0.1822 26.8369
1=3,7=4 19174 | 0.1822 20.8556
1=4,7=>5]1.9174 | 0.1822 15.3643

1=295,7=06 1| 19174 | 0.1822 10.2419
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Table 7: OPTIMAL FUEL CONSUMPTION FOR SECOND STEP OF MIXED REFUELING STRAT-
EGY. TWELVE SATELLITE CONSTELLATION.

Pairs T | TW/T® | Fuel Expense
(s1,510) | 20.00 | 10.25/9.75 8.5335
(s9,511) | 18.08 | 9.33/8.75 9.4564
(s3,812) | 16.17 | 8.43/7.74 10.6270
(s4,57) | 14.25 | 8.00/6.25 12.0585
(s5,s8) | 12.33 | 5.75/6.58 14.1137
(s6,59) | 10.41 | 4.74/5.67 16.8236
CONCLUSIONS

In this paper, we have studied peer-to-peer (P2P) satellite refueling scenarios in circular orbit
constellations. P2P refueling strategies have been proposed recently as a viable, competitive
alternative to single-satellite refueling. Although pure P2P strategies are rather unlikely for
constellations with similar satellites, P2P refueling arises naturally as a second stage in mixed
refueling strategies. For such mixed strategies we show via numerical examples that an unequal
time distribution of the forward and return trips for each satellite pair, along with an asyn-
chronous implementation of the P2P rendezvous sequence, result in more efficient refueling
than previous synchronous P2P /mixed or single-spacecraft refueling implementations.
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