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Abstract

This paper introduces a method for constructing exponentially convergent control
laws for n-dimensional nonholonomic systems in power form. The methodology is
based on the construction of a series of nested invariant manifolds for the closed-
loop system under a linear control law. A recursive algorithm is presented which
uses these manifolds to construct a 3-dimensional system in power form. It is shown
that the feedback controller for the original system is the one for this 3-dimensional
system with proper choice of the gains.
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1 Introduction

Nonholonomic control systems commonly arise from mechanical systems when
non-integrable constraints are imposed on the motion, i.e., velocity constraints,
which can not be integrated to generate constraints on the configuration space.
Examples include rolling disks, mobile robots [15], underactuated symmetric
rigid spacecraft [11,20], etc. One challenging aspect of these control systems is
that they are controllable but not stabilizable by a smooth static or dynamic
state feedback control laws [4]. A number of approaches have been proposed
to solve the stabilization problem for nonholonomic systems. These method-
ologies can be broadly classified as discontinuous, time-invariant stabilization
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and time-varying (usually smooth) stabilization. The non-smoothness of time-
invariant feedback controllers is a consequence of the structural properties of
the system [4]. Stabilization results using non-smooth, time-invariant control
laws have been proposed in [11,20,5,7,1]. References [11,20] deal with the at-
titude stabilization of underactuated spacecraft by developing non-smooth,
time-invariant control laws. Piecewise smooth and discontinuous controllers
have been reported in [5,7]. Samson in [17] showed how to asymptotically sta-
bilize a mobile robot to a point using time-varying, smooth state feedback.
Coron in [6] subsequently proved that all controllable driftless systems could
be stabilized to an equilibrium point using smooth, periodic, time-varying feed-
back. References [14,19] and [16] deal with the construction of time-varying
control laws for several nonholonomic systems. Hybrid time-varying feedback
control laws are proposed in [10] for a class of cascade nonlinear systems, which
could also be used to stabilize a class of nonholonomic systems, as well as
for tracking problems. Reference [13] develops time-varying control laws with
exponential convergence with respect to homogeneous norms. Finally, [18] de-
velops nonsmooth, time-varying feedback control laws which guarantee global,
asymptotic stability with exponential convergence about an arbitrary config-
uration. Of particular relevance to the work in this paper is Ref. [1], where
a nonsmooth transformation is used to develop time-invariant, exponentially
convergent controllers for systems in chained form. For a more comprehensive
review of all the recent advances in the control of nonholonomic systems the
interested reader may consult [9].

In this paper we deal with n-dimensional nonholonomic systems in power form
with two inputs which are described as [7,9]

Zi?l =U

MZUI U2 j:2,3,...,n (1)

a:j:

We derive feedback control laws for the system in Eqgs. (1) using a set of invari-
ant manifolds constructed by direct integration of the closed-loop equations
subject to linear feedback. This idea, originally introduced in [20], was later
extended in [7] and [8]. Finite-time stabilizing and tracking controllers which
use these manifolds as sliding surfaces have also been proposed in [2] for 3-
dimensional power form systems. The general n-dimensional problem has not
been addressed, however. In this paper we show how one can use these in-
variant manifolds to construct a series of generated systems in power form of
reduced dimension. By repeating this process one ends up with a 3-dimensional
system in power form. The proposed control law for the system in Eqgs. (1) is
a feedback control law for this 3-dimensional system with proper choice of the
control gains.



The main contribution of the paper lies in the construction of control laws
achieving exponential rates of convergence. Moreover, the rates of conver-
gence for each state can be specified a priori by the designer. The resulting
controllers are discontinuous at the origin and are similar in form to the ones
recently proposed by Astolfi [1] for nonholonomic systems in chained form.
The approach in [1], however, uses a singular transformation for resolving
the singularity at the equilibrium (o process). Also, the approach proposed
here generates controllers with multi-time scale convergence properties, as a
result of the invariant manifold method, which is not evidently present in
[1]. Tt should be pointed out, however, that the proposed controllers (without
further modification) may not render the closed-loop system stable (in the
sense of Lyapunov) since closed-loop trajectories may move away from the
origin before returning there. Nevertheless, departure from the neighborhood
of the equilibrium may not be necessarily unacceptable in practice. For in-
stance, large angular excursions from the rest position may be perfectly valid
maneuvers for underactuated spacecraft. Also, common experience indicates
that some parallel parking maneuvers are accomplished more efficiently, if the
driver moves the car to a better posture if the initial conditions are not “good”
(see Ref. [14] and [17] for a discussion on the relationship between controlling
nonholonomic systems and the problem of parallel parking.)

2 Invariant Manifolds and Their Properties

Consider the system in Eqs. (1) and the following linear feedback

U = —k'l'l, Uy = —ky T, (k > 0, ki > 0) (2)
With this linear control law, the closed-loop equations are

i’lz—k'.'L'l
1

mk1${72$2, j:2,3,...,n (3)

j}j _ —
Equations(3) can be explicitly integrated to obtain

T (t) =T10 e*kt

T2 (t) = T90 e_]“t

k1
U =21 =2k + k)

zj(t) = s1,j-2(x0) +
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where o = [Z19, T20, T30, - - -, Tno]? € R" is the initial state of the system, and
where

ki

— i, =1,2,...,n—2 5

$1,j = Tj42 —

Equation (5) defines a series of smooth manifolds by

Hl,j:{xeRn:SLj(l‘):O}, j:1’2,___,n_2 (6)
each of dimension (n — 1). The manifold

n—2
leﬂHl’j:{fL’ERnlsl,j(fL'):O, ]:1,2,,n—2} (7)
7j=1

is then a two-dimensional smooth manifold [3], since rank [%L] =n—2.

Lemma 1 Consider the system in Eqs. (1) under the feedback control in
FEq. (2) and the manifold 11y as in Eq. (7). Then, for all initial conditions
xg € Iy, the closed-loop trajectories of the system converge exponentially to
the origin.

PROOF. Since

ke
J Gk + k)
kkq - k

=D Gk R e DGk R

. . . j_l . ] .
81, =Tj+2 — (] Tl T1Te + l"p”vz)

) uy =0 (8)

each manifold II; ; is invariant for the closed-loop system. Subsequently, the
manifold II; is also invariant for Eqs. (3). For xy € II; the solutions of
the closed-loop system are given by Eqs. (4) where s;;(zo) = 0, for j =
1,2, ..., n — 2. The assertion of the lemma follows immediately.

3 A Recursive Algorithm for Systems in Power Form

In this section we present a recursive algorithm for generating a series of
systems which will be used to construct an exponentially convergent feedback
controller for the system in Eqgs. (1). All the systems generated by this recursive
process (herein called the generated systems) can be put in power form through



a linear transformation. These generated systems are, however, of reduced
dimension. The methodology is based on the idea that by constructing a set
of (n—2) manifolds for the n-dimensional system, the problem of constructing
an exponentially convergent controller for the initial system becomes one of
constructing an exponentially convergent controller for a similar system in
power form but of dimension (n — 1). By repeating this process, one ends up
with a 3-dimensional system in power form.

3.1 The Recursive Process

Consider the n-dimensional system given in Eqs. (1), and construct a set of
(n — 2) invariant manifolds for this system under a linear control feedback
uy = — kxy, ug = — ko as in Eqgs. (5).

Define the following linear transformation
T21=T1
Toj=((j — 1) k+ki)sij j=2,3,....,n—1 (9)

Then one can define the following system in terms of z9;, for 1 <j <mn—1

T2,1 = U2

: 1 2 .

l‘g,jzmﬂ'}%,l ’LL272 ]:2,3,...,n—1 (]_0)
where

Ug,1 = U1, Uz = k‘.’L’l Uo — k‘l T2 Uy (].].)

The system in Eqs. (10) will be called the second generated system and we
use the first index in the subscript of the state elements to denote this. For
consistency, we define the first generated system to be simply the original
system in Eqs. (1), that is, we let z1; = z; for 1 < j < n. Notice that the
system in Egs. (10) is a system in power form of dimension (n — 1). The same
process can be therefore repeated for this system.

After repeating this process (i — 1) times one obtains the ith generated system

(of dimension (n — i + 1)) given by

Ti1=Us

) )



1
(7 —2)!

For the ith generated system, one can construct (n—i—1) invariant manifolds
using the linear feedback control,

Tij = w1 iy j=23,...,n—i+1 (12)

uig=—kai, Uip = — ki Ti2 (13)

)

and the methodology described earlier. The corresponding manifolds are de-
fined by

IL; = {z e R" " 5, 5(z) = 0}, i=12...,n—i—1 (14)
where
k. )
o i i - o
Sij = Tij+2 Gk + k) L1 Ti2 j=12,....,n—1—1
Defining

Tit1,10 =1
xi-l-l,j:((j - 1)k+kz) Si,j—1 ] = 2,3,..., n—1 (]_5)

the (i + 1)th generated system can be described as follows

Tit1,10 = Ui41,1
1

. o j—2 . .
Tiy1= T Tii1q Uigl2 J=2,3,...,n—1 (16)
where
Ui, = Ui, Uir12 =k Xig Wig — ki i Uiy (17)

This process can be continued until the (n — 2)th generated system, which is
the 3-dimensional system

Tp—21—Up-2,1
Tp—22=Un-22 (18)

Tp—22=—Tp-21Un-22

By construction, it is immediate that if ;111 = 212 = i3 = -+ =
Tit1n—i = 0 for the (i + 1)th generated system, then for the ith generated



system we have that z;; = ;3 = -+ = 2; ,_;41 = 0. Thus, any convergent
feedback controller about the origin for the (i + 1)th generated system, will
also make the ith generated system converge to the (imbedded in R*~*+1)
one-dimensional manifold

M, = {x c Rt Ti1 =Tj3="""=Tip—i+l = 0} (19)

In particular, if the convergent controller for the (i + 1)th generated system
is chosen such that, in addition, satisfies the property lim; ,. ;2 = 0 then
the same control laws will make the sth generated system converge about the
oT1LgIN.

3.2 The 3-Dimensional System

The first step in the proposed derivation of the feedback controller is to con-
struct an exponentially convergent, static, state-feedback controller for the
(n — 2)th generated system in Eqgs. (18). For notational convenience, let us
redefine z; = x,_o; (i =1,2,3) and v; = u,_9; (j = 1,2). Then the system in
Eqgs. (18) can be written, equivalently, as

21 =U1
22 = V9 (20)
23 = Z1V2

Theorem 2 Consider the system in Eqs. (20) and the feedback control

s
v = —k 2, Vo = —kp_o2 — MZ_ (21)
1

with k >0, k, 5 >0 and p > (k + k,_2)?/k, and where
kp—
S = 23 — (ﬁ) Z1 %9 (22)

Then the closed-loop system has the property,

Jim (z1(8), (), 2a(8) = 0 (23)

with exponentially decaying rate, for all initial conditions such that z1(0) # 0.
Moreover, the control law in Eq. (21) is bounded along closed-loop trajectories.



PROOF. First, notice that z; = 2,(0) e ** and thus 2; decreases exponen-
tially with rate of decay k. Note that s represents the invariant manifold for
the system in Eq. (20) under the linear feedback

v = — k 21, Vo = — k‘n_g Z9 (24)

Using Egs. (21), the differential equation for s is

$—= 7k 21 Vg — 71%72 29V
T\ kot k)N by o+ k) !
kp
_ 25
(kn2+k> i (25)

and s decreases exponentially with rate of decay ku/(ky—o + k) > kn_o + k.
By definition, lim;_,, s(t) = 0 implies that lim;_,, 23(¢) = 0. The differential
equation for zy can be written as follows

Zy = —kn_o 2 — pn(t) (26)

where the function 7;(¢) = s(t)/21(t) is an exponentially decaying function
with rate of decay greater than k, 5. One can then immediately conclude
that limy o 22(¢) = 0. Moreover, the rate of decay of zy equals k,_» (see,
for example, Lemma 1 in [18]). Therefore, the closed-loop trajectories of the
system in Eqgs. (20) with the control laws in Eqs. (24) have the property that
limy 0 (21(8), 22(t), 23(t)) = 0 with exponentially rate of convergence. The
claim that the control law (21) is bounded follows immediately from the fact
71 (t) is bounded.

4 The Feedback Controller

The following theorem contains the main result of this paper. It shows that
the control law in Eq. (21) can also be used to make the original system in
Egs. (1) converge exponentially to the origin.

Theorem 3 Consider the system in Eqs. (1) (n > 3) and the feedback con-
troller

n—3 k
¢ Ty2 Unp—2,2
Uy = Up-2,1 Uz = — E 7 - (27)
= kT kn=3z¥

where



S

(28)

Up—-2,1 = —k Tn-21 Up—22 = — kp_o Tpn—22 — H "
n—2,1

where k > 0, ky >0, k; > k+ki 1 (1=2,3,...,n—2) and u > (k+k, 2)*/k,

kn—2

T | Tn—21Tp-22,
kn o+ k)

§=5p-21= Tp-23 — (
and x;; (i = 1,2,...,n—2,j = 1,2, ..., n — i+ 1) derived through the
recursive process described in Section 3.

Then for any nonzero initial value x1(0) # 0, this control laws is bounded
along the trajectories of the closed-loop system and has the property that
lim (2 (), z2(t), ..., 2,(t)) =0 (29)

t—00

with exponential rate of convergence.

PROOF. We assume that n > 4 since the case when n = 3 has been ad-
dressed in Theorem 2. First, recall that the recursive algorithm guarantees that
Ty =Ty = Ty = - = Tp_21, and u; = Uy = U3 = --- = Up_2;. From
Theorem 2 we have that the control law in Eq. (28) achieves limy;_, o, ©,,_2(t) =
0 for j = 1,2, 3. In addition, from the same theorem we have that the function

s
= — 30
Y1 o ( )

decays exponentially with rate greater than k, 5. From Egs. (15) we have
immediately that lim; o z,_3;(t) =0 for j =1,2,3,4.

The rest of the proof is shown by induction. To this end, let us assume that
for the (i + 1)th generated system we have that lim; o ;11,;(t) = 0, for j =
1,2,3,...,n—i, which implies that lim; , z; j(t) = 0,for j = 1,3,...,n—i+1.
It has been shown previously that, with the control law in Eq. (28), 2,22
decays exponentially with rate k,_o. Assume now that the functions z; 2,
where { = n—2—1,n—3—1,...,1, decay exponentially, each with corresponding
rate k;,. We would also like to show that lim; . z;2(t) = 0 with exponential
decay rate k;.

The differential equation for x; is given by

n—2—1
. Kive\ Tiveo I s .
Tip = —kiTip — Z ( k; ) +,_, - <kn2l> x?_l_i’ i=1,2,...,n—3 (31)

—1 Ty



From the requirement on the k; one obtains

kn_2>ki+(n—2—i)k
kn_3>ki+(n—3—i)k

ki+1 >k, +k

According to Eq. (25), lim;_, s(t) = 0 with rate greater than (k, 5+ k), thus
the functions

’ynflfi:m, 7;:1,2,...,77/—3 (32)
Ty

decay exponentially with rate greater than k;. By assumption, ;.00 (£ =
n—2—i,n—3—i,...,1) decay exponentially, each with corresponding rate
kire, and zy decays with rate k. Thus, the functions

_ Tiye2

P = —75=, l=n—2—i,n—3—1i,...,1 (33)
1

decay exponentially with rate greater than ;.

Equation (31) is thus a linear differential equation in terms of z; o perturbed
by exponentially decaying terms of rate greater than k;. Thus, we have that

Jim ;5 (t)=0 (34)
with rate of k;.

The fact that the control law is bounded follows immediately from the fact
that z; reaches the origin only asymptotically (not in finite time), and the
fact that the the functions p,(t) in Eq. (33) and ~,(¢) in Eq. (32) are bounded
along closed-loop trajectories.

Remark 4 [t is clear that for the previous procedure to work, the attraction of
the trajectories to the corresponding manifolds at each step should take place
on different times scales. This is achieved by the inequalities posed on the gains
k and k; (i =1,2,...,n—2). From the proof of Theorem 3 it should be clear
that each state x; of the original system in Eq. (1) converges exponentially to
zero, each with rate ky + (i —2) k (i = 2,3,...,n) and xy decays with rate k.
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Remark 5 The control law in Eqs. (27) will work as long as x1(0) # 0. If
initially x1(0) = 0 one can use any control law such that x1 becomes nonzero.
One possible choice is to use

U = Uyo U9 = 0 (35)

where uyg is some nonzero constant [1,7,20]. Similarly, this modification may
be necessary in practice when z1(0) is very small, in order to avoid excessive
values of the states and the control input uy. Such an approach is given in [12].

Although the control laws ensure boundedness and attractivity to the origin,
arbitrarily small values of x1(0) will result to trajectories leaving any small
neighborhood of the origin thus precluding Lyapunov stability for the closed-
loop system — a consequence similar to the controllers proposed in [1]. This
behaviour of the control law is not different than common driver experience
indicates during a parking maneuver. Often, it is necessary to drive away from
the final position, in order to get a better car posture, thus avoiding excessive
effort (manifested by driving back and forth and by turning periodically the
stirring wheel).

5 Numerical Example

We present numerical simulation to demonstrate the previous theoretical de-
velopments. We choose a 5-dimensional system in power form with initial
conditions z(0) = (0.1,1,1,1,1). The gains were chosen as k = k; = 1
ke = 3, ks = 5, and p = 37. The initial condition is close to z;(0) = 0 and
therefore we modify the control law in Eq. (27) according to the Remark 5
using up = 5 for 0.5 seconds.

Figure 1 shows the trajectories of the system. Notice that the control laws
drives the states to the origin at different time scales. This is more evident
in Fig. 2 where it is shown the logarithm of the norm of the states. The
linear slope indicates exponential rate of convergence. Moreover, notice that
the slopes of the states x3, x4 and x5 are steeper than those of x; and x5 which
decay with the same rate (k = k; = 1). The time history of the control effort
is shown in Fig. 3.

11



States

| | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time

Fig. 1. Trajectories of closed-loop system.

Logarithm of |x|2

| | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time

Fig. 2. Logarithmic plot of |z;|? vs. time.

It is a well-known fact that a system in power (or chained) form can be used
to describe the kinematics of a cart with trailers. Figure 4 shows the path of a

12



Control

-15 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time
Fig. 3. Time history of control effort.
2
Time: 10.0
15
;
0.5
> 0
-05
-1
-15 b
2 I I I I I
-3 -2 -1 0 1 2 3

Fig. 4. Path of a cart with two trailers corresponding to a 5-dimensional system in
power form.

cart with two trailers corresponding to a 5-dimensional system in power form
and the results in Fig. 1. Figure 4 makes it clear how the control prefers to
move the cart to a better position instead of trying to perform a sharp left
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turn with subsequent corrections of the final cart/trailer posture.

6 Conclusions

We use the method of invariant manifolds to construct exponentially conver-
gent, feedback control laws for n-dimensional nonholonomic systems in power
form. The construction of the proposed control laws is based on a recursive al-
gorithm which uses the invariant manifolds as new coordinates in order to con-
struct a series of generated systems in power form of reduced dimension. The
proposed controller is the one for the 3-dimensional system with proper choice
of control gains. In essence, the gains are chosen such that the states of the
new generated system converge to zero faster than the previous generated sys-
tem. Simulation results show the exponential convergence of a 5th-dimensional
system using the proposed feedback control law. Finally, because of the equiv-
alence between chained and power form systems, the control laws proposed
here can also be used for controlling nonholonomic systems in chained form.
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