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Abstract

In this paper, the complete stability domain for LTI
parameter-dependent systems is synthesized by ex-
tending existing results in the literature. This do-
main is calculated through a guardian map which
involves the determinant of the Kronecker sum of
a matrix with itself. The stability domain is syn-
thesized for both single and multi-parameter depen-
dent LTI systems. The single parameter case is eas-
ily computable, whereas the multi-parameter case is
more involved. The determinant of the bialternate
sum of a matrix with itself is also exploited to re-
duce the computational complexity of the results.

1 Introduction

In this paper, the stability of linear time invari-
ant parameter-dependent (LTIPD) systems is stud-
ied. The need to determine the bounds of the system
uncertainty to guarantee stability for the perturbed
system has been the subject of intensive research in
the past several years. Parameter-dependent Lya-
punov functions have been suggested in the litera-
ture to find such bounds [1, 2, 3]. However, the use
of Lyapunov function methods gives rise to stability
conditions that are sufficient but not necessary. Ref-
erences [4] and [5] studied quadratic δ−Hurwitz and
D−stability and gave robust stability conditions for
static uncertainty. For quadratic stability, Ref. [6]
gave necessary and sufficient conditions which are
valid even for time-varying linear systems. How-
ever, quadratic stability is, in general, more conser-

vative than robust stability [7].Saydy et al. [8, 9] de-
fined a particular guardian map and used it to study
the stability of LTIPD systems of the form

ẋ = A(ρ)x ,

A(ρ) = A0 + ρA1 + ρ2A2 + ... + ρmAm

(1)

and

ẋ = A(ρ1, ρ2)x ,

A(ρ1, ρ2) =

i1+i2=m∑
i1,i2=0

ρi1
1 ρ

i2
2 Ai1,i2 .

(2)

The guardian map in [8] is the determinant of the
Kronecker sum of a matrix with itself. Using this
guardian map, Saydy et al. gave necessary and suf-
ficient stability conditions wrt a given parameter do-
main, for the particular LTIPD systems in (1) and
(2). This method was latter extended in [10] and [7]
to LTI systems with many parameters in the form:

ẋ = A(ρ1, ρ2, . . . , ρm)x ,

A(ρ1, ρ2, . . . , ρm) = A0 +
m∑

i=1

ρiAi.
(3)

However, the stability conditions in [10] and [7] are
only sufficient. Fu and Barmish [11] gave the max-
imal stability interval around the origin for LTIPD
systems of the form (3) with m = 1 and A0 Hurwitz.

Saydy et al. [9] and Barmish [10] have also derived
stability conditions for a family of n× n parameter-
dependent matrices given by A(ρ) =

∑l
i=0 ρ

iAi.
Their result tests whether the matrix A(ρ) is robustly
stable for all ρ in a given compact interval. Refer-
ence [7] provides an interval which guarantees ro-
bust stability for single and multi-parameter depen-
dent LTI systems. However, this interval is derived



from sufficient conditions and hence it is not the
maximal robust stability interval. Fu and Barmish
[11] presented a method to synthesize the maxi-
mal stability interval containing the origin for single
parameter-dependent LTI systems.

Most of existing results (e.g., [8, 9, 10]) give neces-
sary and sufficient stability conditions for an a priori
given single or multi-parameter interval set. Further-
more, [7] provides a bounded interval set which is
only sufficient in guaranteeing the stability of LTIPD
systems. A question which arises naturally form this
research is how to find the entire stability domain for
single or multi parameter dependent systems. The
complete stability domain may be composed of one
or several pieces of connected sets.

In this paper, we extend existing results to give the
entire stability domain for single-parameter depen-
dent LTI systems. We then generalize this result to
multi-parameter dependent LTI systems. In order
to reduce the computational complexity of the de-
rived stability conditions, the guardian map which
involves the determinant of the Kronecker sum of a
matrix with itself is replaced by the determinant of
the bialternate sum of a matrix with itself. Mustafa
[12] studied the robust stability problem of LTIPD
systems using the bialternate sum of matrices. Al-
though the determinant of the bialternate sum of a
matrix A ∈ IRn×n with itself is not a guardian map,
it can be used in a similar way as the Kronecker sum
to guard Hurwitz matrices with minor changes. The
advantage of the bialternate sum is that it involves
less calculations than the Kronecker sum. Specifi-
cally, the stability test requires the computation of
the eigenvalues of the inverse of an n2 × n2 ma-
trix if the Kronecker sum is used. This reduces
to computing the eigenvalues of the inverse of an
1
2
n(n− 1)× 1

2
n(n− 1) matrix if the bialternate sum

is used.

The notation used in this paper is as follows:

⊗ ⊕ Kronecker product and sum
	 Bialternate product
λi(A) ith eigenvalue of the matrix A
In Identity matrix of dimension n× n

( also denoted I when the dimension
is clear from the context )

int(D) Interior of the set D
∂D Boundary of the set D
A Set of Hurwitz matrices A ∈ IRn×n

Ā A⊕ A, A ∈ IRn×n

Ã A 	 In + In 	 A = 2A 	 In, A ∈ IRn×n

mspec(A) Multispectrum of matrix A, i.e. the
set consisting of all the eigenvalues of
A, including repeated eigenvalues.

In Index set {1, 2, . . . , n}
I0

n Index set {0, 1, 2, . . . , n}
∪̄ Ordered union of two sets.
D# Cardinality of the set D.

2 Preliminaries

2.1 The Guardian Map

Our results rely heavily on the concept of a guardian
map for the set of Hurwitz matrices. A guardian
map transforms a matrix stability problem to a non-
singularity problem of an associated matrix. The
most common guardian map is the one that involves
the Kronecker sum of a matrix with itself. The defi-
nitions of the Kronecker product and Kronecker sum
of two matrices may be found in several standard ref-
erences (see for example [13]).

Lemma 2.1 ([14]) Let A ∈ IRn×n and B ∈ IRm×m.
Then mspec(A⊕ B) = {λi + µj : λi ∈ mspec(A),
µj ∈ mspec(B), i = 1, 2, ..., n and j = 1, 2, ...,m}.

Lemma 2.2 Given a matrix A ∈ IRn×n, define Ā :=
A⊕ A. Assume that A is Hurwitz. Then:
(i) Ā is Hurwitz
(ii) detĀ = 0

The following definition is taken from [10].

Definition 1 (Guardian Map) Let an open set S ⊆
IRn×n and ν: IRn×n → IR be a given mapping. Then
ν is said to guard the set S if ν(A) = 0 for A ∈ S



and ν(A) = 0 for A ∈ ∂S. The map ν is called a
guardian map for S.

Example 1 The Kronecker sum induces the
guardian map ν1 : IRn×n → IR

ν1(A) := det(A⊕ A) (4)

which guards the set A of Hurwitz matrices [10].

2.2 Bialternate Sum

For A,B ∈ IRn×n with elements aij and bij , the bial-
ternate product of A and B is the matrix F = A 	 B
of dimension 1

2
n(n− 1)× 1

2
n(n− 1), with elements

as follows [15, 12]:

fm̃(n,p,q),m̃(n,r,s) :=
1

2

[∣∣∣∣apr aps

bqr bqs

∣∣∣∣ +

∣∣∣∣bpr bps

aqr aqs

∣∣∣∣
]
,

where the index function m̃ is defined as:

m̃(n, i, j) := (j − 1)n + i− 1

2
j(j + 1) . (5)

According to this definition, it is clear that A 	 B =
B 	A. The bialternate sum Ã of matrix A with itself
is defined as [16, 15, 12]

Ã = A 	 In + In 	 A = 2A 	 In . (6)

If ãij denotes the i− jth element of Ã then,

ãm̃(n,p,q),m̃(n,r,s) =

∣∣∣∣apr aps

δqr δqs

∣∣∣∣ +

∣∣∣∣δpr δps

aqr aqs

∣∣∣∣ (7)

where, δij is the Kronecker delta
(
δij = 1, if i =

j, δij = 0, if i = j
)
. Clearly, if A ∈ IRn×n, then

Ã ∈ IR
1
2
n(n−1)× 1

2
n(n−1). From the definition of the

bialternate sum of a matrix with itself, one has im-
mediately that

α̃A = αÃ

˜A0 + ρAg = Ã0 + ρÃg

where A,A0, Ag ∈ IRn×n, and α, ρ ∈ IR.

Theorem 2.1 ([15]) Let A ∈ IRn×n. Then
mspec(Ã) = {λi(A) + λj(A) i = 2, 3, . . . , n, j =
1, 2, . . . , i− 1}.

The following Corollary follows immediately from
Theorem 2.1.

Corollary 2.1 Let A ∈ IRn×n be Hurwitz. Then:
(i) Ã is Hurwitz.

(ii) detÃ = 0.

Remark 1 The determinant of the bialternate sum
of a matrix with itself cannot be used as a guardian
map of A. To see this, let a matrix A ∈ IRn×n with
only one eigenvalue zero and all other eigenvalues
in the open left half complex plane. In this case,
A ∈ ∂A, but detÃ = 0. However, the map

ν2(A) = detA detÃ (8)

is a guardian map which guards the set A. First, it
is easy to see that ν2(A) = 0 if A ∈ A. Moreover,
if A ∈ ∂A, some eigenvalues of the matrix A are on
the jω-axis and all the others are in the open left half
plane of C. Let F be the set of matrices in ∂A with
at most one eigenvalue at the origin

F =
{
A ∈ ∂A : λi(A) = 0 and λj(A) = 0

for all j = i, i, j ∈ In

}
.

(9)

If A ∈ F then detA = 0 and if A ∈ ∂A \ F then
detÃ = 0. In either case, ν2(A) = 0. Hence,
ν2(A) is a guardian map for the set A according
to the Definition 1. Moreover, ν2(A) is easier to
compute than ν1(A) since the dimension of Ã is
1
2
n(n− 1)× 1

2
n(n− 1) whereas that of Ā is n2 ×n2.

2.3 Some Definitions

Definition 2 Given M ∈ IRn×n, let λ̃i(M) , i =
1, . . . , p denote the real, distinct, non-zero eigenval-
ues of M and define λ̃0(M) = 0. If p = 0, let
N (M) = (−∞,+∞), otherwise define the open in-
terval N (M) as follows:

N (M) := (− 1

max
i∈I0

p

λ̃i(M)
,− 1

min
i∈I0

p

λ̃i(M)
) (10)

where,

− 1

max
i∈I0

p

λ̃i(M)
= −∞, if max

i∈I0
p

λ̃i(M) = 0,

− 1

min
i∈I0

p

λ̃i(M)
= +∞, if min

i∈I0
p

λ̃i(M) = 0. (11)



The following Corollary is a direct consequence of
Definition 2.

Corollary 2.2 For any M ∈ IRn×n,

(i) 0 ∈ N (M)

(ii) det(I + ρM) = 0, for ρ ∈ N (M)

Definition 3 Given M ∈ IRn×n, let λ̃i(M), i =
1, . . . , p denote the real, distinct, non-zero eigenval-
ues of M . Let r0 = −∞, ri = −1/λ̃i(M), i =
1, 2, . . . , p and rp+1 = +∞ and define the or-
dered set (after, perhaps, a relabelling of the in-
dices) B(M) := {r0, r1, r2, . . . , rp, rp+1} such that
ri < ri+1.

Remark 2 From the definition of B(M), it follows
that, for r ∈ IR, det(I + rM) = 0 if and only if
r ∈ B(M).

3 Maximal Stability Domain of Single
Parameter-Dependent LTI Systems

In this section we compute the maximal stability in-
terval containing the origin for a single parameter-
dependent LTI system. Theorem 3.1 below is basi-
cally a re-statement of the result in [11]. Later this
theorem is extended so as to reduce the computa-
tions involved through the use of the bialternate sum
of matrices.

Theorem 3.1 Given an open interval Ω in IR, and
A0, Ag ∈ IRn×n, the following two statements are
equivalent:
(i) 0 ∈ Ω, and A(ρ) := A0 + ρAg is Hurwitz for all
ρ ∈ Ω
(ii) A0 is Hurwitz and 0 ∈ Ω ⊆ N (Ā−1

0 Āg)

The proof can be found in [11].

Corollary 3.1 Given A0, Ag ∈ IRn×n such that A0

is Hurwitz, let the interval N (Ā−1
0 Āg) as in Defini-

tion 2. This is the largest interval of IR containing
the origin for which the matrix A0 + ρAg is Hurwitz.

3.1 Improved Stability Condition for Single-
Parameter Dependent LTI Systems

The application of the stability condition of Theorem
3.1 is limited owing to the large number of computa-
tions required to calculate the inverse of the n2 × n2

matrix Ā0, especially when the system is of high or-
der. This limitation can be overcome by using the
guardian map of Remark 1 which involves the deter-
minant of the bialternate sum of a matrix with itself.
The resulting improved stability condition requires
the calculation of the inverses of an n × n and an
1
2
n(n − 1) × 1

2
n(n − 1) matrix. Using the map in-

duced by the bialternate sum, one can easily obtain
the following robust stability condition, which can
also be used to synthesize the maximal continuous
robust stability interval that includes the origin.

Theorem 3.2 Given an open interval Ω in IR, and
A0, Ag ∈ IRn×n, the following two statements are
equivalent:
(i) 0 ∈ Ω, and A(ρ) := A0 + ρAg is Hurwitz for all
ρ ∈ Ω
(ii) A0 is Hurwitz and 0 ∈ Ω ⊆ N (A−1

0 Ag) ∩
N (Ã−1

0 Ãg)

Corollary 3.2 Given A0, Ag ∈ IRn×n such that A0

is Hurwitz, then N (A−1
0 Ag) ∩ N (Ã−1

0 Ãg) is the
largest continuous interval of IR containing the ori-
gin for which the matrix A0 + ρAg is Hurwitz.

The following result follows immediately from
Corollary 3.1 and Corollary 3.2.

Corollary 3.3 Given A0, Ag ∈ IRn×n suppose that
A0 is Hurwitz. Then,

N (Ā−1
0 Āg) = N (A−1

0 Ag) ∩N (Ã−1
0 Ãg) (12)

4 Complete Stability Domain of Single
Parameter-Dependent LTI Systems

4.1 Stability Condition using the Kronecker
Sum

Theorems 3.1 and 3.2 give the maximal continu-
ous stability interval in IR which includes the ori-
gin. These two theorems nonetheless provide only



sufficient conditions for a single-parameter depen-
dent matrix to be Hurwitz, because in many cases
the maximal stability interval about the origin is not
the complete stability domain. Additionally, the re-
quirement that A0 is Hurwitz limits the applicability
of Theorems 3.1 and 3.2. In this section, our objec-
tive is to get the complete stability domain without
requiring A0 to be Hurwitz. This domain turns out to
be an open interval or a union of limited number of
disjointed open intervals of IR (Theorem 4.1). The
complete stability domain is given in Theorem 4.3.

Theorem 4.1 Let A0, Ag ∈ IRn×n with det(A0 ⊕
A0) = 0. If there exists a stability domain Ω ⊆ IR
such that A0+ρAg is Hurwitz for all ρ ∈ Ω, then this
domain Ω is an open interval or a union of disjointed
open intervals of IR and the number of such intervals
is finite. Furthermore, this number is no larger than
n2 + 1.

Proof. Since the eigenvalues λj

(
A0 + ρAg

)
, j =

1, 2, . . . , n vary continuously with the parameter ρ
if A0 + ρiAg is Hurwitz, for some ρi ∈ Ω, there
exists δ > 0 such that A0 + ρAg is Hurwitz for
ρ ∈ (ρi − δ, ρi + δ). Therefore, if Ω exists, it must
be a union of open intervals. Let Ω be expressed
as1 Ω =

⋃m
i=1(ρi

, ρ̄i), where ρ
i
, < ρ̄i and m is the

(perhaps infinite) number of the disjointed open in-
tervals composing Ω. Since Ω is the exact stabil-
ity region of ρ, it follows that for every ρ

i
∈ IR,

i ∈ Im, Re[λk(A0 + ρ
i
Ag)] = 0 for some k ∈ In.

Hence, by Lemma 2.1, λk′(Ā0 +ρ
i
Āg) = 0 for some

k′ ∈ In2 and hence det(Ā0 + ρ
i
Āg) = 0. Since

det(A0 ⊕ A0) = detĀ0 = 0, Ā−1
0 exists. Thus,

det(I + ρ
i
Ā−1

0 Āg) = 0 i ∈ Im (13)

Since this equation has a finite number of solutions,
m < ∞. By Definition 3 and equation (13), it
follows that ρ

i
∈ B(Ā−1

0 Āg), i = 2, 3, . . . ,m.
Similarly, one can show that for ρ̄i ∈ IR, ρ̄i ∈
B(Ā−1

0 Āg), i = 1, 2, . . . ,m − 1. Therefore, 2m ≤
(B(Ā−1

0 Āg) ∪ {−∞,+∞})# = B#(Ā−1
0 Āg). From

the definition of the set B(Ā−1
0 Āg) it is clear that

B#(Ā−1
0 Āg) ≤ n2 + 2. It follows that m ≤ (n2 + 1).

1With the possibility that ρ
1

= −∞ and ρ̄m = +∞.

Theorem 4.2 Let A0, Ag ∈ IRn×n with det(A0 ⊕
A0) = 0, and let p = B#(Ā−1

0 Āg)−2. Suppose there
exists a real number ρi ∈

(
ri, ri+1

)
, where ri, ri+1 ∈

B(Ā−1
0 Āg), i ∈ I0

p such that A0 + ρiAg is Hurwitz.
Then A0 + ρAg is Hurwitz for all ρ ∈ (

ri, ri+1

)
.

Proof. The map ν1: IRn×n → IR given by

ν1(A) = det(A⊕ A)

is a guardian map for the set A of stable n × n
matrices (see page 303 of [10]). Let A(ρ) :=
A0 +ρAg. According to the definition of B(Ā−1

0 Āg),
if ri, ri+1 ∈ B(Ā−1

0 Āg), ri, ri+1 = ±∞ then
ν1(A(ri)) = 0 and ν1(A(ri+1)) = 0. Furthermore,
ν1(A(ρ)) = 0 if ri < ρ < ri+1. Let now some
ρi ∈

(
ri, ri+1

)
such that A0 + ρiAg is Hurwitz. But

ν1(A(ρi)) = 0 since A(ρi) is Hurwitz, and since ν1

is a guardian map, it follows that A(ρ) is Hurwitz for
all ρ ∈ (ri, ri+1).

Theorem 4.3 Given A0, Ag ∈ IRn×n with det(A0 ⊕
A0) = 0 and ρ ∈ IR, let Ā0 := A0⊕A0, Āg := Ag ⊕
Ag and let p = B#(Ā−1

0 Āg)−2. Define the index set
I :=

{
i ∈ I0

p : A0 + ρiAg is Hurwitz for some

ρi ∈ (ri, ri+1), ri , ri+1 ∈ B(Ā−1
0 Āg)

}
and the

open set

Ωε :=
⋃
i∈I

(ri, ri+1) (14)

Then, A0 + ρAg is Hurwitz if and only if ρ ∈ Ωε.

Proof. To prove sufficiency, assume ρ ∈ Ωε and
let ρ ∈ (ri, ri+1) for some i ∈ I. From Theo-
rem 4.2 and the fact that A0 + ρiAg Hurwitz for
ρi ∈ (ri, ri+1), it follows that A0 + ρAg is Hur-
witz. To prove necessity, assume that A0 + ρAg is
Hurwitz. It follows that ρ /∈ B(Ā−1

0 Āg). Therefore,
there exists i ∈ I0

p such that ri < ρ < ri+1. Since
A0 + ρAg is Hurwitz, it follows that i ∈ I. Hence,
ρ ∈ (ri, ri+1) ⊆ Ωε.

Remark 3 Theorem 4.3 can be used to find the ex-
act stability domain Ωε for a parameter-dependent
matrixA(ρ) = A0+ρAg where ρ ∈ IR andA0, Ag ∈
IRn×n. The procedure involves four steps.



1. Calculate Ā0, Āg and the eigenvalues of the ma-
trix Ā−1

0 Āg.

2. Choose the real, distinct, non-zero eigenval-
ues of the matrix Ā−1

0 Āg and construct the set
B(Ā−1

0 Āg) according to Definition 3.

3. Check whether the matrix A0 + ρiAg is Hur-
witz for any ρi ∈ (ri, ri+1), i ∈ I0

p , p =

B#(Ā−1
0 Āg) − 2, and construct the index set I.

4. Let Ωε as in (14).

4.2 Stability Condition using the Bialternate
Sum

The need to do intensive numerical calculations in
order to calculate the inverse and the eigenvalues of
the n2×n2 matrix Ā0 = detA0⊕A0 limits the appli-
cability of Theorem 4.3. This limitation can be over-
come using a map induced by the bialternate sum of
a matrix with itself (see (8) and Remark 1). In this
case, it is only needed to calculate the inverse of a
matrix of dimension 1

2
n(n− 1) × 1

2
n(n− 1).

Theorem 4.4 Let A0, Ag ∈ IRn×n with det(A0 ⊕
A0) = 0. If there exists a stability domain Ω ⊆
IR such that A0 + ρAg is Hurwitz for all ρ ∈ Ω,
then this domain Ω is an open interval or a union
of disjointed open intervals of IR, and the number of
such intervals is finite. Furthermore, this number is
no greater than 1

2
(n2 + n + 2).

Proof. The proof is similar to the one for Theo-
rem 4.1 and thus, is omitted.

Remark 4 Since 1
2
(n2 +n+2) ≤ (n2 +1) Theorem

4.4 gives a better estimate for the number of stability
intervals than Theorem 4.1.

Theorem 4.5 Let A0, Ag ∈ IRn×n with det(A0 ⊕
A0) = 0, and let p = (B(Ã−1

0 Ãg)∪̄B(A0
−1Ag))# −

2. Suppose there exists a real number ρi ∈
(
ri, ri+1

)
where ri, ri+1 ∈ B(Ã−1

0 Ãg)∪̄B(A0
−1Ag), i ∈ I0

p

such that A0 + ρiAg is Hurwitz. Then A0 + ρAg

is Hurwitz for all ρ ∈ (
ri, ri+1

)
.

Proof. The proof is similar to the one of Theo-
rem 4.2 and thus, is omitted.

Theorem 4.6 Given A0, Ag ∈ IRn×n with
det(A0 ⊕ A0) = 0 and ρ ∈ IR, let p =(B(A−1

0 Ag)∪̄B(Ã−1
0 Ãg)

)# − 2. Define the index set
I :=

{
i ∈ I0

p : A0+ρiAg is Hurwitz for some ρi ∈
(ri, ri+1), ri, ri+1 ∈ B(A−1

0 Ag)∪̄B(Ã−1
0 Ãg)

}
and

the open set

Ωε :=
⋃
i∈I

(ri, ri+1) (15)

Then, A0 + ρAg is Hurwitz if and only if ρ ∈ Ωε.

Proof. The proof is similar to the one of Theo-
rem 4.3 and thus,it is omitted.

5 Generalized Stability Condition for
Multi-Parameter Dependent LTI Sys-
tems

In this section, the robust stability condition for
the following multi-parameter dependent LTI system
will be studied

ẋ = (A0 +
k∑
i

ρiAg,i)x . (16)

Reference [7] gives a stability condition for a sys-
tem of the form (16), however that condition is only
sufficient. Saydy et al. [8] used a semi-guardian
map2 to investigate robust stability for the following
two-parameter quadratically-dependent matrix over
the domain (r1, r2) ∈ [0, 1] × [0, 1]

A(ρ1, ρ2) =

i1+i2=m∑
i1,i2=0

ρi1
1 ρ

i2
2 Ai1,i2 . (17)

The stability test in [8] requires the parameter do-
main to be known a priori. Consequently, the test
checks whether the matrix is Hurwitz for all values
of the parameters in a given domain. In this section,
we extend the results of Section 4.2.

2A map ν: A → IR from the set of n × n real Hurwitz
matrices onto IR is a semi-guardian map if it is continuous, not
identically zero and A ∈ ∂A ⇒ ν(A) = 0.



Lemma 5.1 Given the vector (ρ1, ρ2, . . . , ρk)T ∈
IRk, k ≥ 2, there exists a real number r and k − 1
scalars θi ∈ [0, π], i = 2, ..., k such that

(ρ1, ρ2, . . . , ρk)T = rv(θ) (18)

where θ = (θ2, . . . , θk)T ∈ IRk−1 and

v(θ) = (cos θ2, sin θ2 cos θ3, . . . ,

sin θ2 sin θ3 · · · sin θk−1 cos θk,

sin θ2 sin θ3 · · · sin θk) ∈ IRk (19)

We now use the stability condition of Theorem 3.1,
to obtain the following stability condition for the dy-
namic system in (16).

Theorem 5.1 Given A0, Ag,i ∈ IRn×n, i = 1, . . . , k
with det(A0⊕A0) = 0, let (ρ1, ρ2, . . . , ρk)T = rv(θ)
as in Lemma 5.1. Let p = B#(Ā−1

0 Āg(θ)) − 2,
Ag(θ) :=

∑k
i=1 Ag,ivi(θ), Āg(θ) := Ag(θ) ⊕ Ag(θ),

and define the set Ωε(θ) =
⋃

i∈I(θ)(ri, ri+1), where

the index set I(θ) is given by I(θ) =
{
i ∈ I0

p : A0+
r′iAg is Hurwitz for some r′i ∈ (ri, ri+1), where
ri, ri+1 ∈ B(Ā−1

0 Āg(θ))
}

. Let

Ω′
ε :=

⋃
θ∈[0,π)k−1

{
y(θ) ∈ IRk : y(θ) = rv(θ), r ∈ Ωε(θ)

}

Then A0 +
∑k

i ρiAg,i is Hurwitz if and only if
(ρ1, ..., ρk)T ∈ Ω′

ε.

Proof. Applying Lemma 5.1, (ρ1, . . . , ρk)T ∈ IRk

can be expressed as (ρ1, . . . , ρk)T = r (v1(θ),
. . . , vk(θ))T . The system matrix in equation (16) can
then be rewritten as:

A0 +
k∑
i

ρiAg,i = A0 + r

k∑
i=1

Ag,ivi(θ)

= A0 + rAg(θ) (20)

When the angle vector θ ∈ [0, π)k−1 is given, the
system matrix in (20) is a single-parameter matrix
which dependents on r ∈ IR. Applying Theorem
4.3, the complete stability domain for r in the di-
rection θ can be calculated from Theorem 4.2 as
Ωε(θ) =

⋃
i∈I(θ)(ri, ri+1). The set defined by (20)

is the union of the exact stability domains for the pa-
rameter r for every θ ∈ IRk−1. Therefore Ω′

ε is the
exact stability domain for (ρ1, ρ2, . . . , ρk)T ∈ IRk.

Theorem 5.2 Given A0, Ag,i ∈ IRn×n,
i = 1, . . . , k with det(A0 ⊕ A0) = 0, let
(ρ1, ρ2, . . . , ρk)T = rv(θ) as in Lemma 5.1.

Let p =
(B(A−1

0 Ag(θ))∪̄B(Ã−1
0 Ãg(θ))

)# − 2,

Ag(θ) :=
∑k

i=1 Ag,ivi(θ), Ãg(θ) := 2Ag(θ)	In, and
define the open set Ωε(θ) =

⋃
i∈I(θ)(ri, ri+1) where

the index set I(θ) is given by I(θ) =
{
i ∈ I0

p : A0+
r′iAg is Hurwitz for some r′i ∈ (ri, ri+1), where
ri, ri+1 ∈ B(A−1

0 Ag(θ))∪̄B(Ã−1
0 Ãg(θ))

}
. Let

Ω′
ε :=

⋃
θ∈[0,π)k−1

{
y(θ) ∈ IRk : y(θ) = rv(θ),

r ∈ Ωε(θ)
}

(21)

Then A0 +
∑k

i ρiAg,i is Hurwitz if and only if
(ρ1, ..., ρk)T ∈ Ω′

ε.

Proof. The proof is similar to the one of Theo-
rem 5.1 and thus, it is omitted.

Theorems 5.1 and 5.2 give the complete stabil-
ity domain for multi parameter-dependent matrices.
Moreover, these two results do not require that the
matrix A0 is Hurwitz. The drawback of the approach
is that the calculation of Ω′

ε requires – in general –
gridding of the space [0, π)k−1.

6 Numerical Examples

6.1 Single-Parameter Case

In the following examples, the stability domain for
the matrix A(ρ) = A0 + ρAg, with A0 , Ag ∈
IRn×n , ρ ∈ IR, will be calculated by means of The-
orems 3.1 and 3.2.

Example 2 Consider the system matrix A(ρ) =
A0 + ρAg with

A0 =

[−1 0
0 −1

]
, Ag =

[
0 1
0 0

]
.

Since the matrix A(ρ) is upper triangular, the
eigenvalues of A(ρ) are always {−1,−1}. Hence,
the largest stability domain for this example is
(−∞,+∞). From Theorem 3.1, we calculate

Ā−1
0 Āg =



0 −0.5 −0.5 0
0 0 0 −0.5
0 0 0 −0.5
0 0 0 0


 ,



and mspec(Ā−1
0 Āg) = {0, 0, 0, 0}. The largest con-

tinuous interval of ρ which includes 0 and guaran-
tees stability for the matrixA(ρ) is (−∞,+∞). This
agrees with the eigenvalue analysis. Using Theorem
3.2, we have Ã0 = −2, Ãg = 0, Ã−1

0 Ãg = 0 and

N (Ã−1
0 Ãg) = N (0) = (−∞, +∞)

N (A−1
0 Ag) = N

( [
0 −1
0 0

] )
= (−∞, +∞) .

The stability domain is N (Ã−1
0 Ãg) ∩N (A−1

0 Ag) =
(−∞,+∞), which coincides with the result from
Theorem 3.1 and the direct eigenvalue analysis.

Example 3 Consider the matrix A(ρ) = A0 + ρAg,
where

A0 =

[−2 0
0 −1

]
, Ag =

[
1 0
0 −1

]
.

Direct eigenvalue analysis of A(ρ) gives λ1 = −2+
ρ, λ2 = −1 − ρ. Using Theorem 3.1,

Ā−1
0 Āg =



−0.5 0 0 0

0 0 0 0
0 0 0 0
0 0 0 1


 ,

and mspec(Ā−1
0 Āg) = {−0.5, 0, 0, 1}. The largest

continuous interval of ρ which includes 0 that guar-
antees stability forA(ρ) is (−1, 2) which agrees with
the eigenvalue analysis. Using Theorem 3.2, one ob-
tains Ã0 = −3, Ãg = 0, Ã−1

0 Ãg = 0 and

N (Ã−1
0 Ãg) = N (0) = (−∞, +∞)

N
(
A−1

0 Ag

)
= N

( [− 1
2

0
0 1

] )
= (−1, +2) .

The stability domain is N (Ã−1
0 Ãg) ∩N (A−1

0 Ag) =
(−∞,+∞) ∩ (−1,+2) = (−1,+2), which coin-
cides with the result of Theorem 3.1 and the direct
eigenvalue analysis.

Example 4 Consider the matrix A(ρ) = A0 + ρAg,
where

A0 =



−10.64 3.395 8.841 4.558 −10.25
−11.28 −0.1536 14.67 9.852 −13.53
0.7320 3.811 −0.6074 2.408 −10.44
−12.14 4.938 9.649 1.152 −6.297
−11.66 6.451 11.70 9.453 −17.28


 (22)

Ag =



−110.9 −247.0 162.4 −57.61 194.2
241.82 731.3 −446.6 87.68 −511.8
366.8 987.5 −617.4 181.9 −777.1
385.3 1118.5 −666.7 137.4 −809.4
100.8 237.1 −142.4 57.89 −234.3


 (23)

Theorems 3.1 and 3.2 give the maximal sta-
bility interval around the origin which is
(−0.04632, 0.00241). Theorems 4.3 and
4.6 give the exact stability domain, which is
(−0.04632, 0.00241) ∪ (4.2279,+∞).

6.2 Multi-Parameter Case

Example 5 This example is from [7]. Consider the
matrix A(ρ) = A0 + ρ1A1 + ρ2A2, where

A(ρ) =


−2 0 −1

0 −3 0
−1 −1 −4


 + ρ1


1 0 1

0 0 0
1 0 1


 + ρ2


0 0 0
0 1 0
0 1 0


 (24)

The exact robust stability region for this problem
is (−∞, 1.75) × (−∞, 3) (see [7]). Theorem 5.1 or
Theorem 5.2, give the exact stability domain as seen
in Fig. 1. The same figure shows the exact stability
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Figure 1: Robust Stability Domain for Example 5.

region along a particular direction (θ = 80◦) which,
for this case is (ρ1 ρ2)

T ∈ {
ρ = r v(θ) : r ∈

(−∞, 3.0463), v(θ) = (cos 80◦ sin 80◦)T
}

.

Example 6 Consider the matrix A(ρ) = A0 +
ρ1A1 + ρ2A2, where

A0 =


−2 0 −1

0 −3 0
−1 −1 −4


 , A1 =


 0.9802 −0.003377 −0.3599

0.5777 −0.5721 0.9202
−0.1227 0.2870 0.4533


 ,

A2 =


−0.2641 −0.1802 −0.8623

0.7337 1.300 1.018
−0.6962 0.5500 0.3864


 .

Both Theorem 5.1 and Theorem 5.2 give the same
stability domain for the matrix A(ρ), shown in
Fig. 2.

Example 7 Consider the matrix A(ρ) = A0 +
ρ1A1 + ρ2A2, where

A0 =


−2 0 −1

0 −3 0
−1 −1 −4


 , A1 =


 0.916 −0.8119 −0.2168
−0.6863 −0.1001 −0.4944
−0.1673 0.7383 −0.2912




A2 =


 1.215 1.664 −2.209

0.7542 −0.1501 0.2109
2.199 0.6493 −0.2214


 (25)
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Figure 2: Robust Stability Domain for Example 6.
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Figure 3: Robust Stability Domain for Example 7.

Both Theorem 5.1 and Theorem 5.2 give the same
stability domain for matrix A(ρ), shown in Fig. 3.

Example 8 Consider the matrix A(ρ) = A0 +
ρ1A1 + ρ2A2, where

A0 =




62.56 −121.3 −217.7 −111.9 309.7e + 002
−64.81 123.1 214.78 115.4 −319.4
−7.619 19.04 25.23 21.651 −52.04
4.331 1.904 −9.364 −3.873 1.884
−44.28 91.39 150.5 85.74 −235.0




A1 =



−0.1340 0.1139 0.2959 0.03392 0.2288
0.1747 −0.2621 0.1509 0.2436 0.2165
0.1528 0.2313 −0.06069 0.2725 0.1955
0.02228 0.09418 0.2484 −0.2981 0.2262
0.05797 0.1914 0.2753 0.03664 −0.1461




A2 =



−5.940 −21.24 23.81 11.25 −6.985
−8.853 −35.44 24.58 22.03 0.9802
−10.05 −21.45 20.03 13.64 −4.311
0.7771 −24.14 15.17 9.370 1.589
2.207 −14.16 13.15 3.868 −8.994




(26)

Both Theorems 5.1 and 5.2 give the same stabil-
ity domain for the matrix A(ρ) shown Fig. 4. In
this case, the two-dimensional parameter stability
space is composed of two disconnected sets. The
area close the origin is zoomed in and is depicted in
Fig. 4(b).
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Figure 4: Robust stability domain for Example 8.

7 Conclusions

In this paper we address the problem of stabil-
ity for Linear Time Invariant Parameter Dependent
(LTIPD) systems. We extend previous results in the
literature and derive conditions that can be used to
compute the exact stability region in the parameters
space. Our methodology makes use of the guardian
maps induced by the Kronecker and the bialternate
sum of a matrix with itself. Although both these
maps can be used with the same results, the latter
has the benefit of reduced computations.
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