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ABSTRACT

We address the problem of H,, gain-scheduling of a magnetic bearing/rotor system with
the speed of the rotor being the scheduling parameter. The rotor exhibits significant
gyroscopics. As a result, the plant dynamics change with the rotor speed. Recent results
in the theory of LPV systems can be used to design robust, gain-scheduled controllers
for such a system. As opposed to traditional gain-scheduling, LPV controllers offer
guarantees of stability and performance over the whole range of the rotor speed. However,
these control laws can be overly conservative since they ensure stability for arbitrarily
fast variations in the scheduling parameter. In this paper we refine these LPV controllers
in order to obtain better bounds on the achievable performance in the presence of a priori
known bounds of the variation of the rotor speed.

INTRODUCTION

Magnetic bearings are becoming increasingly popular for use in high-speed, high-temperature,
low-friction applications. Typical cases where the use of magnetic bearings offer signit-
icant advantages over traditional bearings are turbomachinery, machining spindles, fuel
pumps, etc. More recently, magnetic bearings have been proposed for use in flywheel
systems, either for energy or momentum storage devices (or both). Flywheels typically
involve a (heavy) rotor operating at very high speeds. These applications differ from
more traditional ones mentioned earlier, because significant gyroscopics change the sys-
tem dynamics. In addition, the speed of the rotor may vary as demand for energy (or
angular momentum) is increased or decreased. This fact makes the design of magnetic
bearing controllers for these systems a demanding task. One way to address this problem
is to design a series of controllers for each operating speed and then interpolate between
these controllers (Matsumura et al. 1996). It is well known, however, that this approach
does not provide any guarantees for stability and performance (Shamma and Athans

1991).
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Recently, the methodology of gain-scheduled (or self-scheduled) H., control theory
for Linear, Parameter Varying (LPV) systems has been proposed to address this problem
(Becker et al. 1993, Apkarian et al. 1995, Apkarian and Gahinet 1995). This framework is
natural for rotor systems, where the plant dynamicsis a linear function of the rotor speed.
One can therefore use standard results from LPV theory in order to design a controller
scheduled on the rotor speed. Reference (Tsiotras and Mason 1996) has used the LPV
approach to obtain controllers that achieve disturbance rejection and automatic balanc-
ing over the whole operating interval of the rotor speeds. Similar controllers were also
proposed in (Sivrioglu and Nonami 1996) and were compared to classical PID controllers.
The gain-scheduled control design in these references can be, however, potentially very
conservative since it guards against arbitrarily fast variations of the rotor speed.

In order to reduce conservatism, we propose a modification of the previous control
design, which takes explicitly into consideration the (a priori known) bounds on the rate
of variation of the rotor speed for a magnetic bearing/rotor system. The theory used in
this paper has been previously developed in (Wu et al. 1995) and (Apkarian and Adams
1997). One of the appealing characteristics of the proposed methodology is that the
control design can be reduced to a finite number of Linear Matrix Inequalities (LMIs).
Numerical methods, based on interior point algorithms, can then be used to solve these
inequalities very efficiently.

MAGNETIC BEARING/ROTOR SYSTEM

We consider the rotor/magnetic bearing system shown in Fig. 1. Two pairs of active
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Figure 1: Magnetic bearing/rotor system.

magnetic bearings support the rotor at points A and B. A power amplifier provides the
currents at the coils to control the bearings in the x and y directions independently. Eddy
current sensors located at points A’ and B’ measure the gaps at these locations. The
signals from these sensors are fed to the controller. (Figure 1 shows only the bearings and
the sensors in the y-direction.) The controller generates the necessary voltage signals for



driving the power amplifier. The performance objective of the controller is to asymptot-
ically stabilize the system over the whole range of speeds and to minimize an error signal
representing a (weighted) sum of the forces at the bearings, the gap displacement at the
bearing locations and the control input used. The rotor, which is assumed to operate
between 0 and 48,000 rpm, exhibits significant gyroscopics. The first three critical speeds
occur at 8,000, 14,000 and 26,000 rpm. In this work, only the first bending mode will
be retained in the model. More accurate models should include additional modes. For
illustrating the proposed approach, however, keeping only one mode is sufficient.

Under the previous assumptions, the rotor/magnetic bearing system in Fig. 1 can be
appropriately described by a linear, parameter-varying system in the form

& = A(p)r + Biw + Byu (la)
zZ = Cll' + an + D12u (1b)
y = (Char+ Dyw (lc)

where # € IR" is the state of the system, u € R™ is the input (voltage to the power
amplifiers) and y € IR is the measured output (voltage from the sensors). The input
w € IR™ is an exogenous disturbance. In this work it is assumed that w represents finite
energy signals acting at the rotor location (point C in Fig. 1) plus sensor noise. The
performance output z € IR”* includes all the signals we want to retain small (here forces
at the bearings, gap displacements at the bearings and control effort). Note that the state
matrix A(p) depends linearly on the rotor speed p by A = Ag + pA;. All other system
matrices are assumed to be constant. Also, without loss of generality it is assumed that
the matrices Dy5 and Dy have full column and full row rank, respectively.

SELF-SCHEDULED H,, CONTROL OF LPV SYSTEMS

Consider a general LPV system of the form

@ = A(p(t))r + B(p(t))u (2a)
y = C(p(t))x + D(p(t))u (2b)

whose system matrices are fixed affine functions of some time-varying parameter vector
p(t) € P, a given polytope. A useful indication of performance for LPV systems is the
notion of quadratic H., performance (Apkarian et al. 1995).

Definition 1 (Quadratic H., performance.) The LPV system in Eqs. (2) is said to
have quadratic Hy, performance v if there exists a positive definite matrix X > 0 which
satisfies the following linear matrix inequality (LMI)

AT(p)X + XA(p) XB(p) CT(p)
BT (p)X —yI  D(p) | <0 (3)
C(p) D(p) =1

for all values of the parameter vector p € P.



Quadratic ‘H,, performance guarantees global asymptotic stability and L£s-gain of the
map from u to y less than ~

19ll2 < ~llulls (4)

for all possible parameter trajectories p(t) € P. Therefore, quadratic H., performance
establishes internal stability and robust performance in the sense of inequality (4).

It is important to note at this point that the condition in Eq. (3) is independent of
the rate of change of the parameter p. In fact, condition (3) guarantees stability and
performance in the presence of arbitrarily fast changes of the parameter p. That is,
although quadratic performance is a very strong property, it can be at the same time
very conservative since, due to physical considerations (e.g., maximum torque output of
the motor), it is known that the rotor speed cannot vary arbitrarily fast. One is therefore
naturally led to the investigation of controllers which will take into account any a prior:
bounds on the rate of variation of the rotor speed in order to reduce conservatism.

To this end, consider the output feedback synthesis problem for the system (1). That
is, we seek an output feedback controller with state-space realization

g = Ar(p,p)er + Br(p,p)y (5a)
u = Cx(p,p)zx + Dir(p,p)y (5b)

which ensures internal stability and minimal £,-gain bound v for the closed-loop system
(1)-(5) from the disturbance input w to the performance output z. Note that we allow
for the controller to depend not only on the rotor speed but also on its derivative. Both
of them are assumed to be measurable on-line (using, say, a tachometer). Moreover, it
is assumed that both the bounds of p, as well as of p are known

Pmin S p S Pmax, T'min S p S Tmax (6)

Pairs (p, p) satisfying these inequalities will be henceforth called admissible pairs.

The following result, due to (Apkarian and Adams 1997), gives computable condi-
tions for a solution to the previous problem. Suppose there exist parameter-dependent
matrices X(p) and Y(p) such that for all admissible pairs (p,p) the following Linear
Matrix Inequalities (LMI’s) are satisfied

X+ XA+ ATX XB, | COF
T BT X —~1 | DT, ) <0 (7)
Cl DH ‘—"}/]
Y+ ATY 1+ AY YCT | B
Ny o) Y —11 D1 My 10) (8)
0 |1 ! i u 0 |1
B Dy, ‘_7]

(1)

where N'x and Ay are any bases of the null spaces of [Cy Dy] and [BI DL, respec-
tively. Then, there exists a gain-scheduled output feedback controller (5) such that the



corresponding closed-loop system is internally stable and the map from w to z is bounded
above by ~ for all admissible pairs (p, p).

Two observations can be made at this point concerning the system of inequalities
(7)-(9). First, for fixed (p, p) this is a convex optimization problem in terms of X (p) and
Y(p), and 4. This is a highly desirable property because it ensures a unique solution,
if one exists. On the other hand (7)-(9) constitute an infinite dimensional system of
inequalities in the (p,p) space. Hence, it is not at all obvious how one would go about
solving this problem in practice. We will return to this issue later on. The second
observation has to do with the fact that the previous inequalities merely guarantee the
existence of a controller, but they do not actually give any information how to compute
one. Moreover, if one such controller exists, it will necessarily be of the same order as
the order of the plant.

CONTROLLER CONSTRUCTION

Assume that the inequalities (7)-(9) are satisfied for two parameter-dependent matrices
X(p) and Y (p) and some performance level 5. Then a gain-scheduled controller can be
constructed for any admissible pair (p, p) by the following scheme:

e compute a matrix Dy which solves
O-maac(Dll —I' D12DkD21) < “ (10)

and set Dy = D11 + D12DyDay. (For instance, in case 0y,4.(D11) < 7, simply let
Dk =0 and Dc[ == Dll-)

e compute matrices By and ¢, by solving the following linear matrix equations

0 D21 0 AT CQ

DL —y1 DI lBk ] _ BTX (11)
0 Dy —I|L 7 Cy 4 D1y DyCy

0 DL, 0 é BT

Dy —~yI Dy l F ] = — 1Y (12)
0 DI —~I BT + DI, DI BT

e compute the matrix

o1 D ] [ BY + D4 DT B

Ak =| XB ‘|‘BkD21 Cf+CngD?2 ] [ o — 01Y‘|‘D120k

(13)
e solve for full rank matrices N and M from

I— XY =NM"T (14)



e compute the controller matrices Ay, By, C) from the equations

A = NYXY + NMT + Ay — (A + ByDyCy)T — X(A — ByDy(h)Y

—BLCYY — XB,Cy )M T (15)
B, = N~ Y(B,—XB,Dy) (16)
Cr = (Cp— DyCY)YM™T (17)

Equation (13) shows clearly that, in general, the controller depends on the rate of
change p through the term XY + NMT. Thus, its implementation requires on-line
measurements not only of p but also of p. It has to be pointed out here that the previous
algorithm is not the only possible one. An alternative controller construction (based on
a fixed controller structure assumption, thus more conservative) is reported in (Apkarian

and Adams 1997).

CONTROLLER COMPUTATION

As mentioned previously, inequalities (7)-(9) consist of a convex, but infinite-dimensional
optimization problem in terms of the unknowns X(p), Y(p) and v and the parameters
p and p. One obvious (but computationally expensive) way to solve this problem is to
simply grid the parameter space in terms of p and solve the simultaneously system of
inequalities. The inequalities (7)-(9) then reduce to the solution of a finite-dimensional
optimization problem, parameterized by p and p. For dense enough grid, this procedure
will provide a close to optimal, non-conservative solution to these inequalities. This
approach has the drawback, however, that it does not provide a natural way of scheduling
for X and Y. The second approach, used here, is to postulate a fixed parameter structure
for the unknown matrices X and Y. Letting, for example,

X(p) = Xo+pXe,  Y(p)=Yo+p¥i (18)

equations (7)-(9) become a series of LMIs with linear dependence on p and linear and
quadratic dependence on p.

If p and p appeared in these inequalities in an affine way (actually p does) then
one only need to check these matrix inequalities at the vertices of the polytope defined
by P = [Prmins Pmaz] X [Fmins T'maz) 10 the (p, p) space. In order to address the non-affine
(quadratic) dependence on the parameter p, one can impose a multiconvexity requirement
on (7)-(8) as in (Apkarian and Adams 1997). This approach amounts essentially to
overbounding the inequalities (7) and (8) by inequalities affine in p by imposing one
additional constraint. The details of this idea can be found in (Gahinet et al. 1996). The
advantage of this approach lies in the fact that one needs to solve the inequalities only
at the vertices of the polytope P.

Under the previous assumptions, the optimization problem (7)-(9) can be replaced
(indeed with some conservatism) with the following one: Find fized matrices Xg, X1, Yo
and Y; and positive scalars e, and e, such that the following inequalities are satisfied at



the vertices of the polytope P.

pX1 4+ XoAp + AOTXO T
./VT l p( Xy Ao + A0TX1 + XoA: + AlTXo) + presl (Xo+pX)Br | €4 G 0
X BY (Xo + pXy) -1 DY, X s
Cl DH ‘ —"}/]
(19)
—pY1+ Ag Yo + AoYy ver | g
./VT p(AoTY1 + Yi Ao + AlTYo + YoAy) + pPe, I ! ! i 0 50
v Y oI | Dy |[Nr <0 (20)
B o, [
Xo + pXy 1
>0 21
( I Yotk ) = ()
XA +ATX e, 0 >0, A +YAT 4¢,1>0 (22)

where the matrices A’y and Ay are as in (7) and (8).

This formulation, based on the parameterization (18), also provides one with an ad
hoc procedure to remedy the problem of the controller dependence on the parameter rate
p. Referring to (15), one can, for example, remove the dependence of the controller on
p by choosing either X; = 0 or Y7 = 0 in (19)-(22). Note also that by setting both
X7 = Y] = 0 one recovers the result of quadratic H,, performance of Definition 1.

MAGNETIC BEARING/ROTOR SIMULATIONS

In this section we apply the previous results to the magnetic bearing/rotor system in
Fig 1. For simplicity, only the first bending mode will be retained in the model, in which
case (1) represents an 12-dimensional realization of the system. Since the performance
output z does not depend on the exogenous input w, we have that Dy; = 0, thus we
chose Dy = Dy, = 0. In this case, the equations (11)-(13) simplify to (recall that Dgy
and Dy are assumed to be full row and full column matrices, respectively)

Bl = —(DnD})™(7Ch + DBl X) (23a)
Cy = —(DiyDi) (v By + DL,GhY) (23b)
X . BT (T R

Ak == —(XBl + BkDQI)Tl — 71(01Y + Dlgck) (23C)

and the controller can be computed by
Ay = NYXY 4+ NMT 4+ A, — AT — XAY — By(hY — XBy,Cu) M7 (24a)

B, = N7'B, (24D)
¢, = CoMT (24c)



where the matrices N and M are as in (14). We point out that any factorization of (14)
will do for this purpose, and the obvious solution is to choose N = [ and M = (I — XY)T
oo M =1 and N =1 — XY. In general, a numerically stable (but computationally
expensive) approach is to calculate N and M using a singular value decomposition of the
matrix (I — XY)™'. An efficient algorithm (also used in this work) to avoid the inversion
of the matrix I — XY on line is to compute this inverse using the formula

l)f( 3]/]_1:[(1—;{1/)—1 :] (25)

where the previous inverse is computed by

X I
Y

]_1 =T(I+pAN)tTT (26)

where A is diagonal and 7' is a (parameter independent) transformation which satisfies

X 1. 10 X0,
Tl]YOT_O] and T 0Y1T_A (27)

Since p € [—1,1], such a transformation always exists (Apkarian and Adams 1997).

Four different cases were investigated and compared. The calculations were per-
formed using the LMI toolbox of MATLAB (Gahinet et al. 1995). The results are
tabulated in Table 1. In the first case, a parameter-varying controller was designed
ignoring any bounds on the rate of variation of p. This controller corresponds to setting
Xy = Y1 =0 in equations (19)-(22) and guarantees arbitrarily fast changes of p (it can
actually handle the completely unrealistic case p = o0). The second and third cases
correspond to a parameter varying controller using only speed measurements. A known
bound of 2,000 rpm per 30 sec was assumed for p. This controller was obtained by
setting either X7 = 0 (second case) or Y7 = 0 (third case). Finally, a controller with both
X1 # 0 and Y] # 0 was designed.

The resulting values of v show the improvement in the performance using the parameter-
dependent controller based on parameter-dependent solutions of the associated LMI’s.

Table 1: Controller performance.

X(p) | Y(p) v
X, =0|Y, =0 | 24353
X, =0 Y; £0 | 2.4090
X, £0| Y, =0 | 2.1857
X, £0 | Y, £0 | 2.1698

As expected, the case with X; # 0 and Y; # 0 gives the best performance with
an overall improvement of about 11% over the standard quadratic H,., gain-scheduled
controller (case #1). The practical controller (i.e., one without measurement of p) of
case #3 has comparable performance to the one in case #4. For this particular example



it appears that the case Y; # 0 is better than the case Xy # 0. However, this is depends
on the problem at hand. In general, both cases need to be examined for the one which
gives the best answer.

The values of v in Table 1 indicate only guaranteed upper bounds of the actual per-
formance level. In order to compare the actual achieved performance at each speed,
we calculated the corresponding controllers from (23)-(24) and computed the H., norm
of the corresponding closed-loop systems at several speeds. For comparison, we also
computed the standard (fixed-speed) H, controllers at these same speeds. The corre-
sponding values of v fo theses fixed-speed H., controllers indicate the best achievable
performance at that particular speed and thus provide a measure of the degree of conser-
vatism introduced by the parameter-varying gain-scheduled controllers. The results for
all the cases are shown in Fig. 2.
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Figure 2: Performance vs. operating speed.

Figure 2 shows that the performance of the fixed-speed H., controller varies sig-
nificantly with the rotor speed. The H,, controller performance degrades as the speed
increases, i.e., as the gyroscopic effects become dominant. We postulate that his degra-
dation in performance will be more profound for the real system, as higher flexible modes
will be excited as the speed is increased. In fact, the H,, controller offers some advan-
tage only at low speeds (less than 3,500 rad/sec). On the other hand, gain-scheduled
controllers show a relatively uniform performance over all speeds. The performance at
high speeds in essentially the same as the H, controller (the “best” achievable at that
speed). This observation is very encouraging for the use of gain-scheduled controllers for
systems with strong gyroscopic effects. Moreover, Fig. 2 shows that allowing X to be
dependent on p offers minimal improvement in performance.

CONCLUSIONS

We have presented a methodology to refine existing LPV-based gain-scheduled controller
synthesis results for a magnetic bearing/rotor system. The proposed approach is based



on parameter-dependent solutions of the linear matrix inequalities of the associated opti-
mization problem along the lines of (Apkarian and Adams 1997). Numerical simulations
indicate that significant improvement in the achievable performance can be achieved us-
ing parameter-dependent solutions of the associated Linear Matrix Inequalities (LMI’s).
In fact, he performance at high speeds is essentially the same as the corresponding fixed-
speed H,, controller. Future research will concentrate on experimentally validating these
results at the Center of Magnetic Bearings at the University of Virginia.
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