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1. LPV TIME-DELAY SYSTEMS

Several linear time-delayed systems depend on param-
eters whose values are not known a priori, but they can
be measured or estimated on-line. Assuming that the
parameters enter the system dynamics without delay,
an LPV time-delayed system has the form

ẋ(t) = A(γ(t))x(t)+Ad(γ(t))x(t� τ) (1)

In (1) τ is a constant, unknown delay with τ2 [0; τ̄] and
γ is a system parameter that it is assumed to belong to
a known polytope Γ. Often, it is also assumed that the
rate of γ is known to belong to a polytope, Γ r. The
scope of this paper is to derive conditions that will
guarantee stability for (1) for all (γ; γ̇) 2 Γ�Γr, and
all τ 2 [0; τ̄]. In this paper the discussion is restricted
to scalar parameters, thus Γ and Γr are closed intervals
of the real line. The results can be generalized to the
case when γ is a vector, but the computations become
more cumbersome.

In this paper stability conditions are derived only for
the case when τ 2 [0;∞). This case is referred to in the
literature as delay-independent stability, since stability
is ensured for any amount of delay. If the stability
conditions hold for τ 2 [0; τ̄] with τ̄ < ∞ then the
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stability is delay-dependent (Niculescu et al., 1997a).
Delay-dependent stability conditions for LPV time-
delayed systems are given in (Zhang and Tsiotras,
2000). Other results on LPV time-delayed systems
have been presented in (Wu and Grigoriadis, 1997).

In the proofs Lyapunov methods are used to determine
stability. It is therefore needed to characterize the
positive definite functionals for Linear Time Varying,
time-delayed systems.

1.1 Positive definite functionals

Linear Parameter Varying systems can be considered
as a special class of Linear Time-Varying (LTV) sys-
tems. The proofs of stability for LTV (time-delayed)
systems hinge on the following well-known facts that
are repeated here for completeness. These results
can be found, for example, in (Verriest, 1994; Kol-
manovskii and Myshkis, 1992).

Let Cτ denote the set of continuous functions defined
over the interval [�τ;0] and let V : IR+�Cτ ! IR+ be
a continuous functional such that V (t;0) = 0. Let also
Ω denote the class of scalar nondecreasing continuous
functions α such that α(r) > 0 for r > 0 and α(0) =
0. The functional V (t;ψ) is called positive definite
(negative definite) if there exist a function α 2 Ω
such that V (t;ψ)� α(jψ(0)j) (respectively, V (t;ψ)�



�α(jψ(0)j)) for all t 2 IR and ψ 2 Cτ. It is said
to have an infinitesimal upper bound if jV (t;ψ)j �
α(supt jψ(t)j). The following fact provides the main
tool used to show (global) asymptotic stability in this
paper.

Theorem 1.1. ((Verriest, 1994; Niculescu et al., 1997a)).
Given some τ > 0, assume that there exist a positive
definite continuous functional V : IR+ � Cτ ! IR+,
with infinitesimal upper bound whose derivative V̇ is
a negative definite functional. Then the trivial solution
of the LTV, time-delayed system ẋ(t) = A(t)x(t) +
Ad(t)x(t � τ) is (globally) uniformly asymptotically
stable.

The following lemma is useful for recognizing posi-
tive definite functionals, as the ones used in this paper.
In the following, xt denotes the function with domain
[�τ;0] that coincides with x on the interval [t � τ; t],
i.e., xt : [�τ;0]! IRn such that xt(θ) = x(t + θ) for
θ 2 [�τ;0].

Lemma 1.1. Let Γ be a compact interval of the real
line. Consider the continuous functional V : IR+ �
Cτ ! IR+ defined by

V (t;xt) = xT (t)P(γ(t))x(t)

+

Z 0

�τ
xT (t +θ)Q(γ(t;θ))x(t +θ) dθ

where γ(t)2 Γ for all t � 0 and P(γ)> 0 and Q(γ)> 0
for all γ 2 Γ. Then V is a positive definite functional
with an infinitesimal upper bound.

Proof. Let xt(θ) = x(t+θ), then xt 2 Cτ for all t � 0.
For each γ2Γ we have that V (t;x)� λmin[P(γ)]jx(t)j2.
Let c1 = minγ λmin[P(γ)]> 0. This always exists since
Γ is compact. Therefore, V (t;xt)� c1jxt(0)j2 and V is
positive definite with α(r) = c1r. To show that V has
an infinitesimal upper bound, notice that

V (t;xt) = xT
t (0)P(γ(t))xt(0)

+

Z 0

�τ
xT

t (θ)Q(γ(t;θ))xt (θ)dθ

�max
γ

λmax[P(γ)] jxt (0)j2

+max
θ
jxt(θ)j2

Z 0

�τ
λmax[Q(γ(t;θ)]dθ

� c2 max
θ
jxt(θ)j2

where c2 = maxγ λmax[P(γ)]+ τ maxγ λmax[Q(γ)]> 0.

2. DELAY-INDEPENDENT STABILITY

The first four results in the paper deal with systems
having a specific polynomial dependence on the pa-
rameter γ. In the following, the dependence on t has
been suppressed for notational simplicity.

Theorem 2.1. Consider the LPV time-delayed system
(1) and assume that A(γ) = A0 + γA1 + γ2A2 and

Ad(γ) = Ad0 + γAd1 where γ 2 Γ, with Γ any compact
sub-interval of IR. If there exist constant, positive-
definite matrices P and Q such that

M1 =

2
4 AT

0 P+PA0 +Q PAd0 PA1

AT
d0P �Q AT

d1P
AT

1 P PAd1 AT
2 P+PA2

3
5< 0

then system (1) is asymptotically stable for any value
of parameter γ 2 Γ and for any τ 2 [0;∞).

Proof. Consider the following Lyapunov-Krasovskii
functional

V (t;x) = xT (t)Px(t)+
Z 0

�τ
xT (t +θ)Qx(t +θ) dθ

Clearly, by Lemma 1.1 V is positive definite and has
an infinitesimal upper bound. The derivative of V
along the trajectories of (1) is

V̇ (t) = 2xT (t)P(A0 + γA1 + γ2A2)x(t)+ xT (t)Qx(t)

+2xT (t)P(Ad0 + γAd1)x(t� τ)
�xT (t� τ)Qx(t� τ)

The last equation can be written as

V̇ (t) =

"
x(t)

x(t� τ)
γx(t)

#T

M1

"
x(t)

x(t� τ)
γx(t)

#
< 0 (2)

Since Γ is compact the previous inequality holds uni-
formly for all γ 2 Γ. Hence V̇ is negative definite and
from Theorem 1.1 the system (1) is asymptotically
stable (Kolmanovskii and Myshkis, 1992).

In Theorem 2.1 the set Γ can be arbitrarily large.
Hence, the conditions of the theorem guarantee that
system (1) is stable for any (bounded) values of the
parameter γ 2 IR. It requires, however, that AT

2 P +
PA2 < 0, and AT

0 P +PA0 +Q < 0, i.e., the matrices
A0 and A2 must be Hurwitz. This condition induces
unnecessary conservatism. Assuming that the param-
eter γ is known to belong to a compact interval, the
conditions for delay-independent stability for (1) can
be relaxed. The following two lemmas will be helpful
in the sequel.

Lemma 2.1. Consider the following parameter depen-
dent matrix F(γ) = γ2F2 + γF1 +F0 where γ 2 [γ;γ]. If
F2 � 0, then F(γ) is a convex, matrix-valued function,
that is,

λF(γ1)+(1�λ)F(γ2)� F(λγ1 +(1�λ)γ2) (3)

for all γ1;γ2 2 [γ;γ] and any scalar 0 � λ � 1. If
F2 > 0 then F(γ) is a strictly convex, matrix-valued
function, i.e., (3) is satisfied with strict inequality for
all 0 < λ < 1. Moreover, if F2 � 0 and F(γ#) < 0 for
γ# 2 fγ;γg, then F(γ)< 0 for all γ 2 [γ;γ].

Proof. The proof is straightforward and thus, omit-
ted.



Lemma 2.2. Consider the following parameter depen-
dent matrix

F(γ1;γ2) = γ2
1F2 + γ1F1 +F0(γ2)

F0(γ2) = F01 + γ2F02

where γi 2 [γ
i
;γi] = Γi for i = 1;2. Let Γ#

i = fγ
i
;γig

denote the vertices of Γi for i = 1;2. If F2 > 0 and
F(γ#

1;γ
#
2)< 0 for (γ#

1;γ
#
2) 2 Γ#

1�Γ#
2 then F(γ1;γ2) < 0

for all (γ1;γ2) 2 Γ1�Γ2.

Proof. For any γi 2 Γi one can find 0� λi � 1, such
that γi = λiγi +(1� λi)γi, for i = 1;2. A straightfor-
ward computation shows that

F(γ1;γ2)� λ1λ2F(γ
1
;γ

2
)+λ1(1�λ2)F(γ

1
;γ2)

+λ2(1�λ1)F(γ1;γ2
)

+(1�λ1)(1�λ2)F(γ1;γ2)

Since F(γ#
1;γ#

2) < 0 for all γ#
i 2 Γ#

1 it follows immedi-
ately that F(γ1;γ2)< 0 for all (γ1;γ2)2 Γ1�Γ2.

The next result gives sufficient conditions for delay-
independent stability using a parameter dependent
Lyapunov function.

Theorem 2.2. Consider the LPV time-delayed system
(1) and γ 2 Γ = [γ;γ]. Consider matrix-valued func-
tions P : Γ! IRn�n and Q : Γ! IRn�n such that

P(γ)> 0; Q(γ)> 0; 8 γ 2 Γ (4)

and

M2(γ1;γ2) =

2
6664

0
@ P(γ1)A(γ1)

+AT (γ1)P(γ1)
+Q(γ1)

1
A P(γ1)Ad(γ1)

AT
d (γ1)P(γ1) �Q(γ2)

3
7775< 0

(5)

for all γi 2 Γ; i = 1;2. Then the system (1) is asymp-
totically stable for all γ 2 Γ and τ 2 [0;∞).

Proof. Consider the following Lyapunov-Krasovskii
functional V : IR+�Cτ ! IR+

V (t;xt) = xT (t)P(γ(t))x(t)+
Z t

t�τ
xT (θ)Q(γ(θ))x(θ) dθ

where P(γ) and Q(γ) are defined as (4). From (4)
and Lemma 1.1, it follows that V is positive definite
with an infinitesimal upper bound. The derivative of V
along the trajectories of (1) is

V̇ (t;xt) = 2xT (t)P(γ(t))A(γ(t))x(t)
+2xT (t)P(γ(t))Ad(γ(t))x(t� τ)
+xT (t)Q(γ(t))x(t)

� xT (t� τ)Q(γ(t� τ))x(t� τ)

or

V̇ (t;xt) =

�
x(t)

x(t� τ)

�T

M2(γ1;γ2)

�
x(t)

x(t� τ)

�
(6)

where γ1 = γ(t) and γ2 = γ(t� τ). Inequality (5) im-
plies that the matrix M2(γ1;γ2) is negative definite for
all γ1;γ2 2 Γ. Since Γ is compact, then �V̇(t;xt) >
�minγ1;γ2 λmax[M2(γ1;γ2)] (jx(t)j2+ jx(t�τ)j2)> c jx(t)j2

where c =�minγ1;γ2 λmax[M2(γ1;γ2)]> 0 and the sys-
tem (1) is asymptotically stable.

Equations (4) and (5) represent an infinite dimensional
system of Linear Matrix Inequalities. A common way
to reduce to a finite set of LMI’s is to use gridding of
the parameter space. According to this approach, one
selects a set of basis functions fi(γ); (i = 1;2; :::n1)
and gi(γ); (i = 1;2; :::n2) and expands P and Q in
terms of these basis functions as

P(γ) = ∑
i=1

Pi fi(γ) and Q(γ) =
n2

∑
j=1

Q jg j(γ)

One then seeks matrices Pi; (i = 1;2; : : : ;n1) and
Q j; ( j = 1;2; : : : ;n2) such that ∑n1

i=1 Pi fi(γ) > 0 and
∑n2

j=1 Q jg j(γ)� 0 for all γ 2 Γ and

2
666666666666664

0
BBBBBBB@

n1

∑
i=1

Pi fi(γ1)A(γ1)+

AT (γ1)
n1

∑
i=1

Pi fi(γ1)+

n2

∑
j=1

Q jg j(γ1)

1
CCCCCCCA

n1

∑
i=1

Pi fi(γ1)Ad(γ1)

AT
d (γ1)

n1

∑
i=1

Pi fi(γ1) �
n2

∑
j=1

Q jg j(γ2)

3
777777777777775

< 0

for all γi 2 Γ; i = 1;2.

Theorems 2.1 and 2.2 did not consider time variations
of the parameter γ. In that respect, the tests provided
by Theorems 2.1 and 2.2 can be potentially very con-
servative, since they ensure – in principle – stability
for arbitrarily fast variations of γ. On the other hand,
if indeed γ varies very fast then it is expected that γ(t)
and γ(t� τ) can be treated independently, at least for
large enough delays. This motivates our choice of the
Lyapunov function and the treatment of γ(t) and γ(t�
τ) in the stability test (5) as independent parameters.
It also justifies the use of delay-independent stability
tests. If, on the other hand, γ̇ is bounded by a (rela-
tively) small, known, upper bound the previous test
may be conservative. Generally speaking, for small
variation rates, delay-dependent stability should be
used. One possible method to approach this problem is
to eliminate, say, γ2 using the fact that γ1 = γ2 + γ̇(ξ)τ,
for some ξ 2 [t� τ; t] and then take into account any
known bounds for γ̇. The resulting stability test is then,
clearly, delay-dependent.

Next, stability tests are derived that take explicitly
into account the knowledge of the bound of the rate
variation of the parameter . Since the bound on γ̇ may
be arbitrarily small, one may no longer treat γ(t) and
γ(t � τ) as independent. In fact, for γ̇ = 0, one has
that γ(t) = γ(t� τ) for all t � 0. It should be pointed
out, however, that according to the previous discussion



these results (since they are delay-independent) may
be overly conservative.

2.1 Tests for Bounded Parameter Variation Rates

The following theorem uses the knowledge of bounds
of γ̇ to provide less conservative stability tests than the
ones in Theorems 2.1 and 2.2.

Theorem 2.3. Consider the LPV time-delayed system
(1) with γ 2 Γ = [γ;γ] and γ̇ 2 Γr = [γ̇; γ̇]. Consider
matrix valued functions P : Γ ! IRn�n and Q : Γ !
IRn�n such that P(γ)> 0; Q(γ)> 0 for all γ 2 Γ and

M3(γ1;γ2;ν) =

2
6664

0
@

P(γ1)A(γ1)+( )T

+Q(γ1)+
∂P
∂γ

ν

1
A P(γ1)Ad(γ1)

AT
d (γ1)P(γ1) �Q(γ2)

3
7775< 0 (7)

for all γ1;γ2 2 Γ and ν 2 Γr. Then the system (1)
is asymptotically stable for all (γ; γ̇) 2 Γ� Γr and
τ 2 [0;∞).

Proof. Consider the following Lyapunov-Krasovskii
functional

V (t;xt) = xT (t)P(γ(t))x(t)+
Z t

t�τ
xT (θ)Q(γ(θ))x(θ) dθ

Similarly to Theorem 2.2, V is positive definite with
infinitesimal upper bound. The derivative of V along
the trajectories of (1) is

V̇ (t;xt) = 2xT (t)P(γ(t))A(γ(t))x(t)+ xT (t)
∂P
∂γ

γ̇x(t)

+ 2xT (t)P(γ(t))Ad(γ(t))x(t� τ)
+ xT (t)Q(γ(t))x(t)� xT (t� τ)Q(γ(t� τ))x(t� τ)

or

V̇ (t;xt) =

�
x(t)

x(t� τ)

�T

M3(γ(t);γ(t� τ); γ̇(t))
�

x(t)
x(t� τ)

�

Inequality (7) implies that M3 is negative definite for
all γ 2 Γ and γ̇ 2 Γr. Since Γ and Γr are compact,
�V̇ (t;xt) > �c(jx(t)j2 + jx(tτ)j2) > c jx(t)j2 where
c = �minγ1;γ2;ν λmax[M3(γ1;γ2;ν)] > 0 and thus, the
system (1) is asymptotically stable.

2.2 A Relaxation Approach

The previous result, as well as Theorem 2.2, requires
gridding of the parameter space Γ�Γr. This can be
cumbersome since for fine gridding, several matrix in-
equalities have to be solved simultaneously. In certain
cases, when the parameter dependence in the matri-
ces A and Ad is relatively simple (low order polyno-
mial) gridding may be avoided using multi-convexity
arguments and relaxation methods at the expense of
increasing conservatism (Tuan and Apkarian, 1999).
Next, several special cases are explored when gridding

can be avoided. To derive the following result, it is
assumed that Γ = [�1;1]. In case Γ 6= [�1;1], one can
choose γ̃ = [2γ� (γ+γ)]=(γ� γ); such that γ̃ 2 [�1;1].
This simplification can always be made without loss
of generality and results in more compact formulas.

Theorem 2.4. Consider the system (1) where A(γ) =
A0+γA1+γ2A2 and Ad(γ) =Ad0+γAd1+γ2Ad2 where
γ 2 [�1;1], and γ̇ 2 [γ̇; γ̇]. Assume that there exist
negative-definite matrices Q4;Q2;P2, positive-definite
matrices Q0;P0 and symmetric matrices Q1;Q3;P1
such that

Q0�Q1 +2Q2 > 0; �Q2�Q3 +Q4 > 0; (8)

P0�P1 +P2 > 0 (9)

for all γ 2 [�1;1]; γ̇ 2 [γ̇; γ̇] and

γ#
1

2
N2 + γ1

#N1 + γ#
2

2
N3 + γ#

2N4 +N0(γ̇#)< 0 (10)

where γi
# 2 f�1;1g and γ̇# 2 fγ̇; γ̇g, and where

N2 = α1 Θ1 +α2 Θ2 +Θ3 � 0 (11)

N1 =
1�α1

2
Θ1 +

3�3α2

4
Θ2 +Θ4 (12)

N0(γ̇) =
3α1�3

16
Θ1 +

α2�1
4

Θ2 +Θ5(γ̇) (13)

N3 =

�
0 0
0 �Q4� (1�β)Q3�Q2

�
� 0 (14)

N4 =

"
0 0

0 �
3
4

βQ3�Q1

#
(15)

where

Θ1 =

�
AT

2 P2 +P2A2 +Q4 P2Ad2

AT
d2P2 0

�

Θ2 =

2
4
�

AT
1 P2 +AT

2 P1
+P1A2 +P2A1 +Q3

�
P1Ad2 +P2Ad1

AT
d2P1 +AT

d1P2 0

3
5

Θ3 =

2
4
�

AT
2 P0 +P0A2

+AT
1 P1 +( )T +Q2

�
( P2Ad0 +P1Ad1 )

AT
d1P1 +AT

d0P2 AT
d2P0Ad2

3
5

Θ4 =

2
4
�

AT
1 P0 +P0A1

+AT
0 P1 +P1A0 +Q1

�
P0Ad1 +P1Ad0

AT
d1P0 +AT

d0P1 0

3
5

Θ5(γ̇) =

2
64
�

AT
0 P0 +P0A0

�2νmP2 + γ̇P1 +Q0

�
P0Ad0

AT
d0P0 �Q0 +

1
4

βQ3

3
75

where νm = maxfjγ̇j; jγ̇jg, and where the pair (α1;α2)

takes any of the four possible combinations (α1;α2) 2�
(0;0);(0;1);(1;0);(1;1)

	
and β 2 f0;1g. Then the

system (1) is asymptotically stable for all γ 2 [�1;1],
all γ̇ 2 [γ̇; γ̇] and all τ 2 [0;∞).

Proof. Consider the Lyapunov-Krasovskii functional

V (t;xt) = xT (t)P(γ(t))x(t)+
Z t

t�τ
xT (θ)Q(γ(θ))x(θ) dθ



where P(γ) = P0 + γP1 + γ2P2 and Q(γ) = Q0 + γQ1 +
γ2Q2 + γ3Q3 + γ4Q4. From P2 < 0, Equation (9) and
Lemma 2.1 one has that P(γ)> 0 uniformly for all γ 2
[�1;1]. Now write Q(γ) as follows Q(γ) = [2γ2Q2 +
γQ1 +Q0]+γ2[γ2Q4 +γQ3�Q2]. Then (8) along with
Lemma 2.1 imply that Q(γ) > 0 uniformly for all
γ 2 [�1;1]. The derivative of V along the system (1) is

V̇ (t) = 2xT (t)(P0 + γ1P1 + γ2
1P2)(A0 + γ1A1 + γ2

1A2)x(t)

+ xT (t)[γ̇1P1 +2γ1γ̇1P2]x(t)

+ 2xT (t)(P0 + γ1P1 + γ2
1P2)(Ad0 + γ1Ad1 + γ2

1Ad2)x(t� τ)
+ xT (t)[Q0 + γ1Q1 + γ2

1Q2 + γ3
1Q3 + γ4

1Q4]x(t)

� xT (t� τ)[Q0 + γ2Q1 + γ2
2Q2 + γ3

2Q3 + γ4
2Q4]x(t� τ)

where γ1 = γ(t);γ2 = γ(t� τ). Since P2 < 0, it follows
that 2γ1γ̇1xT (t)P2x(t) � �2νmxT (t)P2x(t). One can
then rewrite the equation for V̇ as

V̇ (t)� γ4
1

n
2xT (t)[P2A2 +0:5Q4]x(t)

+2xT (t)P2Ad2x(t� τ)
o

� γ4
2xT (t� τ)Q4x(t� τ)

+ γ3
1

n
2xT (t)[P1A2 +P2A1 +0:5Q3]x(t)

+2xT (t)[P1Ad2 +P2Ad1]x(t� τ)
o

� γ3
2xT (t� τ)Q3x(t� τ)

+ γ2
1

n
2xT (t)[P0A2 +P1A1 +P2A0 +0:5Q2]x(t)

+2xT (t)[P0Ad2 +P1Ad1 +P2Ad0]x(t� τ)
o

� γ2
2xT (t� τ)Q2x(t� τ)

+ γ1

n
2xT (t)[P0A1 +P1A0 +0:5Q1]x(t)

+2xT (t)[P0Ad1 +P1Ad0]x(t� τ)
o

� γ2xT (t� τ)Q1x(t� τ)

+
n

2xT (t)[P0A0�νmP2 +0:5Q0+0:5γ̇P1]x(t)

+2xT (t)P0Ad0x(t� τ)� xT (t� τ)Q0x(t� τ)
o

(16)

Notice now that since P0 > 0 it follows that the in-
equality 2xT (t)P0Ad2x(t � τ) � xT (t)P0x(t) + xT (t �
τ)AT

d2P0Ad2x(t� τ) holds. Also, it can be immediately
verified that for all γ 2 [�1;1] 2 the following inequal-
ities hold. Namely, γ2 � γ4 � 1

2 γ� 3
16 ; γ2 � γ3 �

3
4 γ� 1

4 . Then γ4y� γ2y if y� 0 and γ4y� ( 1
2 γ� 3

16 )y

if y < 0. Therefore, γ4y � max
n

γ2y;( 1
2 γ� 3

16)y
o

and

γ3y�max
n

γ2y;( 3
4 γ� 1

4)y
o

. These inequalities imply

that

2 See, for example, (Tuan and Apkarian, 1999).

γ4
1

n
2xT (t)[P2A2 +0:5Q4]x(t)+2xT (t)P2Ad2x(t� τ)

o

�max

(
(

γ1

2
�

3
16

)

�
x(t)

x(t� τ)

�T

Θ1

�
x(t)

x(t� τ)

�
;

+ γ2
1

�
x(t)

x(t� τ)

�T

Θ1

�
x(t)

x(t� τ)

�)

(17)

and

γ3
1

n
2xT (t)[P1A2 +P2A1 +0:5Q3]x(t)

+2xT (t)[P1Ad2 +P2Ad1]x(t� τ)
o

�max

(
γ2

1

�
x(t)

x(t� τ)

�T

Θ2

�
x(t)

x(t� τ)

�
;

+(
3γ1

4
�

1
4
)

�
x(t)

x(t� τ)

�T

Θ2

�
x(t)

x(t� τ)

�)

(18)

Since Q4< 0 and γ2 2 [�1;1], it follows that�γ4
2xT (t�

τ)Q4x(t � τ) � �γ2
2xT (t� τ)Q4x(t � τ). Moreover, if

xT (t � τ)Q3x(t � τ) > 0, then �γ3
2xT (t � τ)Q3x(t �

τ)< (� 3
4 γ2+

1
4 )x

T (t�τ)Q3x(t�τ), whereas if xT (t�
τ)Q3x(t � τ) < 0 then �γ3

2xT (t � τ)Q3x(t � τ) <

�γ2
2xT (t � τ)Q3x(t � τ). Therefore in either case,

�γ3
2xT (t � τ)Q3x(t � τ) � maxf(� 3

4 γ2 + 1
4 )x

T (t �
τ)Q3x(t� τ);�γ2

2xT (t� τ)Q3x(t� τ)g or that

�γ3
2xT (t� τ)Q3x(t� τ)��(1�β)γ2

2xT (t� τ)Q3x(t� τ)

�β(
3
4

γ2�
1
4
)xT (t� τ)Q3x(t� τ)

where β 2 f0;1g.

Collecting all the previous results and substituting in
(16), one obtains that

V̇ (x)�

�
x(t)

x(t� τ)

�T

N(γ1;γ2; γ̇)
�

x(t)
x(t� τ)

�
(19)

where N(γ1;γ2; γ̇) = γ2
1N2 + γ1N1 ++γ2

2N3 + γ2N4 +
N0(γ̇) and where N0;N1;N2;N3;N4 as in (11)-(13).
The inequalities N3 � 0 and N2 � 0 along with in-
equality (10) imply that N(γ1;γ2γ̇)< 0 for all (γ1;γ2)2
[�1;1]2 and γ̇ 2 [γ̇; γ̇]. The asymptotic stability of (1)
then follows immediately from (19).

Theorem 2.5. Consider the LPV time-delayed system
(1) with A(γ) = A0 + γA1 and Ad(γ) = Ad0 + γAd1

where (γ; γ̇) 2 G = [γ;γ]� [γ̇; γ̇]. Assume that there
exist a negative definite matrix Q2 and symmetric ma-
trices P0;P1;Q0;Q1 which satisfy the following LMI’s

Q(γ#) = Q0 + γ#Q1 + γ#2
Q2 > 0 (20a)

P(γ#) = P0 + γ#P1 > 0 (20b)

for all γ# 2 fγ;γg and

2
4
�

P(γ1)A(γ1)+( )T

+νP1 +Q(γ1)

�
P(γ1)Ad(γ1)

AT
d (γ1)P(γ1) �Q(γ2)

3
5< 0 (21)



for all ν 2 [γ̇; γ̇]; γi 2 [γ;γ]; i = 1;2. Then the system
(1) is delay-independent stable for all (γ; γ̇) 2 G .

Proof. Consider the parameter dependent Lyapunov-
Krasovskii functional

V (t;xt) = xT (t)P(γ(t))x(t)

+

Z 0

�τ
xT (t +θ)Q(γ(t +θ))x(t +θ) dθ

where P(γ) = P0 + γP1 and Q(γ) = Q0 + γQ1 + γ2Q2.
Since Q2 < 0 Q(γ) is concave in γ. From (20a) and
Lemma 2.1 it follows that Q(γ) > 0 for all γ 2 [γ;γ].
From the LMI (20b), it also follows that P(γ) > 0 for
all γ 2 [γ;γ]. Therefore, V (t;xt) is a positive definite
functional with an infinitesimal upper bound. Calcula-
tion of the derivative of V yields

V̇ (t) =

�
x(t)

x(t� τ)

�T

M4(γ(t);γ(t� τ); γ̇(t))
�

x(t)
x(t� τ)

�

where M4(γ1;γ2;ν) is the matrix in (21). Let γ1 =
γ(t);γ2 = γ(t � τ) and ν = γ̇(t). Then the matrix
inequality M4(γ1;γ2;ν) < 0 for all ν 2 [γ̇; γ̇]; γi 2

[γ;γ]; i = 1;2 implies that M4 is uniformly negative
definite for all γ and γ̇. Thus, the derivative of V is
negative definite along the trajectories of (1) and the
system (1) is asymptotically stable for all (γ; γ̇) 2 G
and τ 2 [0;∞).

The following result differs from the previous devel-
opments because it makes use of the Razumikhin sta-
bility theorem (Hale and Lunel, 1993).

Theorem 2.6. Consider the time-delayed (1) with A(γ)=
A0 + γA1 and Ad(γ) = Ad0 + γAd1 where γ 2 [γ;γ]. If
there exist a positive-definite matrix P and a positive
scalar α > 0 that satisfy

AT
d (γ

#)PAd(γ#)< αP (22)

AT (γ#)P+PA(γ#)+P+αP < 0 (23)

where γ# 2 fγ;γg, then system (1) will be delay-
independent stable.

Proof. Since AT
d1PAd1 � 0, from Lemma 2.1 and

condition (22) it follows that AT
d (γ)PAd(γ) < αP for

all γ 2 [γ;γ]. Consider the following positive definite
function V (x) = xT Px. Its derivative along the trajec-
tories of (1) is

V̇ (t) = 2xT (t)P[A(γ)x(t)+Ad(γ)x(t� τ)]
= xT (t)[PA(γ)+AT (γ)P]x(t)
+ [xT (t)PAd(γ)x(t� τ)+ xT (t� τ)AT

d (γ)Px(t)]

= xT (t)[PA(γ)+AT (γ)P]x(t)

+ [xT (t)P
1
2 P

1
2 Ad(γ)x(t� τ)

+ xT (t� τ)AT
d (γ)P

1
2 P

1
2 x(t)]

� xT (t)[PA(γ)+AT (γ)P]x(t)
+ [xT (t)Px(t)+ xT (t� τ)AT

d (γ)PAd(γ)x(t� τ)]

Since AT
d (γ)PAd(γ) < αP for all γ 2 [γ;γ] and [γ;γ] is

compact, there exists a δ> 0, such that AT
d (γ)PAd(γ)<

(α � δ)P for all γ 2 [γ;γ]. Let α0 = α
α�δ > 1 and

p(s) = α0s.

Assume that

V (x(t +θ)) = xT (t +θ)Px(t +θ)
< p(V (x(t))) = α0xT (t)Px(t); 8θ 2 [�τ;0]

Thus xT (t � τ)AT
d (γ)PAd(γ)x(t � τ) < (α� δ)xT (t �

τ)Px(t�τ)<α0(α�δ)xT (t)Px(t) =αxT (t)Px(t). Us-
ing the last inequality, one obtains

V̇ (t)< xT (t)[PA(γ)+AT (γ)P+P+αP]x(t); 8γ 2 [γ;γ]

and from (23) V̇ is negative definite. From Razu-
mikhin Theorem (Hale and Lunel, 1993; Niculescu
et al., 1997b) we finally obtain the assertion of the
theorem.

3. CONCLUSIONS

Several delay-independent stability tests for Linear
Parameter Varying (LPV) systems subject to de-
lays have been developed. Bounds on the parame-
ter variation can be incorporated by using parameter-
dependent Lyapunov-Krasovskii functionals. Parame-
ter gridding or relaxation methods can be used to case
these tests as convex optimization problems (LMIs)
which can be solved efficiently using current computer
software. Future work will focus on controller synthe-
sis.
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