
Optimal Control of Rigid Body Angular Velocity

with Quadratic Cost�

P� Tsiotras�� M� Corless� and M� Rotea�

To appear in the Journal of Optimization Theory and Applications

Abstract

In this paper� we consider the problem of obtaining optimal controllers which minimize a quadratic
cost function for the rotational motion of a rigid body� We are not concerned with the attitude of the
body and consider only the evolution of the angular velocity as described by Euler�s equations� We
obtain conditions which guarantee the existence of linear stabilizing optimal and suboptimal controllers�
These controllers have a very simple structure�
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� Introduction

Optimal control of rigid bodies has a long history stemming from interest in the control of rigid spacecraft
and aircraft� Most of this research has been directed toward the time�optimal attitude control problem�
see� for example� the survey paper �Ref� �� and the book �Ref� ��� Dixon et al� �Ref� 	� considered the
fuel�optimal rest�to�rest maneuver for an axisymmetric rigid body� The earliest results on the optimal
regulation of angular velocity or� equivalently� angular momentum seem to be Refs� 
��� Windeknecht
�Ref� � also examined the problem of optimal regulation of the angular momentum over a �nite interval
with a quadratic integral penalty on the control variables and a terminal constraint on the state� the
weighting matrices in the cost function were identity matrices�

In this paper we seek optimal and suboptimal solutions to the non�linear quadratic regulator �NLQR�
problem for a rigid body in the sense that a quadratic cost function is to be minimized� We solve the
problem of quadratic regulation for the dynamic �angular velocity� equations of a rotating rigid body�
by deriving explicit solutions to the associated Hamilton�Jacobi equation �HJE� and Hamilton�Jacobi
inequality �HJI�� We give necessary and su�cient conditions for the existence of quadratic functions
which satisfy the HJE and HJI� These solutions result in linear optimal and suboptimal controllers�
respectively�

The paper is organized as follows� In Section � we present the equations of motion of a rotating
rigid body and state the problem to be addressed� In Section 	 we completely characterize the family
of quadratic integrals of the unforced system and we present some preliminary results concerning the
conditions under which the system is zero�state detectable and zero�state observable� Sections 
 and �
contain the main results of the paper� The �rst theorem of the paper �Theorem 
��� contains conditions
under which the NLQR problem is solvable� Theorem 
�� gives su�cient conditions for the suboptimal
NLQR problem� i�e�� conditions which guarantee boundedness of a quadratic cost� These theorems
introduce the HJE and HJI� By restricting consideration to quadratic solutions to the HJE�HJI we seek
linear solutions to the HJE�HJI and we show that these solutions can be computed by considering only
solutions to the associated algebraic Riccati equation �ARE� and algebraic Riccati inequality �ARI��
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of a speci�c form� In Section � we present some special cases in which the optimal feedback NLQR
controller can be shown to be linear� We also show that some of the known results in the literature
follow immediately from the results presented here� In Section  we present an optimization algorithm
for computing a positive de�nite solution to the ARI� We conclude with a numerical example to illustrate
the theory�

� Problem Formulation

��� Equations of Motion

The evolution of the angular velocity� equivalently the angular momentum� of a rigid body is described
by

J �� � �J��� � �Gu � ���� � �� ���

where ��t� �� col����t�� ���t�� ���t�� with �i�t� � IR being the i�th component of the angular velocity
of the body relative to an inertial reference frame� These components are taken relative to a body��xed
reference frame� The real positive de�nite matrix J is the inertia matrix of the rigid body at the mass
center and expressed relative to the body �xed frame� At time t� the control input is given by u�t� � IRm�
We assume that G is a constant matrix of appropriate dimensions� having full column rank� If we let

f��� �� J����J��� ��� B �� J��G ���

the system can be described by
�� � f��� � Bu� ���� � �� �	�

Since J is symmetric and positive de�nite� it has three positive real eigenvalues I�� I�� I� with three
corresponding mutually orthogonal real eigenvectors v�� v�� v�� These eigenvalues and eigenvectors are
called the principal moments of inertia and principal axes of inertia� respectively� of the body about its
mass center� If two of the principal moments are equal� say I� � I�� the body is said to be axisymmetric
about the axis corresponding to the third eigenvalue� i�e�� the 	�axis in this case� If I� � I� � I� the
body is said to be symmetric� In this case J is a multiple of the identity matrix and the system �	� is
linear and is simply described by

�� � Bu � ���� � �� �
�

��� Problem De�nition

Consider the control�a�ne nonlinear system �	�� Introducing a penalty or regulated output z�t� � IRp� we
obtain the following system description�

�� � f��� � Bu� ���� � �� ��a�

z �

�
H�
Du

�
��b�

where H and D are constant matrices of appropriate dimensions� The associated uncontrolled system or
free system is given by

�� � f���� ���� � �� ��a�

z � H� ��b�

Associated with system ��� is the following quadratic cost functional

J ����u� ��

Z
�

�

z��t�z�t�dt �

Z
�

�

kz�t�k� dt ��

where ��� denotes transpose and kzk denotes the Euclidean norm �length� of a vector z � IRp and is
de�ned by kzk� �

Pp

i��
z�i � z�z� This can also be written as�

J ����u� ��

Z
�

�

���t�Q��t� � u��t�Ru�t� dt ���

where Q � H �H � R � D�D�
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Consider system ��� subject to a memoryless state feedback controller k� i�e��

u � k��� ���

The resulting closed loop system is described by

�� � f��� � Bk��� ���a�

z �

�
H�

Dk���

�
���b�

We are now ready to state the nonlinear quadratic regulator �NLQR� problem�

Problem �NLQR�� Find a memoryless state�feedback controller k� for system ��� such that

�i� the resulting closed�loop system

�� � f��� � Bk���� ���a�

z �

�
H�

Dk����

�
���b�

is globally asymptotically stable about � � ��

�ii� for each initial state �� and for every control history u��� which results in

lim
t��

��t� � �

the control history u���� generated by the controller k� minimizes the cost functional ���
i�e��

J ����u
�� � J ���� u�

If there exists a controller k� satisfying �i� and �ii�� we call it an optimal stabilizing state�feedback
controller and we say that ��� is NLQR�solvable� If� in addition� k� is linear we say that ��� is NLQR�
solvable via linear control�

� Preliminary Results

��� Observability and Detectability

Before we present a solution to the NLQR problem associated with system ��� we need to introduce the
following concepts �Refs� ���� for a general system described by

�x � F �x� ���a�

z � H�x� ���b�

where x�t� � IRn and z�t� � IRp�

De�nition ��� �Zero�State Observability� System ���� is zero�state observable if z�t� � � for all t � �
implies x�t� � � for all t � ��

De�nition ��� �Zero�state detectability� System ���� is zero�state detectable if z�t� � � for all t � �
implies limt�� x�t� � ��

Proposition ��� Consider system ��� with D full column rank� Then� for any controller k� the closed
loop system ���� is zero�state observable �zero�state detectable� if and only if the uncontrolled system
��� is zero�state observable �zero�state detectable��

Proof� Consider z as given by ���b�� Clearly z�t� � � in ���b� implies H��t� � � and Dk���t�� � ��
since D is full column rank it follows that k���t�� � � and the trajectories of ���� evolve according to
���� Thus ���� is zero�state observable �zero�state detectable� if and only if ��� is zero�state observable
�zero�state detectable��
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The previous proposition states� in essence� that if D if full column rank then the test of zero�state
observability for system ���� reduces to a test on the uncontrolled system ���� i�e�� it is an open�loop
property� This is the route also followed in Refs� ����� From now on� we will always assume that D
is full column rank� Without loss of generality� we can rede�ne the control input so that the matrix D
satis�es the condition D�D � I�

It turns out that the zero�state observability property for system ��� �or system ���� for that matter�
has a very simple characterization in terms of the matrix pair �H�J�� We have the following result�

Lemma ��� The following statements are equivalent�

�a� System ��� is zero state observable�

�b� System ��� is zero state detectable�

�c�

rank

�
H
HJ
HJ�

�
� 	 ��	�

Proof� Clearly �a� implies �b�� We now show that �b� implies �c�� Suppose on the contrary that �c�
does not hold� Then using standard results from the observability of linear systems �Ref� ���� there is
an eigenvector v of J such that Hv � �� Thus v �� � and� since J is symmetric� v is real and Jv � �v
for some real �� Thus �Jv� � v � ��v � v� � �� hence ��t� � v �� � is a solution of system ��� and
z�t� � Hv � �� Hence system ��� is not zero�state detectable�

If we show that �c� implies �a�� we are done� Suppose that �a� does not hold� Then there is a nonzero
solution ���� of ��� with z�t� � �� Introduce now the momentum variable p � J� to obtain the following
description�

�p � p� �J��p�

z � HJ��p

Applying Lemma ���� in the Appendix� it follows that there exists an eigenvector v of J�� such that
limt�� p�t� � v� Since z�t� � �� we have HJ��v � �� Since v is an eigenvector of J��� it is also an
eigenvector of J � it now follows that Hv � HJv � HJ�v � �� This implies that �c� does not hold� So�
if �c� holds� then �a� must hold�

De�nition ��� When the rank condition ��	� holds� we say that the pair �H�J� is observable�

Remark ��� From the previous discussion it should be clear that if �H�J� is observable then the closed
loop system ���� is zero�state observable with any controller k�

��� Integrals of the Uncontrolled System

Here we consider quadratic integrals of the motion of the uncontrolled system ��� Consider any scalar�
valued function V � IR� � IR� If V is continuously di�erentiable� we let the subscript � denote di�er�
entiation with respect to �� i�e�� V���� ��

�V ���
��

� rV ��� � � �V
���

�V
���

�V
���

�� The derivative of V
along any trajectory ���� of system ��� is given by

d

dt
V ���t�� � V����t��f���t�� ��
�

and we have the following de�nition�

De�nition ��� A function V � IR� � IR is an integral of the motion of ��� if it is constant along every
trajectory of ���� i�e�� if

V����f��� � � ����

for all � � IR��

In particular� a quadratic function given by V ��� � ��P�� where P � IR��� is symmetric� is an
integral of the uncontrolled system ��� if and only if

��Pf��� � �

for all � � IR��
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If J is a multiple of the identity matrix �symmetric body�� every quadratic function is an integral of
the motion� In the nonsymmetric case� it should be clear from the identities

�J���f��� � ����J��� �� � �
�J����f��� � �J�����J��� �� � �

that the quadratic functions V���� � ��J� and V���� � ��J�� � kJ�k� are integrals of the motion
of system ���� The �rst function yields twice the system kinetic energy� whereas the second one is the
square of the magnitude of the angular momentum� The following lemma states that every quadratic
integral of system ��� �nonsymmetric case� is a linear combination of the above two integrals�

Lemma ��� Consider the function f��� given by ���� A symmetric matrix P � IR��� satis�es

��Pf��� � � ����

for all � � IR� if and only if
P � �J � �J� ���

for some real scalars � and � when J is not a multiple of the identity matrix�

Proof� �Su�ciency� If ��� holds then�

��Pf��� � ��� � ��J������J��� ��

Since the cross product of two vectors is perpendicular to the plane de�ned by the two vectors� ���� must
hold�

�Necessity� Suppose ���� holds for all � � IR�� Letting �p �� J�� �Q �� J��PJ�� and �N �� J��� condition
���� holds for all � � IR� if and only if

� �Q�p����p� � �N �p�� � � ����

for all �p � IR�� Also Equation ��� is equivalent to

�Q � � �N � �I ����

Relationship ���� is invariant under the coordinate transformation �p � Rp where R is a 	 � 	 rotation
matrix� i�e�� R�R � I and detR � �� In other words� ���� holds for all �p if and only if the following
relationship holds for all p

�Qp���p� �Np�� � � ����

where Q � R� �QR and N � R� �NR� Also� relationship ���� is equivalent to

Q � �N � �I ����

Since �N is symmetric� R can be chosen so that N is diagonal� i�e��

N �

�
n� � �
� n� �
� � n�

�

Letting qij denote the ij�th element of Q and noting that Q is symmetric� relationship ���� results in

g�p� � � for all p � IR� ����

where

g�p� � �q��m� � q��m� � q��m��p�p�p�

� �q��m��p
�
�p� � �q��m��p

�
�p�

� �q��m��p�p
�
� � �q��m��p

�
�p�

� �q��m��p�p
�
� � �q��m��p�p

�
�

with m� � n� 	 n�� m� � n� 	 n� and m� � n� 	 n�� Relationship ���� holds if and only if

q��m� � q��m� � q��m� � � ��	a�

q��m� � q��m� � � ��	b�

q��m� � q��m� � � ��	c�

q��m� � q��m� � � ��	d�

�



Consider ��	b�� Since N is not a multiple of the identity matrix� we cannot have �m��m�� � ��� ��� hence
we must have q�� � �� In a similar fashion� ��	c� and ��	d� yield q�� � � and q�� � � respectively� Hence
Q is a diagonal matrix whose diagonal elements satisfy ��	a�� this latter relationship can be written as�

q��
q��
q��

�� ��
n�
n�
n�

�
�

�
�
�
�

��
� � ��
�

Since the matrix N is not a multiple of the identity matrix� the second and third vectors involved in the
above cross product are non�zero and non�parallel� hence their cross product is non�zero and perpendicular
to the plane containing them� Relationship ��
� tells us that the �rst vector is perpendicular to the cross
product� hence� the �rst vector must lie in the plane de�ned by the second and third vectors� i�e���

q��
q��
q��

�
� �

�
n�
n�
n�

�
� �

�
�
�
�

�

for some scalars � and �� This is equivalent to ���� and� hence� ����

��� Stabilizability via Linear Control

Before addressing the problem of obtaining optimal stabilizing controllers� we �rst address the question of
the existence of stabilizing controllers� The following lemma yields a su�cient condition which guarantees
the existence of linear stabilizing controllers�

Lemma ��� Consider system ��� and suppose that

rank
�
G JG J�G

�
� 	 ����

Then the linear controller
k��� � 	G�� ����

yields a closed loop system which is globally asymptotically stable�

Proof� The closed loop system is described by

�� � f���	 J��GG��

Considering the function V ��� � �
��

�J� as a Lyapunov function candidate� its time derivative along any
solution of the closed loop system is given by

�V ��� � ��Jf���	 ��GG�� � 	kG��k� ���

Hence� �V ���t�� � �� Since V is radially unbounded� this implies that all solutions are bounded�
We now note that �V ���t�� � � implies that G���t� � �� Rank condition ���� implies that the pair

�G�� J� is observable� hence� using Lemma 	��� we obtain that G���t� � � implies ��t� � �� hence the
only solution for which �V ���t�� � � is the zero solution� Global asymptotic stability now follows directly
from LaSalle�s theorem�

De�nition ��	 When the rank condition ���� holds� we say that the pair �J� G� is controllable�

� Su�cient Conditions for Optimality and Suboptimality

��� Su�cient Conditions for Solution of the NLQR Problem

The following theorem yields su�cient conditions under which the NLQR problem for system ��� has a
solution� The main condition requires the existence of a positive de�nite function satisfying the Hamilton�
Jacobi equation associated with the minimization of �� subject to the nonlinear dynamics ���� Recall
that a function V � IR� � IR� is called positive de�nite if �Ref� �	�

�a� V ��� � �

�b� V ��� � � for � �� �

�c� lim
���

V ��� �
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We are now ready to give su�cient conditions under which the NLQR problem is solvable�

Theorem ��� Consider system ��� with �H�J� observable� Suppose that there exist a continuously
di�erentiable positive de�nite function V � IR� � IR� which satis�es the Hamilton�Jacobi equation
�HJE�

V����f���	 ���
�V� ���BB
�V�

���� � ��H �H� � �� ����

for all � � IR�� Then the feedback controller

k���� � 	�����B�V�
���� ����

renders the closed�loop system globally asymptotically stable about the origin and minimizes the cost
functional ��� Moreover� for each ��� the optimal control history is unique and the minimum value of
the cost is V �����

Proof� First we show that under the hypotheses of the theorem the feedback controller ���� is globally
asymptotically stabilizing� With controller ���� the closed loop system behaves according to

�� � f���	 �����BB�V�
���� �	��

Since the solution V to the HJE is a positive de�nite function it can be used as a Lyapunov function
candidate� Taking the time derivative of V along the trajectories of �	��� and using the HJE one obtains

�V ��� � V����f���	 �����V����BB
�V �����

� 	jjH�jj�	 jjk����jj� � 	jjzjj�

Hence� �V ���t�� � � and �V ���t�� � � if and only if z�t� � �� Since the pair �H�J� is observable� it follows
from remark 	�� that ��t� � �� Since V is radially unbounded� all solutions are bounded� Asymptotic
stability now follows directly from LaSalle�s theorem�

In order to show optimality� consider any initial state �� and any control history u��� which results in

lim
t��

��t� � � �	��

An easy calculation shows that

d

dt
V ���t�� � 	jjz�t�jj� � jju�t�	 k����t��jj� �	��

where V satis�es ���� and where z��� is the response of the system subject to the control history u����
Integrating both sides of �	�� we obtainZ T

�

jjz�t�jj� dt � V ������	 V ���T �� �

Z T

�

jju�t�	 k����t��jj� dt �		�

Taking the limit as T �
 and using �	�� we get limT�� V ���T �� � �� henceZ
�

�

jjz�t�jj� dt � V ���� �

Z
�

�

jju�t�	 k����t��jj� dt �	
�

Clearly� Z
�

�

jjz�t�jj� dt � V ���� �	��

and the lower bound V ���� is achieved if and only if u�t� � k����t��� This completes the proof�

In general� the cornerstone for deriving stabilizing optimal feedback controllers for nonlinear systems
is the existence of positive de�nite solutions to the HJE� For linear time�invariant systems� the above
requirement reduces to the well�known requirement for the existence of positive de�nite �or positive semi�
de�nite� solutions to a matrix Riccati equation� which is the counterpart of the HJE for the linear case�
Therefore� the characterization of positive de�nite solutions to the HJE is fundamental to solving the
nonlinear optimal feedback control problem� However� apart from the linear case� to date there does not
exist a systematic procedure for obtaining such solutions� One is often compelled to search for solutions
of the HJE using series expansions �Refs� �
����

�



��� Suboptimal Controllers

In practice it may be very di�cult to establish the existence of a positive de�nite function satisfying
���� for all � � IR�� In such cases� one may restrict oneself to the design of controllers which� although
not optimal� are stabilizing and guarantee a bounded value of the cost� This is the result of the next
theorem�

Theorem ��� Consider system ��� with �H�J� observable� Let V � IR� � IR� be a positive de�nite
continuously di�erentiable function which satis�es the Hamilton�Jacobi Inequality �HJI�

V����f���	 ���
�V����BB
�V ����� � ��H �H� � �� �	��

for all � � IR�� Then the feedback controller

k���� � 	�����B�V�
���� �	�

globally asymptotically stabilizes ��� about the origin and yields a bounded value for the cost ��� In
particular� the cost is bounded above by V �����

Proof� The proof follows very closely the proof of Theorem 
�� and will not be repeated here�

In most cases it is not an easy task to show that either the Hamilton�Jacobi Equation or Inequality
holds for the whole state space� Alternatively� one may dispense altogether with such global results and
seek solutions to the HJE�HJI only in a positively invariant subset of the whole state space� This is the
route followed in Ref� ��� In the present paper we follow an indirect approach and seek linear controllers
solving the NLQR problem� equivalently� we seek quadratic solutions to the HJE ���� and the HJI �	���
In particular� we establish the following fact� The system ��� is NLQR�solvable via linear control if the
matrix Riccati equation for the linearized system admits a positive de�nite solution of a certain structure�

� Linear Optimal and Suboptimal Controllers

Our motivation here is based on the observation that the nonlinear system ��� has linear� globally asymp�
totically stabilizing controllers� Therefore� we search over this class of controllers for the one that yields
the minimum cost� One has to be careful however in following this approach� since � in contrast to linear
systems � asymptotic stability of a nonlinear system does not imply� in general� exponential stability�
and it may even happen that all linear stabilizing controllers give rise to unbounded cost� i�e�� the NLQR
problem may not be solvable when one restricts oneself to linear controllers �although it may still be
solvable via a nonlinear control��

��� Linear Optimal Controllers

In this section we obtain linear optimal controllers by looking for quadratic solutions to the HJE �����
If a quadratic function� given by

V ��� � ��P� �

is a positive de�nite solution to the HJE� then the corresponding optimal stabilizing controller �recall
����� is linear and is given by

k���� � 	B�P� �	��

It can readily be seen that V satis�es the HJE if and only if

���Pf��� � ��H �H�	 ��PBB�P� � �� � � � IR� �	��

We are now ready to state the main result for the solution of the NLQR problem via a linear controller�

Theorem 	�� Consider system ��� with �H�J� observable� A quadratic function� given by V ��� �
��P�� satis�es the conditions of Theorem 
�� if and only if the matrix P is a positive de�nite solution
to the Algebraic Riccati Equation �ARE�

H �H 	 PBB�P � � �
��

and
P � �J � �J� �
��

for some scalars ��� when J not a multiple of the identity matrix�
When these conditions are satis�ed� the system is NLQR�solvable via the linear controller �	�� and

the minimum value of the cost is ���P���

�



Proof� �Su�ciency�� Since V ��� � ��P� with P a positive de�nite matrix� the function V is positive
de�nite� Since P � �J ��J� when J is not a multiple of the identity matrix� it follows from Lemma 	��
that ��Pf��� � �� ARE �
�� now guarantees satisfaction of �	��� hence HJE ���� holds� The optimal
stabilizing controller is linear and given by equation �	���

�Necessity�� Suppose that there exists a quadratic function given by V ��� � ��P�� which satis�es the
conditions of Theorem 
��� Since V satis�es the HJE� condition �	�� must hold� The �rst term in �	�� is a
cubic polynomial in � �recall that f��� is quadratic in �� and the last two terms are quadratic polynomials
in �� Therefore the left�hand side of equation �	�� is the sum of two homogeneous polynomials� one cubic
in � and the other quadratic in �� Since their sum is zero for all � � IR�� each polynomial must vanish
identically for all � � IR�� In other words� �	�� holds for all � � IR� if and only if

��Pf��� � � and ��H �H� 	 �PBB�P� � � �
��

for all � � IR�� By Lemma 	�� the �rst condition is satis�ed if and only if P is of the form P � �J��J�

�when J is not a multiple of the identity�� The second condition in �
�� is satis�ed if and only if P
satis�es the algebraic Riccati equation �
��� Since V is a positive de�nite function� the matrix P is
positive de�nite�

Remark 	�� Note that �
�� is the ARE for the linear quadratic regulator �LQR� problem associated
with the linearized system

�� � Bu� ���� � �� �
	a�

z �

�
H�
Du

�
�
	b�

From standard LQR theory� the linearized problem considered here has a solution if and only if the pair
���B� is controllable and the pair �H��� is observable� i�e�� rankG �rankH � 	� In this case� the optimal
controller is given by �	�� where P is the positive de�nite solution to the ARE� Actually� in this case one
can show that P is explicitly given by

P � W �WBB�W ��
�

�W �

�

where W � �H �H�
�

� �
Using the results of Ref� ��� we know that an optimal stabilizing controller for the linearized problem

will solve the NLQR problem� at least locally for system ���� As a consequence of Theorem ���� we see
that if there is a solution to the linearized problem� with P � �J � �J� when J is not a multiple of
the identity matrix� then the optimal stabilizing controller for the linearized problem is also the �global�
optimal stabilizing controller for the nonlinear problem� From Theorem ��� we also see that it is not
necessary to have a solution to the linearized problem in order to have a solution to the nonlinear problem�

Based on the previous theorem� one can obtain a simple characterization of all state weighting ma�
trices in the cost �� which guarantee that the su�cient conditions of Theorem 
�� are satis�ed in the
nonsymmetric case and ��� is NLQR�solvable via linear control�

Corollary 	�� Consider system ��� with J not a multiple of the identity matrix and �H�J� observable�
Suppose the state weighting matrix Q � H �H in �� can be written in the form

Q � ��GG� � ���JGG� �GG�J� � ��JGG�J �
��

for some scalars ��� such that �I��J � �� Then this system is NLQR�solvable via the linear controller

k���� � 	G���I � �J�� �
��

For the symmetric case� i�e�� when J is a multiple of the identity matrix� P is not required to have
any special structure� In this case the system is linear and is given by the linearized system �
	�� Hence
we have the following result�

Lemma 	�� Consider system ��� with J a multiple of the identity matrix� Then this system is NLQR�
solvable via linear control if and only if rankH �rankB � 	� If this condition is satis�ed then the system
is NLQR�solvable via the linear controller

k��x� � 	B�P� �
�

with P given by �

� and the minimum value of the cost is ���P���

�



��� Suboptimal Linear Controllers

As in the case of the HJE we restrict our attention here to quadratic solutions of the HJI �	��� The
following theorem gives necessary and su�cient conditions for the existence of a quadratic V solving the
HJI�

Theorem 	�� Consider system ��� with �H�J� observable� A quadratic function� given by V ��� �
��P�� satis�es the conditions of Theorem 
�� if and only if the matrix P is a positive de�nite solution
to the algebraic Riccati inequality �ARI�

H �H 	 PBB�P � � �
��

and
P � �J � �J� �
��

for some scalars ��� when J not a multiple of the identity matrix�
When these conditions are satis�ed� the controller given by

k���� � 	B�P� ����

renders the closed�loop system globally asymptotically stable about the origin and the cost is bounded
above by ���P���

Proof� �Su�ciency�� One can readily show that if a matrix P satis�es the hypotheses of the theorem�
then the function V ��� � ��P� satis�es the conditions of Theorem 
���

�Necessity�� Suppose that there exists a quadratic function� given by V ��� � ��P�� which satis�es the
conditions of Theorem 
��� Then

���Pf��� � ��H �H� 	 �PBB�P� � �� � � � IR� ����

Let h���� �� ��H �H� 	 �PBB�P� and h���� �� ���Pf���� Clearly� h� is a homogeneous polynomial
of degree � and h� is a homogeneous polynomial of degree 	� The left�hand side of inequality ���� is the
sum of two homogeneous polynomials one of degree � and the other of degree 	�

We claim that if h���� � h���� � � for all � � IR� then necessarily h���� � � for all � � IR� and
hence� h���� � � for all � � IR�� To show this� �rst notice that by the homogeneity of h� and h� we have
that h����� � ��h���� and h����� � ��h���� for all � � IR� and all � � IR� Suppose now that the claim
is false� Then there exist  � � IR� such that h�� �� �� �� By the homogeneity of h���� and h���� we have
��h�� �� � ��h�� �� � �� for all � � IR� or by dividing by �� �� � that �h�� �� � h�� �� � � for all � � IR�
Let � � jh�� ��j�h�� �� if h�� �� � � or � � jh�� ��j�h�� �� if h�� �� � � to arrive to a contradiction�

Using this result� we get that ���� is satis�ed for some P if and only if ��Pf��� � � for all � � IR�

and ��H �H�	 �PBB�P� � � for all � � IR�� Equivalently� from Lemma 	�� equation ���� is satis�ed
for some P if and only if P � �J � �J� when P is not a multiple of the identity matrix and P satis�es
the algebraic Riccati inequality H �H 	 PBB�P � �� Moreover� since V ��� � ��P� is positive de�nite�
P is a positive de�nite solution of �
���

Theorem ��� along with Theorem ��� allow us� without any loss of generality� to dispense with the
search of positive de�nite quadratic solutions to the HJE and HJI and work with the corresponding ARE
and ARI instead�

Similarly to Corollary ��� we have the following result which characterizes all state weighting matrices
for the suboptimal problem�

Corollary 	�� Consider system ��� with J not a multiple of the identity matrix and �H�J� observable�
Suppose the state weighting matrix Q � H �H in �� satis�es

Q � ��GG� � ���JGG� �GG�J� � ��JGG�J ����

for some scalars ��� such that �I � �J � �� Then the controller

k���� � 	G���I � �J�� ��	�

renders the closed�loop system globally asymptotically stable about the origin and the cost is bounded
above by ����J�� � ���

�J����

�	



The structural condition �
�� for the solution of �
�� is� obviously� very restrictive� It is� nevertheless�
as Theorem ��� states� a necessary and su�cient condition for the existence of a quadratic V which solves
the HJE� If �
����
�� fails� one may still desire to use a linear controller in attacking the minimization
problem ��� subject to ��� Clearly� by restricting optimization to the class of linear controllers the best
one can expect is to get an upper bound for the cost ��� Thus from the question of minimizing the cost
�� subject to the dynamics ��� one turns to the question of minimizing an upper bound for this cost
using linear controllers via Theorem ����

� Special Cases

In this section we present some special cases� when the linear controller is indeed the optimal one� In
other words� the ARE �
�� admits a positive de�nite solution of the form �
���
Case I� Consider system ��� with

G � I

and

z �

�
r�
u

�
� r � �

Then the problem is that of minimizingZ
�

�

r����t���t� � u��t�u�t�dt ��
�

subject to the dynamics
J �� � �J��� � � u ����

It can be readily shown that in this case P � rJ solves the the ARE �
��� Therefore the optimal
stabilizing controller in this case is simply given by

k���� � 	r� ����

This case has been treated repeatedly in the literature �Refs� 
������ To the authors� knowledge this
is the only reported solution to the rigid body NLQR problem thus far�

Case II� Suppose that G and H are orthogonal matrices� i�e�� G�G � GG� � I and H �H � HH � � I�
This occurs when the input torques are about mutually perpendicular axes and the components of the
output vector y � H� are angular velocity components about mutually perpendicular axes� Clearly� in
this case P � J is a positive de�nite solution to ARE �
�� and again the optimal controller is linear� it
is given by

k���� � 	B�P� � 	G�� ���

Case III� Suppose that H � G�� This implies that the actuator input u is collocated with the output
y � H�� Again the ARE �
�� is solvable with P � J � Therefore� the optimal feedback controller is the
following simple linear output�feedback controller�

k���� � 	G�� � 	H� � 	y ����

� Optimization Algorithm

A necessary condition for the existence of a positive de�nite matrix P which solves ARI �
�� is that
rankH � rankG� In general� the search for a solution to the ARI involves a numerical search algorithm�
Since P must have the special structure �
��� the search algorithm reduces to a numerical search over
the two parameter space ������ Unfortunately� the problem is not convex in terms of ���� On the other
hand� the fact that we have only two parameters makes the problem tractable and allows for computation
of the global optimizer�

Since an upper bound on the cost is given by ���P�� for all �� � IR�� we consider the following
optimization problem�

min
���

trace�P � ����

subject to
P � �J � �J�� P � � and H �H 	 PBB�P � � ����

��



If �
�� is satis�ed with equality� then this P solves the �ARE� and yields an optimal controller�
The next example illustrates that although there may not exist a solution of the form �
�� which

solves the ARE� there may exist a solution of this form solving the ARI�

Example 
�� Consider system ��� with J � diag��� 	� 
� and

B �

�
� 	� �
� � �
� � �

�
� H �

�
� � �
� � �
� 	� �

�

Since rankB �rankH � 	 the unique positive de�nite solution of the ARE can be computed by �

�
to be

P �

�
������ 	����	� 	�����


	����	� ����� 	����
	�����
 	���� ���	


�
����

This matrix is positive de�nite with eigenvalues ����
� ������ ������ but it is not of the form �
�� for
any ��� � IR� However if we choose ��� such as to minimize trace�P � subject to the constraints �����
we obtain the values �� � ��
��� and �� � ������� The positive de�nite matrix P � ��J � ��J� �
diag������
� ������ ���	��� satis�es the ARI� The eigenvalues of the matrix H �H	PBB�P for this choice
of P are ���	�����	������	��

� Numerical Example

Consider the system in Example �� and suppose that there is only one torque available and only one
rate gyro for angular velocity measurements� both about the axis corresponding to the unit vector
�e � � ���	�� ������ ����	� ��� Therefore�

G �

�
���	��
������
����	�

�
����

and the angular velocity measurement is given by y � G��� If we choose H � G�� the corresponding
optimal controller will only require the available measurement y� According to Case III in Section �� the
matrix P � J � diag��� 	� 
� solves the ARE �
�� and the optimal stabilizing controller is given by the
output feedback controller

u � 	y ��	�

Figure � contains the results of numerical simulations subject to the initial condition �� � ���	���� ��� rad�sec�
As expected� the angular velocity tends to zero asymptotically� The running value of the cost is shown
in Fig� �� The minimum value of the cost is ���J�� � ��� which corresponds to the dashed horizontal
line in Fig� ��

	 Conclusions

We have derived conditions for the solution of the optimal and suboptimal quadratic regulation of the
nonlinear system which describes the dynamical motion of a rotating rigid body� This is an important
example of a nonlinear system whose linearization is� in general� neither detectable nor stabilizable�
One thus has to deal with the true nonlinear equations of the system� This system� however� has the
property of admitting globally asymptotically stabilizing controllers which are linear� Motivated by this
observation� we search over the class of linear controllers for the one that achieves the best performance�

�
 Appendix

Consider a system described by

�x � x� �Ax� ��
a�

z � Cx ��
b�

where x�t� � IR�� z�t� � IRp and A� C are constant real matrices of appropriate dimensions� We have
the following result�

��
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Figure �
 Angular velocity history�

Lemma ���� Consider system ���� with C �� �� If x��� is any solution of ���� with z�t� � �� then
x�t� � � or there is an eigenvector v of A such that

lim
t��

x�t� � v ����

Proof� Consider any solution x��� of system ��
� with z�t� � �� i�e� Cx�t� � �� We need to consider
di�erent cases depending on the rank of C�

If rank�C� � 	� then the null space of C is trivial and we must have x�t� � ��
If rank�C� � �� then the null space of C has dimension �� hence x�t� � 	�t�w where Cw � � and

w �� �� Substitution into ��
a� and taking the dot product of both sides of the above equation with w
yields

�	 jjwjj� � �

Since w �� �� we have �	 � �� hence 	�t� � 	� � 	��� and x��� is a constant solution given by x�t� � v ��
	�w� We also have v� �Av� � �� If x�t� is not identically zero� then v is nonzero� Since v � �Av� is zero
and v is nonzero� v and Av must be parallel� i�e�� there there exist a scalar � such that

Av � �v

So� v is an eigenvector of A and ���� holds�
Consider now the case in which rank�C� � �� First note that the structure of system ��
� is invariant

under a right�handed orthogonal state transformation� i�e�� suppose one introduces a new state �x de�ned
by x � T �x where T �T � I and det T � � then� the resulting description will be of the form

��x � �x� � �A�x�

z � �C�x

where �A � T �AT � �C � CT � So� without loss of generality we suppose that Cx � � is equivalent to
x� � �� Suppose x��� is a solution for which z�t� � �� Let aij denote the ij�th element of the matrix A�
If we write equation ��
a� in scalar form and let x� � �� we obtain

�x� � �a��x� � a��x��x�

�x� � 	�a��x� � a��x��x�

If a�� � a�� � �� then �x� � �x� � �� hence x�t� � v �� x���� Consider now �a��� a��� �� ��� �� and
introduce new variables 
� � a��x� 	 a��x� and 
� � a��x� � a��x�� The evolution of these variables is

��
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described by

�
� � 
��

�
� � 	
�
�

If 
�� � 
���� � � then 
��t� � � and 
��t� � 
�� � 
���� and the solution for 
 is an equilibrium
solution given by �
��t�� 
��t�� � �
��� ��� so� ���� holds� Consider now 
�� �� �� It may readily be
veri�ed that along any solution the quantity 
�� � 
�� is constant� This implies that all non�equilibrium
solutions lie on a circle of radius

p

��� � 
��� � hence all solutions are bounded� The boundedness of 


and the �rst di�erential equation implies that we must have limt�� 
��t� � �� From this we conclude

that limt�� 
��t� � �
����
����
�

� � So� for this case� we have shown that either x�t� � � or conclusion ����
holds for some constant vector v� Using di�erential equation ��
a� one can then show that v� �Av� � ��
As we have argued in the previous case� this implies that v is an eigenvector of A�
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