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Abstract We consider a variation of the classical Markov–Dubins problem dealing
with curvature-constrained, shortest paths in the plane with prescribed initial and ter-
minal positions and tangents, when the lower and upper bounds of the curvature of the
path are not necessarily equal. The motivation for this problem stems from vehicle
navigation applications, when a vehicle may be biased in taking turns at a particu-
lar direction due to hardware failures or environmental conditions. After formulating
the shortest path problem as a minimum-time problem, a family of extremals, which
is sufficient for optimality, is characterized, and subsequently the complete analytic
solution of the optimal synthesis problem is presented. In addition, the synthesis
problem, when the terminal tangent is free, is also considered, leading to the char-
acterization of the set of points that can be reached in the plane by curves satisfying
asymmetric curvature constraints.

Keywords Markov–Dubins problem · Curvature constrained paths · Asymmetric
steering constraints · Non-holonomic systems

1 Introduction

The origins of the problem dealing with the characterization of curvature-constrained
planar paths of minimal length and with prescribed positions and tangents can be
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traced back to the end of the nineteenth century, when the Russian mathematician
A.A. Markov posed the problem for the first time. In 1957 L.E. Dubins generalized
the original problem formulation by posing the problem “on curves of minimal length
with a constraint on average curvature, and with prescribed initial and terminal po-
sitions and tangents” in the n-dimensional Euclidean space. Dubins addressed the
planar case of this minimization problem by characterizing six families of paths, that
were sufficient for optimality for any set of prescribed boundary conditions [1]. We
shall refer to the problem of finding the shortest, curvature-constrained planar path as
the Markov–Dubins (MD for short) problem, as suggested by Sussmann [2].

The solution of the MD problem is commonly interpreted as the minimum-time
path of a vehicle that travels in the plane with constant unit speed, and such that the
direction of its velocity vector cannot be changed faster than a given constant. This
simple kinematic model is known in the literature as the Dubins’ car although, as it
is highlighted in [3], Dubins never introduced such a kinematic model in his work.
It was actually R. Isaacs, who first introduced the kinematic model that is widely re-
ferred as the Dubins car in the formulation of his classic homicidal chauffeur problem
[4, 5]. In this paper, we shall refer to this kinematic model as the Isaacs–Dubins (ID)
car as suggested by Patsko and Turova [3]. The accessibility/reachability properties
of the ID car were first studied by Cockayne and Hall in [6]. In addition, Reeds and
Shepp examined a generalization of the MD problem, known as the Reeds–Shepp
(RS) problem, when the minimal-length path may contain cusps, or equivalently the
ID car is allowed to move both forwards and backwards with constant unit speed
(a kinematic model known as the Reeds–Shepp car) [7].

All the aforementioned results were based more or less on constructive proofs
and/or ad hoc methods. These approaches, even though sufficient for the examination
of each particular optimization problem, are of limited use as tools for addressing
other similar problems. A number of authors, during the 1990s, argued that the sys-
tematic application of optimal control techniques would provide more rigorous proofs
to the MD and RS problems along with a more general framework for addressing sim-
ilar problems in the future. Following this line of argument, Sussmann and Tang [8]
and Boissonnat et al. [9] reformulated the RS and the MD problems as minimum-time
problems, and they subsequently solved them by employing standard optimal control
tools along with geometric control ideas. They provided more general and rigorous
proofs, refining the original results of [1] and [7]. There is a plethora of interesting
extensions/variations of the MD problem based on its kinematic interpretation. The
reader may refer to [10–19].

In this work, we consider the problem of finding curvature-constrained, shortest
paths in the plane with prescribed positions and tangents, when the lower and upper
bounds of the curvature are not necessarily equal. The motivation for this problem
stems from vehicle navigation problems when the maneuverability of the vehicle tak-
ing a left or a right turn is asymmetric. A typical case would be a UAV with a dam-
aged aileron as it is shown in [20]. Henceforth, we shall refer to this generalization
of the standard MD problem as the Asymmetric, Sinistral/Dextral1 Markov–Dubins
problem (ASDMD for short) [22]. Following the approach of [2, 9], we formulate the

1The term sinistral (dextral) means “inclined to left (right)” [21].
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ASDMD problem as a minimum-time problem, and we investigate its (time-) optimal
synthesis, that is, (a) we characterize a family of extremal controls that is sufficient
for optimality; (b) we provide a state-feedback minimum-time control scheme; and
finally (c) we compute the level sets of the minimum time analytically. Different parts
of the synthesis of the standard MD problem, which form the complete solution of the
problem, when combined appropriately, are presented in [2, 9, 23, 24]. Additionally,
the synthesis problem of the ASDMD, when the tangent of the curve at the terminal
position is free, is also considered, leading us to the analytic characterization of the set
of points that can be reached by curves satisfying asymmetric curvature constraints.

The rest of the paper is organized as follows. In Sect. 2, we formulate the ASDMD
as a minimum-time problem, and we subsequently solve the corresponding synthesis
problem in Sects. 3 and 4. Furthermore, the solution of the synthesis problem, when
the tangent of the path at the terminal position is free, is presented in Sect. 5. Finally,
Sect. 6 concludes the paper with a summary of remarks.

2 Kinematic Model and Problem Formulation

In this paper, we are interested in the solution of the curvature-constrained, shortest-
path problem in the plane with prescribed initial and final positions and tangents,
when the lower and upper bounds of the path curvature are not necessarily equal.
Equivalently, this problem can be cast as a minimum-time problem for a vehicle,
whose motion is described by the following kinematic equations:

ẋ = cosϑ, ẏ = sinϑ, ϑ̇ = u/ρ, (1)

where x, y are the Cartesian coordinates of a reference point of the vehicle, ϑ is the
direction of motion of the vehicle, u is the control input and ρ is a positive constant.
We assume that the set of admissible control inputs, denoted by U , consists of all mea-
surable functions u defined on [0, T ], where T > 0, taking values in Uδ := [−δ,1],
where δ ∈]0,1]. To this end, let � := ρ/δ; then it follows that ρ and � are the mini-
mum turning radii for counterclockwise and clockwise turns, respectively. The case
Uδ := [−1, δ] can be treated similarly. We call the system described by (1) and with
input value set Uδ the asymmetric, sinistral/dextral Isaacs–Dubins (ASDID for short)
car.

It is a well-known fact that the standard ID car is completely controllable [8]. Next,
it is shown that the ASDID car is also completely controllable. The controllability of
the ASDID is established by proving that (1), with input value set U ′

δ := [−δ, δ] ⊆ U ,
define a completely controllable system. It suffices to note that the system (1), with
input value set U ′

δ , is the standard ID car with minimum turning radius � (for both
left and right turns), which is a completely controllable system.

It is worth noting that the assumption δ ∈]0,1], which guarantees that 0 is an
interior point of the input value set, can actually be relaxed, and it can be assumed
instead that δ ∈ [0,1]. In the latter case, δ = 0 implies that the ASDID car cannot take
right turns at all. A proof of the complete controllability in this case, which is based
on solely geometric arguments, can be found in [22].

Next, we formulate the following minimum-time problem with fixed initial and
terminal boundary conditions for the system (1).
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Problem 2.1 Given the system described by (1) and the cost functional

J (u) =
∫ Tf

0
1 dt = Tf, (2)

where Tf is the free final time, determine a control input u∗ ∈ U such that

(i) The trajectory x∗ : [0, Tf] �→ R
2 × S

1, generated by the control u∗, satisfies the
boundary conditions

x∗(0) = (0,0,0), x∗(Tf) = (xf, yf, ϑf). (3)

(ii) The control u∗ minimizes the cost functional J (u) given in (2).

The existence of an optimal solution to Problem 2.1 can be established by means of
Filippov’s Theorem on minimum-time problems with prescribed initial and terminal
states [25], leading to the following proposition.

Proposition 2.1 The minimum-time Problem 2.1 with boundary conditions (3) has a
solution for all (xf, yf, ϑf) ∈ R

2 × S
1.

3 Analysis of the ASDMD Minimum-Time Problem

In this section, we characterize the structure of the optimal paths using a similar
approach as in [8, 26]. To this end, consider the Hamiltonian H : R

2 × S
1 × R

3 ×
Uδ �→ R of Problem 2.1, which is defined as

H(x,p, u) := p0 + p1 cosϑ + p2 sinϑ + p3u

ρ
, (4)

where p := (p1,p2,p3). From Pontryagin’s Maximum Principle (PMP) it follows
that, if x∗ is a minimum-time trajectory generated by the control u∗, then there exists
a scalar p∗

0 ∈ {0,1} and an absolutely continuous function p∗ : [0, Tf] �→ R
3, where

p∗ := (p∗
1,p∗

2,p∗
3), known as the costate, such that

(i) ‖p∗(t)‖ + |p∗
0 | does not vanish for all t ∈ [0, Tf],

(ii) p∗(t) satisfies for almost all t ∈ [0, Tf] the canonical equation ṗ∗ =
− ∂H

∂x (x∗,p∗, u∗), which for the system (1) reduces to

ṗ∗
1 = 0, ṗ∗

2 = 0, ṗ∗
3 = p∗

1 sinϑ∗ − p∗
2 cosϑ∗, (5)

(iii) p∗(Tf) satisfies the transversality condition associated with the free final-time
Problem 2.1

H
(
x∗(Tf),p∗(Tf), u

∗(Tf)
) = 0. (6)

Because the Hamiltonian does not depend explicitly on time, it follows from (6) that

H
(
x∗(t),p∗(t), u∗(t)

) = 0 (7)
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for almost all t ∈ [0, Tf], which furthermore implies, by virtue of (5), that

−p∗
0 = p∗

1(0) cosϑ∗ + p∗
2(0) sinϑ∗ + p∗

3u∗

ρ
. (8)

Furthermore, the optimal control u∗ satisfies

H
(
x∗(t),p∗(t), u∗(t)

) = min
v∈[−δ,1] H

(
x∗(t),p∗(t), v

)
(9)

for almost every t ∈ [0, Tf]. It follows that

u∗(t) =

⎧⎪⎨
⎪⎩

+1, if p∗
3(t) < 0,

v ∈ [−δ,1] if p∗
3(t) = 0,

−δ, if p∗
3(t) > 0.

(10)

Using similar arguments as in [8, 26] one can show the following proposition.

Proposition 3.1 The optimal control u∗ of Problem 2.1 belongs necessarily to U∗,
where

U∗ := {{
u±,0,u±}

,
{
u±,0,u∓}

,
{
u±,u∓,u±}}

, u+ := 1, u− := −δ.

(11)

Proposition 3.1 implies that a time-optimal path of Problem 2.1 is a concatenation
of at most three segments, which are either bang arcs, denoted by b− (when u∗ = −δ)
and b+ (when u∗ = 1), or a singular arc (when u∗ = 0), denoted by s. Note that b−
and b+ arcs correspond to circular arcs of radius � and ρ respectively, whereas a
singular arc s corresponds to a straight line segment. It follows that a minimum-time
path of Problem 2.1 has necessarily one of the following structures:

(i) b−
α sβb−

γ , b+
α sβb+

γ , b−
α sβb+

γ and b+
α sβb−

γ (two bang arcs connected via a singular
arc),

(ii) or b+
α b−

β b+
γ and b−

α b+
β b−

γ (no singular arc),

where the subscripts α, β , and γ denote the duration of motion along the first, second,
and third path segments, respectively.

Proposition 3.1 provides us with six families of paths, that suffice to connect any
pair of prescribed initial and terminal configurations in R

2 × S
1 similarly to the solu-

tion of the standard MD problem. Although the collection of candidate optimal paths,
that solve Problem 2.1, are at this point significantly reduced, it is still possible to re-
fine these families further, as it is demonstrated shortly later, by analyzing the times
at which the concatenations between different arcs take place (switching times).

To this end, let us consider an open interval I ⊂ [0, Tf] with p∗
3(t) �= 0 for all

t ∈ I . The restriction of the optimal control u∗ on I is a piecewise constant function,
which jumps at most twice, and u∗(t) ∈ {−δ,+1} for all t ∈ I . By virtue of (5) and
(8), for any subinterval Ib of I where u∗ is constant, p∗

3 satisfies

p̈∗
3 = −

(
u∗

ρ

)2

p∗
3 − u∗p∗

0

ρ
(12)
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Fig. 1 Phase portrait of
(p∗

3 , ṗ∗
3ρ)

for all t ∈ Ib. The general solution of (12) and its derivative for all t ∈ I are given by

p∗
3(t) = C1 cos

u∗t
ρ

+ C2 sin
u∗t
ρ

− ρp∗
0

u∗t
, (13)

ṗ∗
3(t) = C2u

∗

ρ
cos

u∗t
ρ

− C1u
∗

ρ
sin

u∗t
ρ

, (14)

where C1, C2 are real constants. It follows readily that

(
ρṗ∗

3(t)

u∗

)2

+
(

p∗
3(t) + ρp∗

0

u∗

)2

= C2
1 + C2

2 , t ∈ Ib. (15)

The phase portrait of (p∗
3, ṗ∗

3ρ) is given in Fig. 1. In particular, Fig. 1(a) and Fig. 1(b)
illustrate the phase portrait of (p∗

3, ṗ∗
3ρ) for the normal case (p∗

0 = 1) and the abnor-
mal case (p∗

0 = 0), respectively. Contrary to the standard MD, the phase portrait of
(p∗

3, ṗ∗
3ρ) is not symmetric with respect to the axis p3 = 0 (compare for example,

with [26]).

Proposition 3.2 A b−
α b+

β b−
γ [b+

α b−
β b+

γ ] path with min{α,β, γ } > 0 corresponds to an
optimal trajectory of Problem 2.1 only if
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(i) β ∈]πρ,2πρ[ [β ∈]π�,2π�[],
(ii) max{α,γ } ≤ ε(δ,β), where

ε(δ,β) = 2π� + 2� atan

(
δ tan

β

2ρ

) [
ε(δ,β) = 2πρ + 2ρ atan

(
δ−1 tan

β

2�

)]
,

(16)

(iii) min{α,γ } < δ−1β − π� [min{α,γ } < δβ − πρ].

Proof We consider a b−
α b+

β b−
γ path. The case of a b+

α b−
β b+

γ path can be treated sim-
ilarly. First, we consider the abnormal case p∗

0 = 0. As it is illustrated in Fig. 1(b),
a point in the (p∗

3, ρṗ∗
3) plane stays in the half plane p3 ≤ 0 for exactly time β = πρ,

which is the time required for a particle with coordinates (p∗
3, ρṗ∗

3) to travel half
of the circumference of a circle centered at the origin with constant angular speed
ω = 1/ρ. However, using the same geometric argument as in Lemma 23 in [8], we
can show that the resulting path with β = πρ is not optimal. Hence, all optimal ex-
tremals of b−

α b+
β b−

γ type must be normal.
We therefore let p∗

0 = 1 in (12)–(15). In Fig. 2, we observe that the phase portrait
of (p∗

3, ρṗ∗
3) consists of a circle centered at A, denoted by CA, and an ellipse centered

at B, denoted by EB. It is assumed that both CA and EB are traversed clockwise by
a particle with coordinates (p∗

3, ρṗ∗
3), such that the rate of change of the angular

position of the particle is, respectively, equal to 1/ρ and 1/�, when measured from
A and B. Note that a jump from u∗ = −δ to u∗ = +1, and vice versa, occurs only if
EB intersects CA along the axis p∗

3 = 0. If this intersection does occur, we denote by
C and D the points of intersection. Let r and rδ denote the distance of either C or D
from A and B, respectively. Then EB and CA intersect only if r ≥ ρ and rδ ≥ �, and

furthermore rδ = √
r2 + �2 − ρ2 as shown in Fig. 2.

From Fig. 2 it follows that β corresponds to the travel time of the point (p∗
3, ρṗ∗

3)

from D to C along the circle CA. Moreover, α and γ are upper bounded by the travel
time from C to D along the ellipse EB. We observe that πρ is a strict lower bound for
β since ρ > 0 (note that β approaches πρ as A gets closer to O, without reaching it
as far as ρ > 0). Furthermore, 2πρ and 2π� are strict upper bounds for β and both α

and γ , respectively, since a bang arc b+
2π� or b−

2πρ corresponds to a full circle driving

the system (1) to the same state, and thus neither b+
2π� nor b−

2πρ can be part of an
optimal solution.

Next, we improve the upper bound on α, γ . In particular, we observe in Fig. 2 that,
given β where β = 2(π − ĈAO)ρ, then α or γ is maximized if the point (p∗

3, ρṗ∗
3)

coincides with C at t = 0 or D at t = Tf, respectively; that is, max{α,γ } ≤ 2(π −
D̂BO)�. By using simple geometric arguments, along with the fact that δ ∈]0,1], it

follows that D̂BO = atan(δ tan ĈAO). Thus, max{α,γ } ≤ 2(π − atan(δ tan ĈAO))�,

and β = 2(π − ĈAO)ρ. Equation (16) follows immediately.
Finally, the third condition of the proposition is proved by means of simple geo-

metric arguments as in Lemma 3 of [24]. �
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Fig. 2 Phase portrait (p∗
3 , ρṗ∗

3)

Proposition 3.3 A b−
α sβb−

γ path corresponds to a time-optimal trajectory of Prob-
lem 2.1 only if α + γ ≤ 2π�.

Proof See the proof of Lemma 5 of [24]. �

It is worth mentioning that Lemma 5 of [24] does not apply for b+sb+ paths of the
ASDMD problem. In particular, as it is illustrated in Fig. 3, the ASDID car emanating
from O reaches the terminal configuration xf = (xf, yf, ϑf) by traversing a b+

α sβb+
γ

path with α + γ > 2πρ. The total elapsed time is the same as if the ASDID car had
traversed a b−

α sβb−
γ with α + γ ≤ 2π�. Therefore, if the path b−sb− is time-optimal,

then the b+
α sβb+

γ path is necessarily time-optimal as well. Thus, we conjecture that
there exist b+

α sβb+
γ paths with α + γ > 2πρ, that are optimal paths of the ASDMD

problem. As it is demonstrated in Sect. 4, our conjecture is indeed correct. Next we
provide a conservative bound on the sum of α and γ along b+

α sβb+
γ paths.

Proposition 3.4 A b+
α sβb+

γ path corresponds to a time-optimal trajectory of Prob-
lem 2.1 only if α + γ ≤ (4π − ϑf)ρ.

Finally, for b−sb+ and b+sb− paths, as in the standard MD, we simply take the
most conservative bounds. In particular, we have the following proposition.

Proposition 3.5 A b+
α sβb−

γ and a b−
α sβb+

γ path correspond to a time-optimal trajec-
tory of Problem 2.1 only if max{α, δγ } < 2πρ and max{δα, γ } < 2πρ, respectively.

4 Time-Optimal Synthesis

In this section, we address the time-optimal synthesis problem for the ASDMD prob-
lem, and thus provide a complete characterization of the optimal control that solves
Problem 2.1 with boundary conditions (3) for all (xf, yf, ϑf) ∈ R

2 × S
1.
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Fig. 3 A b+
α sβb+

γ path with
α + γ > 2πρ can be an optimal
solution of the ASDMD
problem, in contrast to the
solution of the standard MD
problem

Fig. 4 The minimum-time paths for the steering problem from (0,0,0) to (0,0,π) for the ID and the
ASDID cars

First, we show by means of an example, that the synthesis of optimal paths for the
ASDMD problem may be quite different from that of the MD problem. In particular,
let us consider the problem of characterizing the minimum-time path from (0,0,0)

to (0,0,π) for the ID and the ASDID cars. On the one hand, the optimal solution
of the standard MD problem is either a b+

α b−
β b+

γ path or a b−
α b+

β b−
γ path, where α =

γ = πρ/3 and β = 5πρ/3, as shown in Fig. 4(a) (these two paths have exactly the
same length). On the other hand, as it is illustrated in Fig. 4(b), the optimal path for
the ASDMD problem is either a b−

α b+
β b−

γ path, where α = γ = � acos(1/(1 + δ))

and β = πρ + 2δα or an b+
α sβb+

γ path, where α = γ = 3πρ/2 and β = 2ρ. The

b−
α b+

β b−
γ and the b+

α sβb+
γ paths have exactly the same length when δ = δ̃, where δ̃ is

the solution of the equation 1/(1 + δ) + cos((π − δ)/(1 + δ)) = 0. Note that for this
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specific problem, the b+
α sβb+

γ path can never be an optimal path of the standard MD
problem, in light of Lemma 5 of [24].

To simplify the presentation and without loss in generality, we henceforth consider
the minimum trajectories of the ASDID car from (0,0,0) to (xf, yf, ϑf) ∈ Pϑf , where
Pϑf := {(x, y,ϑ) ∈ R

2 × S
1 : ϑ = ϑf} as suggested in [23, 24]. To this end, let

Rϑf(u) denote the reachable set that corresponds to the control sequence u ∈ U∗. The
coordinates of all points in Pϑf that can be reached by means of a b+sb+ control
sequence can be expressed as functions of the times of motion along the three arcs
of the path, namely α, β , and γ , by simply integrating (1) from t = 0 to t = α for
u = +1, and subsequently from t = α to t = α + β for u = 0, and finally from t =
α + β to the final time Tf(b+sb+) = α + β + γ . Note that γ can always be expressed
in terms of the parameters α and β (actually for a b+sb+ path γ depends only on
α as we shall see shortly later). In particular, since the total change of the velocity
direction ϑ (initially ϑ = 0) along the path must equal ϑf (mod 2π), it follows readily
that α/ρ + γ /ρ = ϑf (mod 2π), which furthermore implies that

γ (α) =

⎧⎪⎨
⎪⎩

ρϑf − α, if ϑf ≥ α

ρ
,

ρ(2π + ϑf) − α, if ϑf <
α

ρ
.

(17)

It follows after routine calculations that

xf(α,β) = ρ sinϑf + β cos
α

ρ
, yf(α,β) = ρ + β sin

α

ρ
− ρ cosϑf. (18)

Furthermore, Proposition 3.4 determines the intervals of admissible values of α

and β for a b+sb+ control sequence, denoted by Iα(b+sb+) and Iβ(b+sb+), re-
spectively. Thus, the reachable set of the control sequence b+sb+ is constructed
by determining all points (xf, yf, ϑf) ∈ Pϑf for every pairs of (α,β) ∈ Iα(b+sb+) ×
Iβ(b+sb+).

Conversely, given a point (xf, yf, ϑf) ∈ Rϑf(b
+sb+) one can determine the param-

eters α and β such that xf and yf satisfy (18). In particular, after some calculation it
follows from (18) that

α(xf, yf) = ρ atan 2
(
B(yf),A(xf)

)
, β(xf, yf) =

√
A2(xf) + B2(yf), (19)

where A(xf) = xf − ρ sinϑf, B(yf) = yf + ρ cosϑf − ρ, and atan 2 : R
2 �→ [0,2π[ is

the two-argument arctangent function.
Figure 5(a) illustrates the reachable set Rϑf(b

+sb+) of the ASDID car (note that
for this path family the value of δ does not affect the geometry of the reachable set),
whereas the same reachable set for the standard ID car is illustrated in Fig. 5(b). We
observe that the former set is a superset of the latter. This is because for the ASDMD
problem α satisfies α+γ (α) ≤ (4π −ϑf)ρ (Proposition 3.4), whereas for the standard
MD problem it satisfies the stricter condition α + γ (α) ≤ 2πρ (Lemma 5 of [24]).
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Fig. 5 Reachable set Rϑf (b
+sb+) for δ ∈]0,1[ (ASDMD problem) and δ = 1 (standard MD problem).

The white colored region corresponds to terminal configurations that cannot be reached in minimum time
by means of a b+sb+ control sequence for the standard MD problem

Finally, after having established the connection between (α,β) and (xf, yf), the
total time Tf(b+sb+) is given, via (17), by

Tf(b
+sb+) =

{
β + ρϑf, if ϑf ≥ α/ρ,

β + ρ(2π + ϑf), if ϑf < α/ρ.
(20)

The previous procedure can be applied mutatis mutandis for the rest of the con-
trol sequences from U∗ (although the algebra, especially in the case of b+b−b+ or
b−b+b− paths, is significantly more evolved). In the Appendix we provide the equa-
tions that give α and β as functions of xf and yf, and vice versa, as well as the mini-
mum time Tf for all the control sequences u ∈ U∗.

The next step involves the partitioning of Pϑf into at most six domains, denoted
by R∗

ϑf
(u), where u ∈ U∗, such that if (xf, yf, ϑf) ∈ int(R∗

ϑf
(u)), then (xf, yf, ϑf) can-

not be reached faster with the application of v ∈ U∗, where v �= u. We shall re-
fer to this partition of Pϑf as the optimal control partition of the ASDMD prob-
lem. The number of these domains can be strictly less than six in case the domain
associated with a particular control sequence has an empty interior. As we shall
see shortly afterwards, such “pathological” cases arise in the time-optimal synthe-
sis of the ASDMD problem in contrast to the optimal synthesis of the standard
MD problem. The procedure required for the characterization of the domain over
which the control sequence, say b+sb+, is optimal, is summarized below. We de-
note this domain by R∗

ϑf
(b+sb+). In particular, let (xf, yf, ϑf) ∈ Rϑf(b

+sb+), and
let Uc(b+sb+) ⊂ U∗ denote the set of control sequences u that are different from
b+sb+ and such that (xf, yf, ϑf) ∈ Rϑf(u). Then (xf, yf, ϑf) ∈ R∗

ϑf
(b+sb+) if and only

if Tf(b+sb+) ≤ minu∈Uc(b+sb+) Tf(u), and furthermore (xf, yf, ϑf) ∈ int(R∗
ϑf

(b+sb+))

if and only if Tf(b+sb+) < minu∈Uc(b+sb+) Tf(u).
Figure 6 illustrates the optimal control partition of Pπ/3 as well as the level sets of

the minimum time Tf, for different values of the ratio δ−1 = �/ρ. In particular, each
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Fig. 6 Partition of Pπ/3 and level sets of Tf = Tf(x, y) for different values of the ratio δ−1 = �/ρ

domain of the partition Pπ/3 is illustrated by a colored set whereas the level sets of the
minimum time are denoted by solid black lines. We observe that as the ratio �/ρ in-
creases, the domains R∗

π/3(b
+sb+), R∗

π/3(b
−sb+) and R∗

π/3(b
+sb−), primarily, and

the domain R∗
π/3(b

−b+b−), secondarily, expand against the domain R∗
π/3(b

−sb−)

as well as the disconnected components of R∗
π/3(b

+sb−) and R∗
π/3(b

−sb+) that are
close to the origin. We observe, in particular, that for �/ρ = 1.8 (Fig. 6(e)) the par-
tition of Pπ/3 consists of five domains since the domain R∗

π/3(b
+b−b+) is reduced

to the empty set. Similarly, for �/ρ = 2 (Fig. 6(f)) only four domains are non-empty
since R∗

π/3(b
−sb−) = R∗

π/3(b
+b−b+) = ∅. In addition, we observe in Fig. 6(a)–6(f)

that the boundaries of each domain change significantly as the ratio �/ρ varies.
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5 Time Optimal Synthesis and Reachable Sets of the ASDMD when the Final
Tangent of the Path is Free

In this section, we consider the optimal synthesis of Problem 2.1, when ϑf is assumed
to be free. The solution of this variation of Problem 2.1 will allow us to charac-
terize analytically the set of points in the plane that can be reached by curves with
asymmetric curvature constraints. These reachable sets along with the level sets of
the minimum time of the ASDMD problem, when ϑf is free, exhibit a few notable
features related to the existence/absence of symmetry planes that are not observed
neither in the reachable sets nor the syntheses of the standard MD and the ASDMD,
when ϑf is fixed, problems. Favoring the economy of presentation, we shall not dis-
cuss in detail the analysis of this problem, which is similar to the discussion presented
in Sects. 3–4, but instead we will present the solution of the time-optimal synthesis
problem directly.

First, we discuss briefly the structure of the family of extremal controls, which
is sufficient for optimality for Problem 2.1, when ϑf is free. In particular, the new
transversality condition for ϑ is given by p∗

3(Tf) = 0. Following the same line of
arguments as in [26], where the standard MD, when ϑf is free, is addressed in detail,
we conclude that a composite path whose final arc is either a b− or a b+ arc, that is
preceded by an s arc, cannot be part of an optimal path. The following proposition
gives us the family of candidate optimal controls for Problem 2.1, when ϑf is free (it
follows similarly to [26]).

Proposition 5.1 The optimal control u∗ of Problem 2.1, when ϑf is free, belongs
necessarily to U∗, where

U∗ := {{
u±,0

}
,
{
u±,u∓}}

, u+ := 1, u− := −δ. (21)

Proposition 5.1 implies that the set of candidate optimal controls of Problem 2.1,
when ϑf is free, consists of only four control sequences with at most one switch. It
follows that the minimum-time paths of Problem 2.1, when ϑf is free, have necessarily
one of the following structures: (i) b+

α b−
β ,b−

α b+
β , (ii) b+

α sβ,b−
α sβ .

By repeating the analysis carried out in Sects. 3 and 4, we can refine the family of
candidate optimal controls (this analysis will lead to a number of propositions simi-
lar to Propositions 3.2–3.5), and subsequently solve the synthesis problem for Prob-
lem 2.1, when ϑf is free. Favoring the economy of presentation, we show directly the
solution of the synthesis problem. In particular, Fig. 7 illustrates the optimal control
partition of the plane as well as the level sets of the minimum time Tf, when ϑf is
free (assuming that the ID/ASDID car starts from the origin with ϑ = 0) for both the
standard ID car (Fig. 7(a)) and the ASDID car (Figs. 7(b)–7(d)). Figures 7(b)–7(d)
illustrate that as the agility of the ASDID car to perform right turns, which is mea-
sured by the ratio �/ρ, is reduced, the sets R∗(b−s) and R∗(b+b−) “shrink” in favor
of the set R∗(b+s), whereas the set R∗(b−b+) remains invariant under the variations
of the ratio �/ρ.

It is worth noting that contrary to the synthesis of the ASDMD problem, when ϑf

is fixed, where both the level sets of the minimum time and the domains of the op-
timal control partition are symmetric with respect to some plane of symmetry (also
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Fig. 7 Partition of P and level sets of Tf = Tf(x, y) for different values of the ratio �/ρ

a characteristic of the optimal synthesis of the standard MD problem), both the level
sets and the domains of the optimal control partition of the ASDMD problem, when
ϑf is free, do not enjoy similar symmetry properties. It appears that the term “asym-
metric” used in the title of this work is more obviously justified in the case when ϑf

is free rather than when ϑf is fixed.
To this end, let Rs

t≤τ and R
asym
t≤τ denote the set of points in the plane that can be

reached by the ID and ASDID car in time t ∈ [0, τ ], respectively (assuming again that
the ID/ASDID car starts from the origin with ϑ = 0). The reachable sets R

asym
t≤τ for

different values of τ are illustrated in Fig. 8. In Figs. 8(a)–8(d), we observe that the
reachable sets R

asym
t≤τ are not symmetric with respect to the x-axis in contrast to the

sets Rs
t≤τ (see, for example, [10, 27]). This comes as no surprise, since both Rs

t≤τ

and R
asym
t≤τ can be interpreted as the union of all the level sets {(x, y) : Tf = t}, for

t ∈ [0, τ ], which, as we have already mentioned, are symmetric with respect to x-axis
for the standard MD problem but not for the ASDMD problem, when ϑf is free.

6 Conclusions

In this article, we have proposed and solved a generalization of the Markov–Dubins
problem that deals with the characterization of minimal-length paths with asymmetric
curvature constraints. This shortest-path problem is equivalent to the characterization
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Fig. 8 Reachable sets R
asym
t≤τ for different values of τ and for �/ρ = 1.6

of time-optimal trajectories for a vehicle with Isaacs–Dubins’ car kinematics, which
has a bias towards left (alternatively, right) turns; a situation that may be the result of
an actuator failure. In the minimum-time formulation of our problem, the asymmet-
ric constraints over the curvature of the minimal-length path are associated with the
minimum radii of a left and a right turn of the Isaacs–Dubins car, which may not be
necessarily equal. Our analysis has revealed that while the structure of the optimal
control is qualitatively the same with the standard MD problem, the synthesis prob-
lem is, nonetheless, significantly different. In addition, we have examined the case
when the tangent of the curve at the terminal point is free, and we have subsequently
characterized the set of points in the plane that can be reached by curves satisfying
asymmetric curvature constraints.

Appendix

In this section, we provide the details for the solution of the equations for the synthe-
sis problem.
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A.1 b+
α sβb+

γ [b−
α sβb−

γ ] Paths

The coordinates of a point in Rϑf(b
+sb+) [Rϑf(b

−sb−)] as a function of the param-
eters α and β are given by

xf = ρ[−�] sinϑf + β cos
α

ρ[�] , yf = ρ[−�] + [−]β sin
α

ρ[�] − ρ[+�] cosϑf.

(22)

Conversely, the parameters α ∈ Iα(b+sb+) [Iα(b−sb−)] and β ∈ Iβ(b+sb+)

[Iβ(b−sb−)] satisfy

α = ρ[�] atan 2(B,A), β =
√

A2 + B2, (23)

where A = xf − ρ[+�] sinϑf and B = [−]yf + ρ[�] cosϑf − ρ[�]. Finally, the final
time Tf(b+sb+) [Tf(b−sb−)] is given by

Tf =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β + ρϑf [�(2π − ϑf], if ϑf ≥ α

ρ

[
ϑf ≤ 2π − α

�

]
,

β + ρ(ϑf + 2π) [β + �(4π − ϑf)], if ϑf <
α

ρ

[
ϑf > 2π − α

�

]
.

(24)

A.2 b+
α sβb−

γ [b−
α sβb+

γ ] Paths

The coordinates of a point in Rϑf(b
+sb−) as a function of the parameters α and β

are given by

xf = (� + ρ) sin
α

ρ[�] + β cos
α

ρ[�] − �[+ρ] sinϑf, (25)

yf = ρ[−�] − [+](� + ρ) cos
α

ρ[�] + [−]β sin
α

ρ[�] + �[−ρ] cosϑf. (26)

Conversely, the parameters α ∈ Iα(b+sb−) [Iα(b−sb+)] and β ∈ Iβ(b+sb−)

[Iβ(b−sb+)] satisfy

α = ρ[�] atan 2
(
(ρ + �)A − Bβ, (ρ + �)B + Aβ

)
, β =

√
A2 + B2 − (� + ρ)2,

(27)

where A = xf + �[−ρ] sinϑf and B = ρ[�] − [+]yf + �[ρ] cosϑf.
Finally, the final time Tf(b+sb−) [Tf(b−sb+)] is given by

Tf =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β + α(1 + δ−1[δ]) − �[+ρ]ϑf, if ϑf ≤ α

ρ

[
ϑf + α

�
≤ 2π

]
,

β + α(1 + δ−1[δ]) + �[−ρ](2π − ϑf), if ϑf >
α

ρ

[
ϑf + α

�
> 2π

]
.

(28)
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A.3 b+
α b−

β b+
γ [b−

α b+
β b−

γ ] Paths

The coordinates of a point in Rϑf(b
+b−b+) as a function of the parameters α and β

are given by

xf = (� + ρ) sin
α

ρ[�] + (� + ρ) sin

(
β

�[ρ] − α

ρ[�]
)

+ ρ[−�] sinϑf, (29)

yf = ρ[−�] − [+](� + ρ) cos
α

ρ[�] + [−](� + ρ) cos

(
β

�[ρ] − α

ρ[�]
)

− ρ[+�] cosϑf. (30)

Conversely, the parameters α ∈ Iα(b+b−b+) [Iα(b−b+b−)] and β ∈ Iβ(b+b−b+)

[Iβ(b−b+b−)] satisfy

α = ρ[�] atan 2

(
A

(
1 − cos

β

�[ρ]
)

+ [−]B sin
β

�[ρ] ,

− [+]B
(

1 − cos
β

�[ρ]
)

+ A sin
β

�[ρ]
)

, (31)

β = �[ρ] arccos

(
1 − A2 + B2

2(ρ + �)2

)
, (32)

where A = xf − ρ[+�] sinϑf, B = yf − ρ[+�] + ρ[−�] cosϑf, and where arccos :
R �→ [π,2π] is the inverse cosine function.

Finally, the final time Tf(b+b−b+) [Tf(b−b+b−)] is given by

Tf =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(1 + δ[δ−1]) + ρ(ϑf + 2π) [−�ϑf],

if ϑf − α

ρ
+ β

�

[
ϑf + α

�
− β

ρ

]
∈]−2π,0],

β(1 + δ[δ−1]) + ρϑf[�(2π − ϑf)],

if ϑf − α

ρ
+ β

�

[
ϑf + α

�
− β

ρ

]
∈]0,2π],

β(1 + δ[δ−1]) + ρ(ϑf − 2π) [�(4π − ϑf)],

if ϑf − α

ρ
+ β

�

[
ϑf + α

�
− β

ρ

]
∈]2π,4π[.

(33)
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