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Abstract

Recent results show that a nonsmooth� time�invariant feedback control law can be used to rotate an axi�
symmetric rigid spacecraft to the zero equilibrium using only two control torques� This method� however�
may require a signi�cant amount of control e�ort� especially for initial conditions close to an equilibrium
manifold corresponding to rotations about the unactuated principal axis� In this paper a control law is
proposed which reduces the control e�ort required to perform rest�to�rest maneuvers for initial conditions
close to this equilibrium manifold� Speci�cally� the phase space of the system is divided into two parts�
one corresponding to initial conditions producing large control e�ort �the �bad� region� and the other
corresponding to initial conditions producing small control signals �the �good� region�� The proposed
control law then renders this undesirable equilibrium manifold unstable driving the trajectories of the
closed�loop system into the �good� region� where the original control law is subsequently used� Numerical
simulations indicate reduction of the control magnitude at the order of 	
��
 � for initial conditions close
to the equilibrium manifold�

� Introduction

The problem of stabilization of a rigid body using less
than three control inputs has received considerable at�
tention in the recent literature� Both the problems of
the stabilization of the dynamics� and the stabilization
of the kinematics have been treated in the literature��� �
The stabilization problem of the complete system� i�e��
the dynamics and the kinematics� has been addressed in
Refs� ���� The attitude stabilization of an axially sym�
metric rigid body using two independent control torques
was studied by Krishnan� et al���� and Tsiotras et al����
If the uncontrolled principal axis is not the axis of sym�
metry� the system is strongly accessible and small time
locally controllable� � When the uncontrolled axis coin�
cides with the axis of symmetry� the complete system
fails to be controllable or even accessible� However� the
system equations are strongly accessible and small time
locally controllable in the case of zero spin rate� A non�
linear control approach was developed in Ref� 	� which
achieves arbitrary reorientation for this restricted case�
In Refs� ������ the authors presented a new formulation
of the attitude kinematics which was used in Ref� �
 to
solve the same problem avoiding the successive switch�
ings of Ref� 	� References 	 and �
 treated the axi�
symmetric case� whereas the non�symmetric case was
dealt with in Refs� ����� and ���

In this paper� a modi�cation of the control law pre�
sented in Ref� �
 for the attitude stabilization of an
axi�symmetric rigid body using two independent con�
trol torques is proposed� Because Brockett�s neces�
sary condition for smooth stabilizability is not satis�ed
for this system� any stabilizing �time�invariant� control
law is necessarily nonsmooth� �Stabilizing time�varying
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smooth control laws may still exist� however�� This non�
smoothness is evident in Ref� �
 in the form of the non�
di�erentiability of the control law at the origin� Because
of the singularity at the origin� this control law may sat�
urate the actuators� especially for initial conditions close
to the equilibrium manifold� It is therefore desirable to
modify the control law of Ref� �
 to reduce the required
control signals� Compared to the control law in Ref� �
�
the modi�ed control law proposed here remedies this
large control input problem by driving the trajectories
of the closed�loop system away from the singular equi�
librium manifold� towards a region in the state space
where the �high authority� part of the control input re�
mains small and bounded� The procedure is simple and
can be easily validated using phase portrait considera�
tions� A numerical example illustrates the control e�ort
improvement using the new control law�

� The Underactuated Spacecraft

The dynamics of a rigid spacecraft with two controls
can be written as

��� � a����� � u� ��a�

��� � a����� � u� ��b�

��� � a����� ��c�

where ai are the inertia parameters satisfying a� � a� �
a��a�a�a� � 
� Here we assume a body��xed reference
frame along the principal axes of inertia�

Equations ��� describe an underactuated spacecraft
with no control authority about the �rd principal axis�
Notice in this case� �� can be controlled only indirectly
through judicious choice of the time histories of ���t�
and ���t�� In case of an axi�symmetric body �about the
��axis�� a� � 
 and a� � �a� � a and Eqs� ��� reduce
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to

��� � a ����� � u� ��a�

��� � �a����� � u� ��b�

��� � 
 ��c�

where ���
� � ��� is constant� Introducing the complex
variables � � ���i �� and u � u��i u� �with i �

p���
the previous equations can be written as

�� � �i a ���� � u ���

� Kinematics of the Attitude
Motion

The orientation of a rigid spacecraft can be speci�ed
using various parameterizations� for example� Eulerian
Angles� Euler Parameters� Cayley�Rodrigues Parame�
ters� Cayley�Klein parameters� etc�	� Recently� a new
parameterization using a pair of complex and real co�
ordinates was introduced�
��� � According to these re�
sults� the relative orientation between two given refer�
ence frames can be represented by two rotations� one
corresponding to the real coordinate �z� and the other
corresponding to the complex coordinate �w�� Specif�
ically� one can align an �inertial� reference frame to a
body��xed frame by �rst performing an initial rotation
of magnitude z about� say� the inertial ��axis and then
performing a second rotation to move the intermedi�
ate ��axis to the body ��axis� The second rotation can
be completely characterized by the complex coordinate
w � w� � iw�� It is a rotation of magnitude

� � arccos

�
� � jwj�
� � jwj�

�
���

about the unit vector

�u �

�
w � �w

�jwj

�
�i
�

� �

�
i� �w �w�
�jwj

�
�i
�

� ���

This situation is depicted in Fig� �� where ��i���
�i���

�i���
is the intermediate reference frame resulting from the
rotation z about the inertial �i� axis� and where �a� b� c�

denote the coordinates of the unit vector along the �i��
axis in the body frame� that is�

�i�� � a �b� � b �b� � c �b� ���

It can be shown�� that the coordinates of the �b� axis

in the �i� frame are also related to �a� b� c�

�b� � �a�i�� � b�i�� � c�i�� ��

With this notation� w represents the stereographic coor�
dinates corresponding to the unit vector �a� b� c� de�ned
by�����

w �
b� i a

� � c
�	�

Alternatively� the equations

a �
i �w � �w�

� � jwj� � b �
w � �w

� � jwj� � c �
�� jwj�
� � jwj�

���
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Fig� � Attitude representation using �w� z� coordinates�

and can be used to �nd a� b and c once w is known� Here
j � j denotes the absolute value of a complex number� i�e��
w �w � jwj�� w � C�

The kinematic equations� which provide the geomet�
ric constraints of the motion and relate the rates of the
kinematic parameters w and z to the angular velocity
vector� can be written as follows�����

�w � �i ��w �
�

�
�

��

�
w

� ��
a�

�z � �� � Im�� �w� ��
b�

where � � �� � i �� and w � w� � iw�� Notice these
equations take the convenient form

d

dt
jw j� � �� � jwj��Re�� �w� ���a�

�z � �� � Im�� �w� ���b�

where bar denotes complex conjugate� Re��� and Im���
denote the real and imaginary parts of a complex num�
ber respectively� In Eq� ���b� only the imaginary part
of the product � �w appears� while in Eq� ���a� only the
real part appears� This duality �or anti�symmetry� of
Eqs� ���a� and ���b� is desirable and can be used to
derive stabilizing control laws for the kinematics de�
scribed by Eqs� ��
�� Clearly� w � 
 if and only if
jwj � 
� and stabilization of the system in Eqs� ��
� is
equivalent to stabilization of the system in Eqs� �����
References �
�����	 indicate that the coordinates �w � z�
o�er some signi�cant advantages for attitude analysis
and control problems�

� Problem Statement

Consider an axi�symmetric body with the applied
torque vector in the plane which is perpendicular to
the symmetry axis� In such a case� the system is de�
scribed by Eqs� ��� and thus �� remains constant� If
initially ���
� �� 
� no control input can bring the sys�
tem to the equilibrium� The system is not controllable
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to the equilibrium� but it is controllable to the sub�
manifold � � w � 
 in the ��� ���w� z��space� For a
more detailed discussion on this issue� refer to Refs� 	�
�
� Therefore� for an axi�symmetric body� actively con�
trolled rotation to the equilibrium for the system in
Eqs� ������
� makes sense only if �� � 
� In this case�
the system equations simplify to

�� � u ���a�

�w �
�

�
�

��

�
w

� ���b�

�z � Im�� �w� ���c�

This system can be stabilized to the origin� but any
time�invariant stabilizing control law has to be neces�
sarily nonsmooth� since Eqs� ���� fail Brockett�s neces�
sary condition for smooth stabilizability�� � Therefore we
concentrate on using nonsmooth �albeit time�invariant�
stabilizers for this system�

Equations ���� represent a system in cascade form�
with the kinematics ���b�����c� being the driven sub�
system and the dynamics ���a� being the driving sub�
system� Methodology in Ref� �
 used this structure to
derive a non�smooth control law to stabilize Eqs� �����
In essence� the controller design consists of a two�step
process� In the �rst step� only stabilization of the kine�
matics is addressed� with the angular velocity treated as
the control input� In the second step� the control torque
u is chosen to shape the desired velocity pro�le� Since
the angular velocity in the �rst step is �necessarily� a
nonsmooth function of w and z� caution should be ex�
ercised when implementing this angular velocity in the
second step� The nonsmooth controller of Ref� �
� along
with its potential drawbacks� is summarized in the next
section�

� A Nonsmooth Controller for the
Kinematics

In Ref� �
 a nonsmooth control law was proposed for
the kinematic system described by

�w �
�

�
�

��

�
w

� ���a�

�z � Im�� �w� ���b�

and was later implemented though the integrator in
Eq� ���a�� The proposed control law in Ref� �
 was
motivated by the decoupling of these equations with re�
spect to the product � �w � as evident from the discussion
following Eqs� ����� This control law is given by

� � ��w � i�
z

�w
����

where � � ��� � 
� With this control law� the closed
loop system in terms of jwj and z is given by

djwj�
dt

� ���� � jwj��jw j� ���a�

�z � ��z ���b�

which is globally exponentially stable� As can be eas�
ily inferred by observing Eqs� ���� and ����� the �rst

term in the control law ���� has an e�ect only on the
di�erential equation for w � whereas the second term in
Eq� ���� has an e�ect only on the di�erential equation
for z� Moreover� the second term in Eq� ���� is a nons�
mooth function of z and w�

The main disadvantage of the control law in Eq� ����
is that the last term� which involves the ratio z� �w� may
become unbounded without careful choice of the gains�
The previously imposed gain condition � � ��� ensures
that the rate of decay of z is at least as large as the rate
of decay of w� such that their ratio remains bounded�
Actually� one can easily establish from Eqs� ���� that for
� � ���� along the solutions of the system� z� �w � 
 as
t���

Introducing the variable v � jwj�� the system in
Eqs� ���� takes the form

�v � ���� � v�v ���a�

�z � ��z ���b�

This is a system which evolves on IR�� IR� Typical tra�
jectories and the vector �eld of the closed�loop system
in Eq� ���� for � � � and � � � are shown in Fig� ��
�Since z does not change sign it su�ces to plot only the
z � 
 case��
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Fig� � Phase portrait of system in Eqs� �����

Although in Eq� ����� the ratio z� �w� and hence the
control e�ort �� remains bounded by proper choice of
control gains� the control input � may take large values
in the region where w is small� From Eq� ���a�� jw�t�j �
jw�
�j for all t 	 
 and for small initial conditions w�
��
the control law may use a substantial amount of energy�
especially in regions where jzj is large� In Fig� �� for
example� the region which is close to the z axis is clearly
undesirable as far as control expenditure is concerned�
Modi�cation of the control law in Eq� ����� such that
the vector �eld close to the z axis points away from this
axis� is highly desirable� In short� the idea is to divide
the �z� v� phase space into two regions according to the
value of the ratio

� �
z

jw j� �
z

v
���

�



This ratio is a direct indication of the relative magnitude
between z and w � This ratio should be kept small in or�
der to avoid high control e�ort� Hence� if initially the
states are in an undesirable region where � attains large
values� the feedback control strategy should drive the
trajectories to a �safe� region in the state space where
� remains relatively small� Without loss of generality�
choose as undesirable the region where j�j � �� leaving
j�j � � as the desirable region� These two regions� de�
noted by D� and D� respectively� are therefore de�ned
by

D� � f�z� v� � IR� IR� �� � j�j � �g ��	a�

D� � f�z� v� � IR� IR� � j�j � �g ��	b�

These two regions are shown in Fig� ��
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Fig� � Regions D� and D� in �z�v� phase space�

� Main Results

The proposed modi�cation to the control law in
Eq� ���� is simple� Positive feedback is used for v when
the trajectory is in region D�� while z is decreasing�
This change will make the manifold v � 
 �equivalently�
w � 
� unstable and the trajectories will move towards
the region D� and subsequently stay there� The control
law in region D� is essentially the same as in Eq� �����
Notice that� by de�nition� inside the region D� we have
j�j � �� and since jzj�j �wj � j�jjwj we can ensure that
� will not take excessive values as long as the trajecto�
ries remain in D�� These statements will be made more
precise in the sequel�

��� Proposed Control Law for Kinematics

The proposed control law for the system in Eqs� ����
is de�ned by

� � �����w � i����
z

�w
����

where ���� and ���� are smooth functions satisfying

��c � ���� � 
� 
 � ���� �
�c
�
� 
 �z� v� � D� ��
a�


 � ���� � �c
�c
�
� ���� � �c� 
 �z�v� � D� ��
b�

and 
 � �c � �c� One possible choice is� for example�

���� �
��c
	

arctan
�

��� ���

�
���a�

���� �
�c
	

arctan
�

��� ���

�
�

�c
�

���b�

From Eqs� ����� � and � are bounded as

� �c � ���� � �c and 
 � ���� � �c ����

for all � � IR� Moreover� notice that ���� � ����� for
all �z�v� � D��

The next theorem gives the main result of the paper�

Theorem ��� Consider the system in Eqs� �	�
 and let
the control law be as in Eqs� �	�
���	
 with 
 � �c � �c�
Then for initial conditions �z�
��w�
�� � IR� �Cnf
g��
the following properties hold�

�i
 w�t� �� 
� 
 t 	 
�

�ii
 the trajectory�z����w���� is bounded and

lim
t��

�z�t��w�t�� � 
 ����

�iii
 the control law ���� is bounded and it has a bounded
derivative�

With the control law in Eq� ����� the closed�loop sys�
tem takes the form

�v � ������� � v�v ���a�

�z � �����z ���b�

where v � jw j� and � as in Eq� ���� From Eq� ���� we
have that z decays monotonically for all initial condi�
tions� whereas v increases in the region D� and decreases
in D�� The result is that the trajectories of Eqs� ����
tend to D� and then to the origin� as required�

Before proving Theorem ��� we need to establish the
following two lemmas�

Lemma ��� The region D� is invariant for the system
in Eqs� ���
�

Proof� The boundary of the set D� is given by the two
lines � � �� �cf� Fig� ��� On the boundary of D� the
feedback gains are ���� � 
 and ���� � �c��� The
vector �eld on the boundary of D� is therefore

�v � 
 ���a�

�z � � �c
�

z ���b�

which points into the interior of D�� Therefore trajec�
tories in D� cannot escape this region and thus it is
invariant for the closed�loop system in Eqs� �����

This lemma establishes that for initial conditions in
D�� the trajectories of the closed�loop system remain in
D� for all times� Equivalently� if at some time t� 	 

the trajectory enters D�� it stays in D� for all t 	 t��
Figure � shows the vector �eld on the boundary of D��

�



Lemma ��� Consider the system in Eqs� ���
� For all
initial conditions �z� v� � D� the trajectories enter the
region D� in �nite time�

Proof� As long as �z� v� � D�� from Eq� ��
a� � is
bounded as 
 � ���� � �c��� This implies that z is
bounded� Actually� jz�t�j � jz�
�j for all t 	 
� Note
that z does not change sign for all t 	 
� Without loss
of generality� assume that z�
� 	 
 �the case z�
� � 

being similar�� If �z�
�� v�
�� � D� then� by de�nition
��
� � �� The derivative of � in D� is then

�� �
�z

v
� z

v�
�v

� ������ � ������ � v��

� ������ � 
 ����

since ���� � 
 and v � 
� hence � is bounded in D��
Let clD� denote the closure of D� in IR�� that is�

clD� � D� � f�z� v� � IR� IR� � j�j � �g
�f�z�v� � IR� IR� � v � 
g ���

Then it is an easy exercise to show that �� �� 
 for all
�z�v� � clD�nf�
� 
�g� Hence there exists � � 
 such
that �� � �� in D� and consequently� � monotonically
decreases� Thus� every trajectory starting in D� will
leave this set and enter D� in �nite time�

Notice that the set f�z� v� � IR� IR� � v � 
 and z ��

g is an unstable manifold for the closed�loop system�
Figure � shows the vector �eld on the boundary of
D�� The following corollary follows directly from Lem�
mas ��� and ����

Corollary ��� Consider the system in Eqs� ���
� For
all initial conditions �z�
�� v�
�� � IR � �IR�nf
g�� � is
bounded for all t 	 
�

We are now ready to give the proof of Theorem ����

Proof� �Theorem ���� From Eqs� ���a� and ���� we have
that

�v 	 ��c�� � v�v ��	�

where �c � 
� The solution of the di�erential equation

�x � ��c�� � x�x� x�
� � x� � 
 ����

is given by

x�t� �
�

c�e�ct � �
��
�

where c� � �x� � ���x�� Clearly� x�t� �� 
 for all t 	 

and limt�� x�t� � 
� Therefore v��� is bounded below
by the solutions of the di�erential equation ���� subject
to initial condition x� � v�
�� Hence� jw�t�j �� 
 for all
t 	 
 and w��� approaches the origin asymptotically�

We now show that limt���z�t�� v�t�� � 
� If
�z�
�� v�
�� � D� then according to Lemma ��� we
have that �z�t�� v�t�� � D� for all t 	 
 and D� is
an invariant set for the closed�loop system� Consider
now the positive de�nite� radially unbounded function
V � IR� IR� � IR� given by

V �z� v� � �
�v

� � �
� z

�� 
 �z�v� � D� ����

The derivative of V along the trajectories of ���� is

�V � ������� � v�v� � ����z� � 
� 
�z� v� � D� ����

therefore� the trajectories are bounded in D�� More�
over� �V � 
 if and only if ������ � v�v� � ����z� � 
�
Using the de�nitions of ���� and ���� in D� and recall�
ing that v 	 
� one establishes that the last equality is
not satis�ed in D� unless z � v � 
� By LaSalle�s the�
orem� limt���z�t�� v�t�� � 
� for all initial conditions
in D�� To �nish the proof� recall from Lemma ��� that
if �z�
�� v�
�� � D� then jzj is bounded by jz�
�j and
there exist a time t� � 
 such that �z�t��� v�t��� � D��
This implies that for all t� 	 t 	 
 the trajectories
in D� are bounded� and are con�ned inside the strip
jz�t�j � jz�
�j� However� according to the previous dis�
cussion� the trajectory with initial condition �z�t��� v�t���
satis�es limt���z�t�� v�t�� � 
� Therefore� it has been
shown that for all �z�
�� v�
�� � IR� �IR�nf
g� the tra�
jectories remain bounded and have the property that
limt���z�t�� v�t�� � 
� By the de�nition of v� this im�
plies that

lim
t��

�z�t��w�t�� � 
 ����

In order to show that � is bounded� write the ratio
z� �w � �w � From Eq� ���� one obtains

j�j � �cjwj� �cj�jjwj ����

From Corollary ���� for all initial
conditions �z�
��w�
�� � IR � �Cnf
g� � is bounded�
Since w is also bounded� from Eq� ���� it follows that
� is bounded�

From Eq� ���a� it follows immediately that �w is also
bounded� Moreover� since

�� � ������ � ������ � v�� ����

and ����� ����� v and � are all bounded� we have that ��
is bounded�

The derivative of � is given by

�� � � �����w����� �w� i ������w� i ���� ��w� i ����� �w
����

Using Eqs� ���� one has

����� � � ��c
	




� � 
���� ����
� �� ��a�

����� � � ��c
	




� � 
���� ����
� �� ��b�

Since �� is bounded� ����� and ����� are both bounded�
Finally� the boundedness of �� follows directly from
Eq� ���� and the fact all the terms in the right hand
side of this equation are bounded�

The vector �eld and the corresponding trajectories of
the closed�loop system with the control law in Eq� ����
is shown in Fig� � �compare with Fig� ���

Remark ��� Theorem ��� shows that for all initial con�
ditions w�
� �� 
 the control law in Eq� ���� drives the
system trajectories to the origin� This control law can�
not be used ifw�
� � 
 �and z �� 
�� Linearization of the

�
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Fig� � Phase portrait of system in Eqs� �����

system represented by Eq� ���� about w � 
� however�
shows that this system is controllable and choosing� for
example� a constant control � � �c � C� one can move
away from the z�axis into the D� region� once in D��
use of the control in Eq� ���� drives the system to the
origin�

Remark ��� Another choice of a feedback control for
Eq� ���� is the sublinear control in terms of w�

� � �� w

� � jwj� � i �
z

�w
��	�

which renders the closed�loop system

�v � ��v ���a�

�z � ��z ���b�

globally exponentially stable� The previous methodol�
ogy can be applied mutatis mutandis to this control law�
as well� Moreover� several other similar modi�cations
can be introduced to the control law in Eq� ����� It
should be evident that the results in this section can be
applied to these control laws with only minor modi�ca�
tions�

��� Proposed Control Law for Complete Sys�
tem

The control law in Eq� ���� was shown to achieve
limt��z�t��w�t�� � 
� Moreover� it is a bounded con�
troller with bounded derivative� This allows one to im�
plement this control through the dynamics in Eq� ���a��
To this end� de�ne the error

e � � � �d ��
�

where �d is the desired angular velocity pro�le given in
Eq� ����� Consider the following feedback control

u � ��d � ���� ����w � i�����w� ����

where � � 
 and where ��d is given in Eq� ����� along
with Eqs� ���� The value of �� is now given by

�� � ��������������v���Im�e�w�����v��Re�e�w�
����

With the control law in Eq� ���� the closed�loop system
takes the form

�e � ��e ���a�

�v � ������� � v�v � �� � v�Re�e �w� ���b�

�z � �����z � Im�e �w� ���c�

Notice that for e � 
 the system reduces to the one in
Eqs� �����

For � large enough� Eq� ���a� is essentially a bound�
ary layer subsystem to the slow system given by
Eqs� ���b�����c�� Singular perturbation theory�� guar�
antees that as soon as the error becomes small enough�
the �z� v� trajectories of the system will follow the ones
of Eqs� �����

Next we show that the control law in Eq� ���� is well�
de�ned� in the sense that it remains bounded for all
t 	 
� We show that with � large enough w�t� �� 
 for
all t 	 
� i�e�� w�t� tends to zero only asymptotically for
all initial conditions inside an a priori given compact
set�

Proposition ��� Consider the system in Eqs� ���
 and
the compact set

N� � f���w� z� � W � jej��� � v��v�
�
� � g ����

where W � C � �Cnf
g� � IR� and let �c � �c � 

and � � ��c � ���� Then for all initial conditions in
N� � jw j is bounded below by an exponentially decaying
function�

Proof� Equation ���b� can be re�written as

d

dt
jwj� � ��� � jw j�� �����jwj� �Re�e �w�� ����

Note that from Eq� ���a� je�t�j � je�
�je��t and using
Eq� �����

je�t�j � 

� jw�
�j�
� � jw�
�j�

��
�

e��c���t��� t 	 
 ����

Consider now the di�erential equation

d

dt
j �wj� � ���c � ��� � j �wj��j �wj� ���

The solution of this equation is given by

j �w�t�j � �

c�e�c���t�� � �
	 c

�
�
�

� e��c���t�� ��	�

where c� � �j �w�
�j� � ���j �w�
�j�� Comparison of
Eqs� ���� and ��	� implies that

je�t�j �  j �w�t�j� 
 t 	 
 ����

where j �wj obeys Eq� ��� with j �w�
�j � jw�
�j�

�



Notice now that since Re�e �w� � jejjwj� and using
Eq� ����� one has from Eq� ���� that

d

dt
jw j� 	 ��� � jw j�������jwj� � jejjwj�

	 ��� � jw j�������jwj� � j �wjjwj� ��
�

and since ��c � ���� � �c �nally�

d

dt
jwj� 	 ��� � jwj����cjwj� � j �wjjwj� ����

By comparing Eqs� ��� and ���� and since jw�
�j �
j �w�
�j� one obtains

d

dt
jw�
�j� 	 d

dt
j �w�
�j� ����

Therefore there exist some t� � 
 such that jw�t�j 	
j �w�t�j for all 
 � t � t�� We claim that� actually�
jw�t�j 	 j �w�t�j for all t 	 
� and thus jw j is bounded
below by the exponentially decaying function j �w j�
Assume that at some point t� � 
 we have that

jw�t��j � j �w�t��j and d
dt
jw�t��j � d

dt
j �w�t��j� see Fig� ��

Then

t

|w|

|w|^

t’

Fig� � Time history of jwj and j �wj�

d

dt
jw�t��j� � ��� � jw�t��j����cjw�t��j� � jw�t��j��

� ��� � j �w�t��j����c � �j �w�t��j�

�
d

dt
j �w�t��j� ����

which leads to a contradiction� Therefore jw�t�j 	
j �w�t�j and thus w�t� �� 
 for all t 	 
�

In Ref� �
 the control law in Eq� ���� was also im�
plemented using the same methodology� That is� the
control for the complete system was given by Eq� �����
where � � �c� � � �c and �� � �� � 
� The value of the
gain � increases with � which in turns increases as jwj
decreases� That is� when the initial condition is close to
w � 
 then a faster transient for � is required� This
faster transient is achieved by taking � large enough� A
potential problem in the implementation of the control
in Eq� ���� is now evident� If e does not decay �fast
enough� so that � � �d su�ciently fast� then there is

the danger that w will move towards the z�axis before
the control law in Eq� ���� becomes e�ective� This is
one more reason which motivated the choice of the con�
trol law in Eq� ����� Namely� it is bene�cial for w to
move away from the z�axis� This can reduce the value
of the gain � signi�cantly�

In most situations it is not necessary to chose � from
Proposition ���� Actually� as the numerical simulations
in the next section show� for most practical examples it
su�ces to choose � to be �su�ciently larger� than the
gains �c and �c� From Eq� ���� it is also clear that �
should be at least as large as �c��� in order for e�w to
remain bounded�

Remark ��� The rigid body problem subject to two
control inputs is only but one example of an underac�
tuated mechanical system� Systems of this form can be
found in the class of systems subject to nonholonomic�
i�e�� non�integrable constraints�� � Time�invariant con�
trol laws for these systems are necessarily nonsmooth
and recently proposed control laws����� include singu�
larities of the same form as in Eq� ����� It is there�
fore conceptually straightforward to extend the results
of this paper to this more general case�

� Numerical Example

To illustrate the previous theoretical analysis� we
have simulated the di�erential equations ���� with the
two control laws in Eqs� ���� and ����� The gains are
chosen as �c � 
�� and �c � �� The value of the pa�
rameter 
 � �� The initial conditions were taken as
w�
� � 
�� � i 
��� and z�
� � ���� The results are
shown in Figs� � and � Figure � shows the correspond�
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Fig� � Closed�loop trajectories for the two methods
�kinematics only��

ing closed�loop trajectories� and Fig�  shows the magni�
tude of the angular velocity �control input for the kine�
matics� j�j� Solid lines correspond to the new control
law in Eq� ���� and the dashed lines correspond to the
previous control law given in Eq� ����� As it is evident
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Fig� 	 Control e�ort for the two methods �kinematics
only��

from these �gures� there is a substantial decrease in con�
trol e�ort by using the control law in Eq� ����� especially
during the initial portion of the trajectory where z is
large and jwj is small�

This control law was later implemented through the
dynamics in Eq� ���a�� A rest�to�rest maneuver was con�
sidered� thus ��
� � 
� Simulations for several values of
� are shown in Figs� 	��� The trajectories in the �z� v�
space are very similar to the ones when � is the control
input� In fact� for � � �
 the trajectories for the com�
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Fig� 
 Closed�loop trajectories for the complete system�

plete system are essentially identical to the ones with
control law in Eq� ����� Figure � shows that increas�
ing � may increase the control e�ort� mainly because of
the high�gain boundary layer part of the controller� At
any rate� the corresponding control e�ort for the control
law in Ref� �
 is several orders of magnitude higher �not
shown here�� Moreover� for small � such as � � � and
� � �� the control e�ort for the controller in Ref� �

is not bounded� In these cases the slow transients of
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Fig� � Control e�ort for the complete system�

e allowed w to drift towards the z�axis before the con�
trol law in Eq� ���� is activated� On the other hand�
the controller in Eq� ���� forces the system trajectories
away from the z�axis� thus providing enough time for
the dynamic controller to �catch up��

� Conclusions

A nonsmooth control law has been constructed which
stabilizes the kinematics of an underactuated rigid
spacecraft� It is shown that the proposed control law
is well de�ned and uses considerably less control ef�
fort than a previously derived control law� The main
idea is to divide the state space into two regions� one
which includes initial conditions resulting in high con�
trol expenditure and one which includes initial condi�
tions resulting in acceptable control input signals� The
proposed control law then forces all the closed�loop sys�
tem trajectories to leave the undesirable region of high
control e�ort and subsequently use the original control
law� Numerical examples indicate a signi�cant control
e�ort reduction using the new control scheme� Because
of the limited control torque on�board a spacecraft� for
practical situations this may be the di�erence between
feasibility and infeasibility of a particular reorientation
maneuver�
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