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Abstract

We present a partial solution to the problem of optimal feedback reorientation of the symmetry axis of an
axially�symmetric rigid body� The performance index is quadratic in the state and the control variable and the
optimal reorientation maneuver requires the use of only two control torques� Because of the passivity characteristics
and the cascade structure of the system we 	rst state two optimal regulation problems for the dynamics and the
kinematics subsystems� separately� In this case one is able to 	nd explicit solutions to the associated Hamilton�
Jacobi equations� For the complete system we present solutions for two partial cases� The 	rst case is when there is
no penalty on the control input� In this case� one can asymptotically recover the cost for the kinematics by making
the dynamics su
ciently fast� The second case investigates restrictions imposed by optimality considerations on the
aforementioned control law in order to avoid high gain�

Introduction

The optimal control problem of a rigid body has a long
history stemming mainly from the interest of aerospace engi�
neers in the control of rigid spacecraft� Several performance
indices have been used in the formulation of the optimal con�
trol problem���� The optimal regulation problem has been
mainly addressed for the angular velocity equations only�
i�e�� without any reference to the kinematics in Refs� ��� and
more recently in Ref� �� Open�loop solutions can be gener�
ated using Pontryagin
s Maximum Principle� This results to
a Two�Point�Boundary�Value Problem which is solved us�
ing numerical techniques������� LQR�type formulations for
the linearized system have also been reported in the liter�
ature both for the rigid� as well as the �exible case��� For
the nonlinear problem Carrington and Junkins�� have used a
polynomial expansion approach in order to approximate the
solution to the Hamilton�Jacobi�Bellman equation� Similar
results were reported by Dwyer�� and Dwyer and Sena���
Finally� the book by Junkins and Turner�� provides a com�
prehensive compilation of most of the existing results on the
rigid body optimal control problem�

In this paper we seek solutions to the optimal feedback
regulation problem of an axially�symmetric rigid body where
both the angular velocity and the orientation of the body are
regulated� The purpose of the stabilizing optimal control
is to drive the system to its 	nal rest position de	ned here
to be along a speci�ed direction of the symmetry axis� We
assume that the relative orientation of the body about the
symmetry axis is irrelevant� only the location of the sym�
metry axis is of interest� This could be the case when the
symmetry axis coincides with the boresight or line�of�sight
of a camera or a gun barrel� for example� Clearly� the rel�
ative rotation of the camera or the barrel has no in�uence
on the clarity of the photograph or the accuracy of the pro�
jectile� Most importantly� spin�stabilized spacecraft also fall
into this category�

The work of Dwyer�������	 has perhaps the closest con�
nection to the results of this paper� He also seeks closed
form solutions to the feedback optimal control problem via
the Hamilton�Jacobi equation method� The main di�erence
with our approach is that Dwyer applies a linearizing feed�
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back transformation to the equations� resulting in a linear
system in double integrator form� The quadratic regulator
problem can then be easily solved either over a 	nite or an
in	nite time horizon� In the present work we address the
nonlinear problem directly� No linearizing transformation is
necessary� We rely on the special structure and the passivity
properties of the equations in order to 	nd closed�form so�
lutions to the Hamilton�Jacobi�Bellman equation associated
with the optimization problem�

For the axi�symmetric case it turns out that the objective
of optimal regulation of the symmetry axis can be achieved
using only two torques about axes that span the plane per�
pendicular to the symmetry axis� Therefore� without loss of
generality� we restrict ourselves to the two control input case�
This con	guration does not allow any freedom to change the
angular velocity along the symmetry axis� The angular ve�
locity along this axis is 	xed to its initial value� An addi�
tional� third control about the symmetry axis could be used
if regulation of the axial component of the angular velocity
and�or the orientation about the symmetry axis is desired�
Finally� we note in passing that the case of optimal regu�
lation of a general �non�symmetric� rigid body using three
control torques has been addressed elsewhere�
�

Taking into consideration the cascade interconnection of
the system equations� we 	rst state and solve the optimal
regulation problem for the kinematics of the attitude mo�
tion when the angular velocity acts as a control input� The
cost includes a penalty on the orientation parameters and
the angular velocity� The fact that the derivation of optimal
feedback solutions is possible for the attitude problem has
been noticed in the past and it is related to the Lie group
structure of the con	guration space of the motion��� as well
as the passivity properties of the system� Actually� we state
an intermediate result of independent interest which relates
passivity and optimality for general passive �lossless� nonlin�
ear systems�

For the rigid body problem the actual control input is�
of course� the acting torque which enters through Euler
s
equations �the dynamics�� Optimal regulation with the dy�
namics included in the problem� and for general performance
indices� is not yet solved � as far as the author knows� How�
ever� the optimization problem for the kinematics provides
a lower bound on the achievable performance for the whole
system for the same cost functional� Actually� we show that
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if the dynamics is fast �or can be made fast enough through
the appropriate choice of the control input� one is able to
recover this performance asymptotically� We show how such
a controller can be constructed � and thus achieve the op�
timal performance � under the assumption that there is no
penalty on the control e�ort� This controller will include� in
general� a high gain portion� Motivated by the optimal char�
acteristics of this controller we derive an optimal controller
which will penalize its high gain portion� A numerical ex�
ample illustrates the theoretical developments�

Dynamics and Kinematics

We consider a rigid body with an axis of symmetry and
two control torques about axes spanning the two�dimensional
plane perpendicular to this axis� Without loss of generality

we take a body�	xed reference frame �b � ��b���b���b�� with

the unit vector �b� along the symmetry axis and the acting

torques along the �b� and �b� axes� Euler
s equations with
respect to this frame then take the form

��� �
I� � I�

I�
���� �M� ��a�

��� �
I� � I�

I�
���� �M� ��b�

��� �
I� � I�

I�
���� ��c�

For I� � I� and letting the initial condition ����� � ���
we can rewrite the previous equations as

��� � a����� � u� ��a�

��� � �a����� � u� ��b�

where a � �I� � I���I� and ui � Mi�Ii� �i � �� ���

If �n � ��n�� �n�� �n�� denotes the inertial reference frame
then� as it was shown in Ref� ��� the position of the �n�
inertial axis in the �b frame can be uniquely described by two
variables w� and w� which obey the di�erential equations

�w� � ��w� � ��w�w� �
��
�
�� � w

�
� � w

�
�� ��a�

�w� � ���w� � ��w�w� �
��
�
�� �w

�
� � w

�
�� ��b�

This kinematic description is especially suitable for atti�
tude description and control of axi�symmetric bodies� where
typically only the location of the symmetry axis is of inter�
est� Thus w� and w� can be used to keep track the deviation
of the symmetry axis from the �n� inertial axis�

Equations ��� and ��� can be written in a vector form as

�� � aS������ � u ��a�

�w � S�����w � F �w�� ��b�

where � � ��� ���
T � w � �w� w��

T � where F � IR� � IR���

is the symmetric� matrix�valued function de	ned by

F �w� � �

�

�
��� w

T
w�I � �ww

T
�

���

and where S����� is the �� � skew�symmetric matrix

S����� �
h

� ���
���� �

i
���

Given Eqs� ���� the main objective of this paper is to derive
feedback control laws u � u���w� that will drive w and �

to zero in some optimal fashion� According to the previous
discussion� this amounts to reorienting the symmetry axis to
a desired position optimally �assumed here to be the inertial
axis �n���

Equation Structure and Passivity

Equations ��� have the nice structure of a system in cas�
cade form �see Fig� ��� That is� w does not enter into the
dynamics in Eq� ��a� and u does not a�ect the kinematics in
Eq� ��b�� In fact� the kinematics can only be manipulated
through appropriate choice of the angular velocity pro	le�
This motivates the decomposition of the complete system
into a dynamics and a kinematics subsystem� Another im�
portant property of the system in Eqs� ��� is that it repre�
sents a cascade interconnection of two passive systems� This
allows for linear� globally asymptotically stabilizing control
laws�

u ω wDynamics Kinematics

Eq (4a) Eq (4b)

Fig� � Cascade connection of dynamics and kinematics�

Recall that a system with input u � IRm and output y �
IRm is passive �with storage function V � if there exists a
positive de	nite function V � IRn � IR� such that�����

Z
T

�

yT �t�u�t�dt � V �x�T ��� V �x���� ���

where x � IRn is the state of the system� If Eq� ��� is satis	ed
with equality� the system is lossless���

A system is strictly passive �with storage function V and
dissipation rate �� if there exists positive de	nite functions
V � IRn � IR� and � � IRn � IR� such that��

Z
T

�

yT �t�u�t�dt � V �x�T ��� V �x���� �

Z
T

�

��x�t�� dt ���

Below k � k denotes the ��norm� that is� xTx � kxk� for any
x � IRn�

Proposition � �i	 Consider the system in Eq
 ��a	 with
input u and output �
 This system is passive with stor�
age function

V���� �
�

�
k�k� ���

�ii	 Consider the system in Eq
 ��b	 with input � and output
w
 This system is passive with storage function

V��w� � ln�� � kwk�� ����

Proof� �i� In order to show that the dynamics subsystem
in Eq� ��a� is passive notice that the derivative of V� in
Eq� ��� along the trajectories of Eq� ��a� is

dV�
dt

� �Tu ����

Integrating both sides of the previous equation form �
to T � we arrive at Eq� ����
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�ii� In order to show that the kinematics subsystem in
Eq� ��b� is passive notice that the derivative of V� in
Eq� ���� along the trajectories of Eq� ��b� is

dV�
dt

� w
T� ����

Integrating both sides we arrive at Eq� ����

This proposition shows that the system in Eqs� ��� is a
cascade interconnection of two passive systems� Passivity is
invariant under feedback interconnection but cascade inter�
connection of two passive systems is not necessarily passive�
Nevertheless� it will be shown in this section that the cas�
cade interconnection of two passive systems can always be
globally asymptotically stabilized by linear feedback of the
subsystem outputs� We will state and prove this result for
the system interconnection ��a����b�� This result can easily
be extended� however� to the case of a cascade interconnec�
tion of any two �nonlinear� passive systems�

Lemma � The control law

u � �k�� � � ����

with k� � � renders the subsystem ��a	 strictly passive from
� to � with storage function V� and dissipation rate ���� �
k�k�k�


Proof� Letting V� as in Eq� ��� and using Eqs� ���� and ����
we get that

dV�
dt

� �k�k�k� � �T � ����

Integrating both sides of the previous equation one obtains

Z
T

�

�T � dt � V����T ��� V������� � k�

Z
T

�

k�k� dt ����

which� according to Eq� ��� implies that the system from �
to � is strictly passive�

This lemma shows that we have a cascade interconnection
of a strictly passive system �from � to �� with a passive sys�
tem �from � to w�� Choosing a negative feedback from w to
� �say� � � �k�w�� The resulting closed�loop system is then
a feedback interconnection of a passive with a strictly passive
system and global asymptotic stability can be easily shown
under an observability assumption � which in our case is
satis	ed� The following theorem formalizes this observation�

Theorem � Consider the cascade interconnection ��a	�
��b	
 The linear control

u � �k�� � k�w ����

where k�� k� � � globally asymptotically stabilizes this sys�
tem


Proof� Choosing the negative feedback � � �k�w one ob�
tains a feedback interconnection of a strictly passive sys�
tem with a passive system� Therefore� by the Passivity
Theorem��� the closed�loop system is globally asymptoti�
cally stable� To see this� let the positive de	nite� radially
unbounded function

V ���w� � V�����k�V��w� � �

�
k�k��k� ln���kwk�� ����

Taking the derivative of V along the trajectories of Eqs� ����
���� one obtains

�V � �T �� �
�k�

� � kwk�w
T �w

� �k�k�k� � k��
T
w

�
k�w

T

� � kwk� �S�����w � F �w���

� �k�k�k� � � ����

and the system is stable� Asymptotic stability follows using
a standard LaSalle�type argument���

Dynamics

wv u ω

k1

Kinematics
−

+

Strictly Passive

passive

Fig� � Passive interconnection with control u � �k�� � ��

Relation Between Optimality and
Passivity

In the next section we will address the optimal regulation
problem for the system in Eqs� ��� subject to a quadratic
cost� We will show that the two optimal control problems in
terms of the dynamics and the kinematics subsystems have
a closed�form solution� In this section we show that this
remarkable result is not accidental� but stems from the pas�
sivity properties of the corresponding subsystems� In par�
ticular� we will show that if a nonlinear system is lossless
�passive� then there exists a control law which is optimal
�gives an upper bound� with respect to a quadratic cost in
the state and the control input� Moreover� this optimal �sub�
optimal� control law is linear�

Consider the nonlinear system

�x � f�x� u�� x � IRn� u � IRn ����

where f � IRn�n � IRn is a smooth vector 	eld such that
f��� �� � �� Let us assume that the system in Eq� ���� is
passive from u to the state x with storage function V � The
following theorem states the main result between optimality
and passivity� used in this paper�

Theorem � Let the system in Eq
 ���	 and the quadratic
cost

J � �

�

Z
�

�

fr�kxk� � r�kuk�g dt ����

where r�� r� are positive scalars
 Then the linear control law

u��x� � �
r

r�
r�

x ����

provides an upper bound for the cost in Eq
 ���	
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Proof� Consider any stabilizing control law u and let v �
u� u�� The cost in Eq� ���� can then be written as

J � �

�

Z
�

�

fr�kxk� � r�kv � u�k�g dt ����

� �

�

Z
�

�

fr�kxk� � r�kvk� � r�ku�k� � �r�v
Tu�g dt

Using the expression for u��x� from Eq� ���� one obtains

J � �

�

Z
�

�

f�r�kxk� � r�kvk� � �
p
r�r� v

Txg dt

� �

�

Z
�

�

f�r�kxk� � r�kvk� � �
p
r�r��u� u��Txg dt

� �

�

Z
�

�

r�kvk� dt�pr�r�

Z
�

�

uTx dt ����

The control law u�x� is stabilizing� thus limt�� x�t� � ��
Using now Eq� ��� and the fact that limt�� V �x�t�� � � one
	nally obtains

J � �

�

Z
�

�

r�kvk� dt�p
r�r� V �x���� ����

For v � � we have

J � �

�

Z
�

�

fr�kxk� � r�kuk�g dt � p
r�r� V �x���� ����

and the control law u��x� provides an upper bound for J �
as claimed�

If the system is� in fact� lossless we get the following opti�
mality result which is given without proof�

Corollary � Assume that the system in Eqs
 ���	 is loss�
less
 Then the linear control law in Eq
 ���	 is optimal with
respect to the cost in Eq
 ���	
 Moreover� the minimum value
of the cost is minu J �u� x���� �

p
r�r� V �x����


We note in passing that Theorem � is rather restrictive
the way it is stated here because it requires y � x� How�
ever� the same result will also hold for the more general case
when y �� x� The optimal controller will then be linear in y�
while asymptotic stability will require an extra observability
condition�

Optimal Regulation

The Kinematics Subsystem

Given the kinematics system in Eq� ��b� � where � is
treated as a control�like variable � we introduce the follow�
ing performance index

J��w � �� � �

�

Z
�

�

fr�kw�t�k� � r�k��t�k�g dt ����

where r� and r� are positive constants� Notice that this
functional is a true performance index in the sense that it
penalizes the state �w� and the control input ����

According to Hamilton�Jacobi theory� the optimal feed�
back control �� for the previous problem is given by

� � min
�

n
r�
�
kwk� � r�

�
k�k� �

�V

�w
�S�����w � F �w���

o
����

where �V ��w denotes the gradient of V �row vector�� There�
fore� the Hamilton�Jacobi Equation �HJE� associated with
the optimal control problem in Eqs� ��b� and ���� is given
by

r�
�
kwk� � �

�r�
kF �w�

�TV

�w
k� �

�V

�w
S�����w � � ����

and the optimal control is given by

���w� � � �

r�
F �w�

�TV

�w
����

We claim that the positive de	nite function V � IR� � IR�

de	ned by

V �w� �
p
r�r� ln�� � kwk�� ����

solves the Eq� ����� Indeed� noticing that

�V

�w
�

�
p
r�r�

� � kwk� w
T ����

and that

F �w�
�TV

�w
�
p
r�r� w ����

substituting in Eq� ����� and using the fact that
w
TS�����w � � we obtain the desired result� The opti�

mal control is given by Eq� ���� and takes the very simple
form

���w� � �
r

r�
r�

w ����

Note that the optimal control in Eq� ���� is linear and it
is unique� Moreover� using V from Eq� ���� as a Lyapunov
function for the closed�loop system� it is not di
cult to show
that the optimal control is exponentially stabilizing� The
minimum value of the cost in Eq� ���� is given by

J ���w���� �
p
r�r� ln�� � kw���k�� � V �w���� ����

The Dynamics Subsystem

So far� we have only considered the kinematics subsystem
or the attitude equations� i�e�� Eq� ��b�� with � acting as
a control variable� The optimal regulation problem for the
Eq� ��a� has been addressed and solved elsewhere�� We only
state the result for completeness� without proof�

To this end� consider the system in Eq� ��a� where u is
the control input and let the quadratic performance index

J���� u� �
�

�

Z
�

�

fq�k��t�k� � q�ku�t�k�g dt ����

where q� and q� are positive constants� Then the control law

u���� � �
r

q�
q�

� ����

renders the closed�loop system globally exponentially stable
at the origin and minimizes the cost in Eq� ����� Moreover�
the minimum value of this cost is

J �������� � �

�

p
q�q� k����k ����
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The Complete System

We have considered the kinematics and the dynamics sub�
systems of the attitude equations separately� The natural
question is of course �What conclusions can be drawn about
the complete system interconnection  ! Previous attempts
include approximate solutions using truncated Taylor series
expansions of the Hamilton�Jacobi Equation��� or exact so�
lutions of a feedback linearized version of the problem�	� The
feedback linearization technique is especially appealing but
has the drawback that the optimization is performed in the
transformed variables �which may not be directly amenable
to a physical interpretation� and that the penalty on the
control does not include the feedback linearizing portion�

Our approach is based on the observation that we already
have an exact solution of the optimal regulation problem for
the kinematics� We wish to use this knowledge from the
kinematics problem instead of formulating an entirely new
problem for the complete system� This approach limits our
freedom in choosing the performance index� but allows the
analytic derivation of optimal feedback controllers in closed
form�

If the dynamics subsystem is su
ciently fast then the pre�
vious optimality results su
ce� In this case� the optimal
angular velocity pro	le can be implemented through the dy�
namics without signi	cant degradation in performance� Ac�
tually� one can always recover the cost in Eq� ���� asymp�
totically� using the control input

uas � �aS�������kF �w��� kS�����w ����� kw� ����

where k �
p

r��r�� That is� by choosing � large enough� the
costZ

�

�

fr�kwk� � r�k�k�g dt �� p
r�r� ln�� � kw���k�� ����

and it can be made arbitrarily close to J ���w�����

This result can be shown by introducing the new variable

� � � � kw ����

and rewriting the system in Eq� ��� with the control in
Eq� ���� in the form

�� � ��� ���a�

�w � S�����w � kF �w�w � F �w�� ���b�

Notice from Eq� ���� that since � � � then �� ��� We can
explicitly calculate the value of the cost J ��w � �� along the
trajectories of Eqs� ���� using the positive de	nite function

V �w � �� � �
p
r�r� ln�� � kwk�� � r�

��
k� � kwk�

� �
p
r�r� ln�� � kwk�� � r�

��
k�k� ����

Then

dV

dt
�

�
p
r�r�

� � kwk�w
T ��kF �w�w � F �w���� r�k�k�

� ��
p
r�r� kkwk� � �

p
r�r�w

T � � r�k�k�
� �r�kwk� � r�k� � kwk�
� �r�kwk� � r�k�k� � � ����

Since �V is negative de	nite� the control law in Eq� ���� is
asymptotically stabilizing� Thus limT�� V �T � � �� Inte�
grating both sides and taking limits as T �� one obtains

V �w���� ����� �

Z
�

�

fr�kwk� � r�k�k�g dt ����

Since

V �w���� ����� � �
p
r�r� ln�� � kw���k��

�
r�
��
k���� � kw���k� ����

then Eq� ���� follows by letting � � �� A simple singular
perturbation analysis shows that the e�ect of large � is that
of making the dynamics in Eq� ��a� su
ciently fast�

The optimal cost in Eq� ���� provides a lower bound on
the achievable performance when the actual control input
is the body 	xed torque u� The disadvantage of the con�
trol law in Eq� ���� is that it may require high gain� This
may not be acceptable if there are bounds on the available
control e�ort� A more realistic performance index should
incorporate a penalty on the control e�ort u as well� Unfor�
tunately� the optimization problem for a performance index
which is quadratic in the state and the control e�ort is rather
formidable� Motivated by the control law in Eq� ����� we use
an alternative approach� We investigate the optimality prop�
erties of the control law in Eq� ���� and� in particular� we
modify this control law such that its high�gain portion its
penalized�

The procedure in this section is similar in spirit to the
results of Ref� ��� where the authors examine the optimality
properties of a class of feedback control laws for relative de�
gree one minimum phase systems and the results in Ref� ���
where the optimal regulation problem for a general �i�e�� non�
symmetric body� is addressed�

Close examination of the control law in Eq� ���� shows
that the only possible high gain portion of this control law is
the last term� We therefore consider a modi	ed control law
of the form

u � �aS������ � kF �w�� � kS�����w � v ����

Recalling now the desirable properties of the relationship
� � �kw for the kinematic subsystem we again introduce
the variable � � � � kw and develop control laws which
will make � � �� The performance index should therefore
include a penalty on � as well as a penalty on the control
e�ort v�

Using Eqs� ���� and ���� the system in Eqs� ��� is written
in the form

�� � v ���a�

�w � S�����w � F �w��� � kw� ���b�

Theorem � Consider the system in Eqs
 ���	 and the con�
trol law

v��w � �� � �w

�
� �� ����

Then this control law makes the system in Eq
 ���	 exponen�
tially stable and minimizes the cost

J ��w � �� v� � �

�

Z
�

�

fkv� w

�
k���kkwk����k�k�g dt ����

Moreover� the minimum value of the cost is

J ���w���� ����� � ln�� � kw���k�� � �

�
k����k� ����

Proof� First� notice that the HJE associated to the previous
optimal control problem is given by

�

�
k�V
��
k� � kkwk� � ��

�
k�k� � �V

��

�
w

�
� ��

�

� �V

�w
S�����w �

�V

�w
F �w��� � kw� � � ����

���



and the optimal control is given by

v��w � �� � �w

�
� �TV

��
����

Then notice that the positive de	nite function V� � IR� �
IR� � IR� de	ned by

V��w � �� � ln�� � kwk�� � �

�
k�k� ����

satis	es the Hamilton�Jacobi Equation in Eq� ����� The ex�
ponential stabilizability of the control in Eq� ���� is easily
veri	ed by using Eq� ���� as a Lyapunov function for the
closed�loop system� The minimum value of the cost is given
by J ���w���� ����� � V��w���� ������

From Eqs� ���� and ���� we have that the optimal control
is

u����w� � �aS������ � kF �w�� � kS�����w

� ��� � kw�� w

�
����

Moreover�

u� � uas � w

�
����

Comparison of Eqs� ���� and ���� shows that the control
law

"v���� � ��� ����

minimizes the cost

"J��w� �� "v� � �

�

Z
�

�

fk"vk� � �kkwk� � ��k�k�g dt ����

subject to the dynamical constraints

�� � �w

�
� "v ���a�

�w � S�����w � F �w��� � kw� ���b�

That is� the 	rst term in Eq� ���� includes a true penalty
on the high gain portion of the controller� Moreover� notice
that as � � � then v� � ��� and u� � uas and we re�
cover the results of the control law in Eq� ����� In essence�
the control law u� allows one to decrease � without signi	�
cant degradation in the stability and performance� As it is
evident from Eq� ���� the parameter � can be chosen to com�
promise between good performance �in the sense of small ��
and acceptable control gain�

Numerical Example

We illustrate the theoretical results by means of numerical
simulations� We consider an optimal regulation maneuver of
an axi�symmetric rigid body from initial orientation w���� �
w���� � ��� These values correspond to a rigid body which
is� initially� almost �up�side down�! The body is assumed to
be initially at rest� Therefore� ����� � ����� � ����� � ��
The inertia parameter in Eq� ��� is a � �	�� The constants
r� and r� in Eq� ���� were chosen to be equal to unity� which
implies that also k � � in Eq� ����� The control law in
Eq� ���� is implemented for di�erent values of ��

The results are shown in Figs� ���� Figures � and � show
the response for the 	rst component of the angular velocity
and the orientation parameter w � respectively� The control
e�ort for di�erent values of � is shown in Fig� �� Decreasing
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Fig� � Angular velocity response using u��
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Fig� � Orientation parameter response using u��

the value of � has the e�ect of increasing the oscillatory
behavior of the system� but the rate of convergence seems to
remain relatively constant�

Figures ��� compare the control laws u� and uas for a small
value of the gain �� � �	��� Recall that for � large these two
control laws are essentially the same� The initial conditions
for the orientation are as before and the initial conditions for
the angular velocity are given by ����� � ����� � �	�� r�s
and ����� � �	� r�s� These simulations were typical � at
least for the range of initial conditions and gains checked �
of the relative response of the two controllers� They seem to
verify that the optimal control law u� performs better than
the asymptotic control law uas� Note in particular in Figs� ��
� the slow convergence rates of the states for the controller
uas�

Conclusions

We have presented some new results for the optimal reg�
ulation of the symmetry axis of a spinning rigid body� Only
two control torques are necessary if regulation of the relative
rotation about the symmetry axis is not required� By using
the natural decomposition of the system into its kinematics
and dynamics subsystems and the inherent passivity proper�

���
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Fig� � Control input response using u��
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Fig� � Comparison of angular velocity for u� and uas�

ties of these two subsystems we derived an optimal controller
in a two�step process� The optimal control for the kinemat�
ics is very simple �linear� and minimizes a quadratic cost in
terms of the angular velocity and the kinematic parameters�
The derivation of this optimal controller is intimately con�
nected to the passivity of the kinematics� Direct implemen�
tation of this control through the dynamics may require high
gain however� We modi	ed this direct approach to obtain an
optimal controller which tries to mimic the optimal controller
for the kinematics by penalizing its high gain portion� The
gain parameter can be used to compromise between speed of
regulation and acceptable control e�ort�
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