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Abstract

In this paper we present some recent results on the description and control of the attitude motion of rotating
rigid bodies. We derive a new class of globally asymptotically stabilizing feedback control laws for the complete (i.e.,
dynamics and kinematics) attitude motion. We show that the use of a Lyapunov function which involves the sum of
a quadratic term in the angular velocities and a logarithmic term in the kinematic parameters leads to the design of
linear controllers. We also show that the feedback control laws for the kinematics minimize a quadratic cost in the
state and control variables for all initial conditions. For the complete system we construct a family of exponentially
stabilizing control laws and we investigate their optimality characteristics. The proposed control laws are given in
terms of the classical Cayley-Rodrigues parameters and the Modified Rodrigues parameters.
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SO(3) = special orthogonal group (rotationgroup)
v = torque vector in body — axes,(u1, u2, U3)T
dV/dz = gradient of a functionV : IR" — IR,
[0V [0z1, OV [Oz2, ... ,0V [0z4]
p = Cayley — Rodrigues parameters,(p1, p2, pg)T
o = modified Rodrigues parameters, (o1, o2, 0'3)T
® = Principal angle of rotation
w = angular velocity vector in body axes,(wl,wQ,wg)T

transpose operator

2 — norm of vectors,ie.||z|* = 2"«

Introduction

In recent years considerable effort has been devoted to
the design of control laws for challenging dynamical systems,
such as robot manipulators, high-performance aircraft, and
underwater or space vehicles. These systems have similar
characteristics. First, they are difficult to control because
of the highly nonlinear character of their equations. This is
particularly true when these systems are required to perform
fast angular maneuvers. In such cases, the cross-coupling
terms in the equations become significant, dominating the
linear terms. As a result, linear control techniques for such
systems are often inadequate'. Second, the dynamics of all
these systems have the same underlying property: Namely,
they describe a rigid (or almost rigid) body in rotational mo-
tion. It is of interest to develop a comprehensive theory that
will allow a better understanding of the complex dynamic
behavior of the motion of rotating bodies. A cornerstone in
this effort is the development of alternative descriptions of
the kinematics of the rotational motion.

In this paper we are interested in the description and
control of the attitude motion using only minimal, three-
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dimensional parameterizations. Two such three-dimensional
parameterizations will be used: The classical (Cayley-) Ro-
drigues and the Modified Rodrigues parameters. Since the
Modified Rodrigues kinematic parameterization is neither as
widely known nor as frequently used as the classical Ro-
drigues parameters, we deem it necessary to review some of
the advantages of the former. In particular, we show that
the Modified Rodrigues parameterization is, in some sense,
the “best” three-dimensional representation of the attitude
motion.

The scope of this paper is twofold: First, to introduce
a kinematic description using the Modified Rodrigues pa-
rameters and to briefly discuss its advantages over the other
classical three-dimensional parameterizations, in particular
the Rodrigues parameters. The second scope of the paper
is to demonstrate the potential of the Modified Rodrigues
parameters for control applications. In particular, we show
how to derive linear globally asymptotically stabilizing con-
trol laws using these parameters. Since most of the stabi-
lization results also hold for the Rodrigues parameters we
derive, in parallel, similar results for these parameters as
well. In the second part of the paper we address the prob-
lem of the optimal regulation of the attitude motion in terms
of the previous kinematic parameters. In particular, we in-
vestigate the optimality properties of the previously derived
stabilizing feedback control laws.

Optimal control theory for a rigid body has a long
history?>~>. Most of these references either address the opti-
mal control problem of the angular velocity equations only?*
(i.e., without any reference to the kinematics), or they solve
the open-loop optimal control problem which, via Pontrya-
gin’s Maximum Principle leads, to a Two-Point-Boundary-
Value Problem. This problem can be solved, in general, us-
ing numerical techniques®™®. At the same time, the syn-
thesis problem (i.e., the optimal feedback problem) is much
more difficult and has been mainly addressed in the context
of time-optimal maneuvers (see Ref. 9 and the references
therein). Other optimal feedback results include Refs. 10-
12. The Reference 13 contains a comprehensive compilation
of most of the existing results on the rigid body optimal con-
trol. In this paper we seek solutions to the optimal feedback
regulation problem of a rigid body subject to a quadratic
cost where both the angular velocity and the orientation of
the body are regulated. Taking into consideration the cas-
cade interconnection of the system equations, we first state
the optimal regulation problem for the kinematics of the at-
titude motion when the angular velocity acts as a control in-
put. The cost includes a penalty on the orientation parame-
ters and the angular velocity. The actual control input is the
acting torque entering the system through FEuler’s equations
(the dynamics). The optimal regulation when the dynam-



ics is included in the problem, and for general performance
indices is not yet solved — as far as the authors knows. How-
ever, the optimization problem for the kinematics provides
a lower bound on the achievable performance for the whole
system for the same cost functional. Actually, we show that
if the dynamics is fast (or can be made fast enough through
the appropriate choice of the control input) one is able to
recover this performance asymptotically. We show how such
a controller can be constructed — and thus achieve the op-
timal performance — under the assumption that there is no
penalty on the control effort. This controller will include, in
general, a high gain portion. Motivated by the optimal char-
acteristics of this controller we derive an optimal controller
which penalizes its high gain portion.

Kinematics Overview

The dynamics of the rotational motion of a rigid body are
described by the following set of differential equations
Jo=Sw)Jw + u, w(0) = wo (1)

where the symbol S(-) denotes a 3 x 3 skew-symmetric ma-
trix, that is,

0 w3 — w2
S(w) = —Ww3 0 w1 . (2)
w2 —Ww1 0

In addition to Eq. (1), which provides the time history of
the angular velocity vector, the orientation of a rigid body is
given by a set of kinematic equations. Typically, the Euler
parameters (quaternion), the Cayley-Rodrigues parameters,
or the Eulerian angles are used to parameterize the attitude
kinematics. In the sequel, we briefly review the two main
kinematic parameterizations used in this paper, i.e., the Ro-
drigues parameters and the Modified Rodrigues parameters.
Both can be viewed as normalized versions of the Euler pa-
rameters.

Let ® denote the principal angle and let é denote the
principal axis associated with the Euler’s Theorem'*. The
Euler parameters are defined by

go 1= cos o, g: := e;sin 7 (1=1,2,3). (3)
This is a four-dimensional parameterization, hence redun-
dant. The constraint among the Euler parameters (qg +¢+
@ +q= 1) can be eliminated by renormalization. The Ro-
drigues parameters eliminate the constraint associated with
the Euler parameter set — thus reducing the number of co-
ordinates necessary to describe the kinematics from four to
three — by introducing the ratio of the Euler parameters as
new coordinates

p=L  (i=1,23). (4)
qo

Letting p = (p1,p2,p2)” € TR, the associated kinematic

equations take the form™

p=H(p)w,  p(0)=po (5)

where -
H(p) = 3(I=S(p)+pp") (6)
and I denotes the 3 x 3 identity matrix. It can be immedi-

ately shown that the matrix H(p) satisfies the following two
identities

p" H(p)o = (“}A) plw, (7)
and .
HT(p)(I+pp" )" H(p) = (%) I (8)

for all w, p € IR%.

The first identity is easily shown by direct calculation. In
order to show the second identity, substitute Eq. (6) into the
left-hand side of Eq. (8) and expand to get

HT(p)(I+ pp") " H(p)
= LU+ S(0) + o0 )T+ 00") (T +5(p) + 00")

1 1 _
= U+ + pp") - U +50) + pp" W1+ pp" )~ S(p)
1 1 1 _
= U+ S0 +r0") = 75(0) = 250 +pp") 7' S(0) (9)
It can be shown that
T
T4ppT)y t=1- PP 10
(I+pp") T+ .75 (10)
and ) . .
S*(p)=—p"pI+pp (11)

Substituting the last two expressions in Eq. (9) and using
the fact that S(p)p = 0 one obtains

HT(p)(I+ pp") " H(p)

= i(ﬂ— pp’) — Szp) + i (1 +1pr) S(p)pp” S(p)

- (1:&) I (12)

as claimed.
The vector p of the Rodrigues parameters is related to the
principal vector and the principal angle through

p = étan % (13)

As it is evident from Eq. (13), the classical Cayley-Rodrigues
parameters cannot be used to describe eigenaxis rotations
of more than 180deg. This is the reason why the Cayley-
Rodrigues parameters were, for the most part, ignored in the
literature of attitude dynamics. Revived interest in these
parameters stems mainly from their potential advantages in
control and stabilization problems*®~17.

If instead of using Eq. (4) one eliminates the Euler param-
eter constraint by introducing the parameters

q:

SR L i=1,2,3 14
S ) (14)

o

one obtains the following set of differential equations in terms
of the vector o = (o1, 02, 0'3)T cR?

6 =d(o)w, a(0) = a0 (15)

where

Glo)=1 (I ~S(0) + 00" — #1) . (16)

The proposed kinematic description is derived from the Eu-
ler parameters via stereographic projection'® and due to its
similarity to the Rodrigues parameters is referred to in the
literature as the Modified Rodrigues Parameterization'*1?:2°,
The Modified Rodrigues parameters — although closely re-
lated to the Cayley-Rodrigues parameters — are superior
to them, since they are not limited to eigenaxis rotations of
only up to 180 deg. Indeed, from Eqgs. (3) and (14) one eas-
ily sees that the Modified Rodrigues parameter vector o is
related to the principal axis and the principal angle through

o = étan % (17)



which is well-defined for all eigenaxis rotations in the range
0 <& < 360deg.

It should be apparent that the previous three-dimensional
parameterization moves the inherent singularity of the pa-
rameterization as far from the equilibrium point (i.e., the ori-
gin) as possible; at the same time, only one attitude configu-
ration is eliminated as being singular. This parameterization
has the largest domain of validity over all other minimal pa-
rameterizations. A parameterization specified in this way
allows for a larger set of rigid-body configurations than the
other classical three-dimensional parameterizations, such as
the Eulerian angles and Rodrigues parameters. In contradis-
tinction, the use of Eulerian angles or Rodrigues parameters
eliminates an infinite number of possible orientation config-
urations.

Similarly to Egs. (7) and (8), direct calculation shows that
the matrix G(o) in Eq. (15) also satisfies the following two

identities. -
JTG(a)w = (1—1:#) oTw (18)
and

G (0)G(o) = (M) I (19)

for all w, o € IR®.

Stabilization Results

We are interested in designing feedback controllers that
globally asymptotically stabilize the attitude motion. In
particular, we are interested in answering the following ques-
tion: Are there any globally asymptotically stabilizing feed-
back control laws for the systems of Egs. (1)-(5) and (1)-
(15) which are linear? Linear feedback control laws have
been previously derived for the case of the four-dimensional
parameterization of the Euler parameters®', but not for the
case of non-redundant parameter sets, such as the Rodrigues
or the Modified Rodrigues parameters — at least as far as
the author knows. In this Section we show that there exist
indeed linear globally asymptotically stabilizing controllers
in terms of the Rodrigues and the Modified Rodrigues pa-
rameters, and thus we answer the previous question in the
affirmative.

One word of caution should be mentioned at this point as
far as our use of the term “global” stabilization is concerned.
Strictly speaking, the attitude motion of a rigid body can-
not be globally continuously stabilized since the configura-
tion space of the motion (the rotation group SO(3)) is non-
contractible. Thus, by “global asymptotic stabilization” we
mean here that the system of the corresponding kinematic
parameters 1s globally asymptotically stable, 1.e., the tra-
jectories in these parameters remain bounded and tend to
zero for arbitrary initial conditions. We therefore guaran-
tee asymptotic stability for all initial orientations not corre-
sponding to singular configurations. It is therefore obvious
why we insist on parameterizations with the largest possi-
ble domain of validity. On the same token, starting from a
non-singular orientation, the global asymptotic stability of
the closed-loop system a posteriori insures the existence of
solutions of the differential equations for all ¢ > 0. If one
is worried about the case when the initial body orientation
corresponds to a singular configuration, one needs only to
modify the proposed control laws as follows: because the
singular configurations consist a dense set in SO(3) (actu-
ally in the case of the Modified Rodrigues parameters is the
whole space minus a single, isolated point), any control law
of arbitrarily short duration will move the body away from
this singular configuration; one can then use the stabilizing
control laws proposed here. Hence from a practical point of
view this slight abuse of the terminology should not cause
any concern, since stability is guaranteed for all “generic”
initial conditions.

The following assumptions will be used throughout the
subsequent discussion. First, we assume that we have com-
plete and accurate knowledge about the state of the system,
i.e., the angular velocity vector and the kinematic parameter
vector. This assumption allows for the design of state feed-
back controllers. The question of incomplete information of
the state (output feedback) is not addressed in this paper.
A special case of output feedback (no angular velocity mea-
surements) can be found in Ref. 22. Second, we will assume
that all initial conditions are in the domain of definition of
the corresponding differential equations. This assumption is
introduced because we are interested only in minimal param-
eterizations. Well-posedness of the problem limits the valid
initial conditions. According to the previous discussion, this
is only a mild assumption since one can always trivially mod-
ify the proposed control laws in order to incorporate physical
orientations corresponding to singular configurations. We
will also implicitly assume that the actuators used can gen-
erate continuous control profiles. This necessitates either
the use of momentum wheels, or gas jet actuators in con-
junction with Pulse-Width Pulse-Frequency (PWPF) mod-
ulators. Since most current gas jets are of the on-off type,
PWPF modulators can be used to produce the continuously
varying control profile by generating a pulse command se-
quence to the thruster valve by adjusting the pulse width
and pulse frequency. The average torque thus produced by
the thruster equals the demanded torque input??.

We next derive stabilizing control laws both in terms of
the Cayley-Rodrigues parameters, as well as the Modified
Rodrigues parameters. Since most of the readers are proba-
bly more familiar with the Cayley-Rodrigues parameters we
start with the results for this case.

Cayley-Rodrigues Parameters

References 15 and 16 present the main known result con-
cerning asymptotic stabilization using the Rodrigues param-
eters. According to the results in Refs. 15 and 16, the feed-
back control

w=—kip(l+ pr) — kow (20)
with k1 > 0 and k2 > 0, globally asymptotically stabilizes
the system of Eqgs. (1) and (5) at the origin.

The proof of the stability of the closed-loop system is
based on the use of the following quadratic Lyapunov func-
tion in terms of the angular velocities and the kinematic
parametersl5’16

V = %wTJw—l—klpr (21)

Before proceeding with the main results of this section we
need to recall an important structural property of the system
of Eqgs. (1)-(5); namely, it represents a system in cascade
form. That is, the control input u drives the angular velocity
equations (1) and the angular velocity w drives the kinematic
equations (5). There is no direct connection between the
kinematics subsystem and the torque input ». The kinematic
equations can be accessed and manipulated only through the
angular velocity vector w. For systems in cascade connection
there is an intuitive way to achieve closed-loop stability. The
methodology involves a two-step procedure. Namely, one can
concentrate first on the stabilization of the second (driven)
subsystem (the kinematic equations in our case) treating the
driving state as a control-like variable (the angular velocity
vector in our case) and then proceed to the stabilization of
the complete system.

Recall that a function V' : IR™ — IRy is called positive
definiteif V(z) > 0 for all £ € IR™ and V(z) = 0 if and only
if £ = 0. It is called radially unboundedif lim ||~ V(z) =
00.
Let now the system in Eq. (5) with w considered as the
control variable. Let U/ : IR* — IRy be any positive definite,
radially unbounded function such that

oUu
% = PTh(P) (22)



with k : IR* — IR a continuous function such that pTh(p) #
0 for all p # 0.
Then we have that the following two conditions hold:

(i) The control law

w=—k (“;ﬂ) hp)p (23)

with k1 > 0, globally asymptotically stabilizes the sys-
tem in Eq. (5) at the origin. Moreover, U is a Lyapunov
function for the associated closed-loop system.

(ii) The control law

u=—k (1—1—2&) h(p)p — kow (24)

with k1 > 0 and k2 > 0, globally asymptotically stabi-
lizes Egs. (1)-(5) at the origin and

V=210"Ju+kU(p) (25)

is a Lyapunov function for the associated closed-loop
system.

In order to show (i) notice that with the control in Eq. (23)
the closed-loop system for the kinematics becomes

- (”2#) ho)o (26)

Since U is a positive definite function it can be used as a
Lyapunov function candidate. Using Eq. (7) the derivative
of U along the trajectories of the closed-loop system is given

by

U = %b =—k (“}ﬁ) " h(p)H (p)h(p)p

2

= -k (M) B (p)lloll” <0, ¥p IR\ {0} (27)

From Eq. (27) we conclude that the origin p = 0 is
asymptotically stable. Since U is also assumed to be radi-
ally unbounded the origin is, in fact, globally asymptotically
stable®* .

For the proof of part (ii), consider the complete system of
Eqgs. (1) and (5) with control law (24) and let the function in
Eq. (25) be a Lyapunov function candidate. The derivative
of V along the trajectories of the closed-loop system, taking
into consideration Eq. (7), is given by

wTJerkl%p

Vo= 3
1 T
= wT(_kl (%) h(p)p — k2w) =+ klh(p)pTH(p)w
= —k|lw|?* <0 (28)

If V =0 then w =& =0 and from Eqgs. (1) and (24) also
p = 0. Thus, the largest invariant set such that V = 0 is
the origin. By LaSalle’s Theorem?*, the system is asymp-
totically stable at the origin. Since V in Eq. (25) is also
radially unbounded, the closed loop system is actually glob-
ally asymptotically stable at the origin.

Equations (23) and (24) provide a large family of stabi-
lizing control laws for the system of Eqgs. (1)-(5). The main
obstruction with the use of these results is, of course, the
fact that one does not have a constructive way of generating
the positive definite, radially unbounded function U satisfy-
ing Eq. (22). On the other hand, any such positive definite,

radially unbounded function can be used to generate glob-
ally asymptotically stabilizing control laws for the system in
Eqgs. (1)-(5).

The easiest (but by no means the only) choice for U is to
pick a positive definite function in terms of the magnitude
of p alone. The choice

U(p)=p"p (29)

for example, satisfies Eq. (22) with h(p) = 2 and the control
law in Eq. (20) follows directly from Eq. (24). If one chooses
a different Lyapunov function than the one in Eq. (21) one
easily establishes the fact that a linear control law suffices to
provide global asymptotic stability for the system of Egs. (1)
and (5). To see this, let the system in Eq. (5) with w consid-
ered as a control variable. Observe that the positive definite
function

U(p) =In(1+p"p) (30)
where In(-) denotes the natural logarithm, satisfies the con-
ditions of Eq. (22). For U as in Eq. (30) we get that

2

h(p) = ———
(p) T

(31)
Therefore the linear feedback control law
w=—kip (32)

asymptotically stabilizes the system (5) at the origin. Actu-

ally, since
2 T
—k1 | ————— H
1 (1 n pr) P H(p)p

= —kllplP <~k (1 + [lolP) = —k1U(p) (33)

U

the control law in Eq. (32) ezponentiallystabilizes the system
in Eq. (5) with rate of decay k1 /2. (In Eq. (33) we have used
the inequality z > In(1 + «) for all © > 0.)

In addition, the linear control law

u=—kip—kw (34)

with k1 > 0 and k2 > 0, globally asymptotically stabilizes
the system in Egs. (1) and (5) at the origin. This result
follows directly from Eq. (24) and the fact that the function

V = %wTJw—l—kl ln(l—l—pr) (35)

is a Lyapunov function for the closed-loop system in
Eqs. (1)-(5) and (34).

From Egs. (20) and (21) and Eqgs. (34) and (35) it is clear
that one has, in essence, traded the complexity of the Lya-
punov function with the complexity of the resulting control
law. Lyapunov functions of the type (35) (i.e., “quadratic
plus logarithmic”) have been previously introduced in con-
nection with the attitude stabilization problem of an axi-

symmetric spacecraft using only two control torques?®.

Modified Rodrigues Parameters

Similar results can also be shown for the case of the Mod-
ified Rodrigues parameters. The following results, stated
without proof, present the corresponding stabilization re-
sults in terms of these parameters.

Let the system in Eq. (15) with w considered as a con-
trol variable. Let W : IR® — IR, be any positive definite,
radially unbounded function such that

2 =T y(o) (36)
with g : IR® — IR a continuous function, such that o7 g(o) #
0 for all o # 0.

Then we have that



(i) The control law

w=—k (#) g(o)o (37)

with k1 > 0, globally asymptotically stabilizes (15) at
the origin. Moreover, W is a Lyapunov function for the
associated closed-loop system.

(ii) The control law

u=—k (M) g(o)o — kaw (38)

4

with k1 > 0 and k2 > 0, globally asymptotically stabi-
lizes the system (1)-(15) at the origin and

V=1w"Jw+ kW(o) (39)

is a Lyapunov function for the associated closed-loop
system.

Observing that the positive definite function
Wi(o)=In(1+ chcr) (40)

satisfies the conditions of Eq. (36) one can also easily show
that the linear controller

w=—-ko (41)

with k1 > 0, globally exponentially stabilizes the system in
Eq. (15) at the origin with rate of decay ki1/2 (with w con-
sidered as a control variable). Moreover, the linear control
law

u=—kio — kow (42)

with k1 > 0 and k2 > 0, globally asymptotically stabilizes
Eqgs. (1) and (15) at the origin.

A nonlinear feedback control arises if one uses the
quadratic function

W(o)=20"0 (43)
instead. Using this choice of W the feedback control
uw=—ko(l+ chcr) — kow (44)

globally asymptotically stabilizes the system of Eqgs. (1) and
(15) at the origin. The previous control law is, in essence,
the counterpart of the control law in Eq. (20) for the case of
the Modified Rodrigues parameters.

The results of this section show that there is a similar
structure between the Cayley-Rodrigues and the Modified
Rodrigues parameters which allows the derivation of stabi-
lizing controllers for the Modified Rodrigues parameters mu-
tatis mutandis from the corresponding results for the Cayley-
Rodrigues parameters (and vice versa). Despite this appar-
ent similarity, the behavior of the two sets of kinematic pa-
rameters can vary greatly in applications. The numerical
examples at the end of the paper illustrate the relative merit
of the two parameterizations in the description of the atti-
tude motion and in control problems.

As a last remark, we note that all of the proposed control
laws have the property that they do not require any informa-
tion about the body principal moments of inertia and they
are therefore robust with respect to system parametric un-
certainty.

We now turn to the question of performance of the previ-
ous controllers.

Optimality Results

In this section we show that the linear control laws for
the kinematics in Eqs. (32) and (41) have certain optimal-
ity properties. In particular, we show that the Lyapunov
functions of the logarithmic type in Eqgs. (30) and (40) solve
the Hamilton-Jacobi equation associated with an optimiza-
tion problem with a performance index which includes a
quadratic penalty in the angular velocity and the orienta-
tion parameters p or 0. We then investigate the optimality
properties of a family of nonlinear control laws for the com-
plete system (i.e., dynamics and kinematics).

Recalling the cascade interconnection of the dynamics-
kinematics subsystems we first address an optimization prob-
lem for the kinematics only. To this end, consider the system
in Eq. (5) where w acts as the control variable and let the
quadratic performance index

Ji(posw) = %/OO{kQIIP(t)II2 +llw(®)]*} dt (45)

where k some positive constant. Notice that this functional
is a true performance index in the sense that it penalizes the
state (p) and the control input (w).

In the previous section we have shown that the control
law

w*(p) = —kp (46)

renders the closed-loop system globally exponentially sta-
ble at the origin. We will now show that this control law
also minimizes (45) and the minimum value of the cost is
T (po) = kIn(1+ |[po]|*).

According to Hamilton-Jacobi theory the optimal feed-
back control w* for the previous problem is given by

. s 1 5 OV
0 = min{— + —||lw||* + — H(p)w 47
in{ S0l + Sl + G H ) ()

Therefore, the Hamilton-Jacobi equation associated with the
optimal control problem in Egs. (5)-(45) is given by
o’V

Klpll* =112 (p)——II" = 0,

3
7 VpelR (48)

If V is a positive definite solution to this equation, then a
simple calculation shows that the control law
o’V
* — —HT 49
w"(p) (0) 5, (49)

minimizes the cost in Eq. (45). Moreover, the optimal cost
is J*(po) = T (po;w™) = V(po).
Notice now that the positive definite function defined by

Vi(p) == kIn(1 +|lplI*) (50)

provides a solution to Eq. (48). The optimal control in
Eq. (46) follows then directly from Eq. (50) and Eq. (49)
and the optimal cost is given by Vi(po) = kIn(1 + ||p0||2).
A similar result can also be shown for the Modified Ro-
drigues parameters. We state the result without proof.
Consider the system in Eq. (15) where w acts as the control
variable and let the quadratic performance index

Fi(o030) = %/m{ﬁna(tw Fle@IPy e (s1)

where k some positive constant.
Then the control law

w*(o) = —ko (52)

renders the closed-loop system globally exponentially stable
at the origin and minimizes (51). Moreover, the minimum
value of the cost is Ji"(00) = 2kIn(1 + ||ao||2).



A similar procedure can also be used to show that the
nonlinear control laws

w(p) = —k(1 +|lpll*)p (53)

and
w' (o) = k(1 +[[o][")e (54)

are also optimal with respect to the costs

FTo(po;w) = %/Oo{k2||p(t)||2(1 eI + llw(®)]*} dt

(55)

and

To(ooiw) 1= ;/m{#na(tw(l o) + [l (D)} dt
i (56)

with k some positive constant, for the systems in Eqgs. (5) and
(15), respectively. Notice that the cost functionals involve
quadratic and quartic terms in the state variables in this
case. The proof is based on the observation that the positive
definite functions Va(p) = kl||p||*> and Va(a) = 2k||o||* solve
the respective Hamilton-Jacobi equations.

Thus far, we have only considered the kinematics subsys-
tem of the attitude equations, that is, only Egs. (5), viz.
Eqgs. (15), with w acting as a control variable. If the dy-
namics is sufficiently fast the previous results suffice. In
these cases, the optimal angular velocity profile can be im-
plemented through the dynamics without significant degra-
dation in performance.

Consider the feedback control

Uae = —S(w)Jw — kJH(p)w — AJ(w + kp) (57)

With this control law the closed-loop system in Egs. (1) and
(5) becomes

e(w+ kp) w+ kp (58a)

po= H(pw (58b)

where € = 1/A. For A large this is a singularly perturbed
system where the dynamics (58a) is the fast subsystem and
the kinematics (58b) is the slow subsystem. For e = 0 in
Eq. (58a) one obtains w = —kp as in Eq. (46). Thus, for
¢ — 0 one obtains that w — w*. This implies that

S AR oI + llw(®)?} dt
— kIn(1+ ||po|| )= J1(po) (59)

and the cost can be made arbitrarily close to Ji*(po) by
choosing € sufficiently small. Since, in general, € # 0 the op-
timal cost .71(p0) provides only a lower bound on the achiev-
able performance when the actual control input is the body
fixed torque.

Similar statements can also be made for the Modified Ro-
drigues parameters. For the sake of brevity, these results
will not be repeated here and are left as an exercise to the
reader.

The disadvantage of the control law in Eq. (57) is, of
course, that it requires high gain in terms of A. This may
not be acceptable if there are stringent bounds on the avail-
able control effort. A more realistic performance index needs
to incorporate a penalty on the control u as well. Unfortu-
nately, the optimization problem for a performance index
which is quadratic both in the state and the control effort
remains formidable. Alternatively, one may investigate the
optimality properties of the control law in Eq. (57) and, if
possible; modify this control such that its high-gain portion
is penalized.

The following procedure is based on the results of Ref. 26,
where the authors examined the optimality properties of a
class of feedback control laws for relative degree one mini-
mum phase systems. As before, we will present the results

Ja(p, w; wae) =

for the Rodrigues parameters only. The reader is invited
to derive the corresponding control laws and performance
functionals for the Modified Rodrigues parameters from the
Rodrigues parameters case.

As it is evident from Eq. (57) the last term in this equa-
tion is the high-gain portion of the controller. We therefore
consider a modified control law of the form

w=—-Sw)Jw—kJH(p)w+ Jov (60)

where v must be kept small. Recalling the desirable proper-
ties of the relationship w = —kp, it is natural to introduce
the variable

z=w+kp (61)

and develop control laws which will make z — 0. The per-
formance index should therefore include a penalty on z as
well as a penalty on the control effort v.

Using Eqgs. (61) and (60) the system equations can be
written as follows

= w (62a)

p = H(p)(z—kp) (62b)
It is claimed that the feedback control law

v (p,z) = —§ — Az (63)

makes the system in Eq. (62) exponentially stable and min-
imizes the cost

Ttz =& [ Ao+ QP + 2l 4 P (04
0

The proof is obtained as follows. Notice that the Hamilton-
Jacobi equation associated with the previous optimization
problem is given by

el =222 2 ) e k) = 0

oV
1 9V 2 2
25117 +Ellell 2 o
(65)

and the optimal control is given by

. p 9TV
v (p2) = =5 = 5 (66)

Notice now that the positive definite function

A
Vilp, 2) =In(1+ loll*) + 11417 (67)

solves the Hamilton-Jacobi equation (65). The exponential
stabilizability of the control law in Eq. (63) then follows eas-
ily by using Eq. (67) as the Lyapunov function for the closed-
loop system. The minimum value of the cost is given by

T (po, 20) = Ja(po, zo;v*) = In(1 + |[po]|*)
+21201* = Va(po, z0) (68)

From Egs. (60) and (63) we have, finally, that the optimal
control is

w(w, p) = —S(w)Jw — kJH(p)w — J§ — M (w +kp) (69)

Moreover,

. p
= Uge — J — 70
u u 3 (70)

where ugq is the control in Eq. (57). Comparison of Egs. (63)
and (64) shows that the control law

7°(z) = =Xz (71)
minimizes the cost

Ji(p,0) = %/ {131 + 2k[lpl* + A [|=|*} dt - (72)
0



subject to the dynamic constraints

+ 9 (73a)
)~ ko) (73b)

The first term in Eq. (72) includes a penalty on the high gain
portion of the controller. Moreover, notice that as A — oo
then v* — —Az and u* — wuqs and we recover the results of
the control law in Eq. (57).

z = =

4
)
p= Hp

Numerical Examples

We now demonstrate the previous theoretical results by
means of numerical simulations. We first compare the lin-
ear control laws in Eqs. (34) and (42) with the nonlinear
control laws in Eqgs. (20) and (44). We consider a rigid
body with inertia parameters J = diag(10, 6.3,8.5) (kg-m?).
The initial angular velocities are zero and the initial ori-
entation corresponds to an eigenaxis/angle representation
é = (0.4896,0.2032,0.8480)" and ® = 2.5rad. That is, the
initial conditions in terms of the Cayley-Rodrigues param-
eters are given by p(0) = (1.4735,0.6115,2.5521)T and in
terms of the Modified Rodrigues parameters are given by
o(0) = (0.3532,0.1466,0.6118)7. The values for the gains
were chosen as k1 = 2 and k2 = 1.

The results of the simulations for the Rodrigues parame-
ters are shown in Figures 1-2. The solid lines represent the
trajectories with the nonlinear control in Eq. (20) and the
dashed lines represent the trajectories with the linear con-
trol law in Eq. (34). Figure 1 depicts the behavior of the
Rodrigues parameter vector, while Figure 2 shows the time
history of the associated control effort. Only the first com-
ponent of the corresponding vectors are shown here, since
the other two components exhibit similar behavior.

These results show that the linear controller seems to per-
form better than the nonlinear controller. In particular, the
trajectories with the linear controller exhibit much smaller
overshoot and the trajectories with the nonlinear controller.
In addition, the linear controller uses less control effort than
the nonlinear controller. This can be explained by observing
that the initial condition for the Principal angle gives rise to
relatively high initial values for the Rodrigues kinematic pa-
rameters. As a result, the additional quadratic term in the
control law in Eq. (20) imposes greater control requirements
and more drastic control action than the linear controller,
especially at the beginning of the maneuver. For smaller ini-
tial conditions it is expected that the two controllers — and
the corresponding trajectories — will exhibit similar behav-
ior. This is due to the fact that as p — 0 the linear and
the nonlinear controllers become identical. (Notice that the
linearization of the control law in Eq. (20) is the control law
in Eq. (34) and hence the linearizations of the corresponding
closed-loop systems are the same.)

The corresponding results for the Modified Rodrigues pa-
rameters are shown in Figures 3-4. The control effort for the
two control laws is comparable although, again, the nonlin-
ear controller initially requires more control energy than the
linear controller. In light of the discussion in the previous
paragraph it should be clear that the differences between
the linear and the nonlinear controller would become more
distinct as the initial conditions approach the singularity
(® = 360deg) with the linear controller performing increas-
ingly better as the initial value of ® — 360deg. Moreover,
as ® — 180 deg (the singularity of the Cayley-Rodrigues pa-
rameterization) it is expected that more control effort will
be required by the control law in Eq. (34) than the one in
Eq. (42). This is a consequence of the fact that the Modified
Rodrigues parameters behave more “linearly” over a larger
domain than the Cayley-Rodrigues parameters®®.

The second numerical example compares the control law
in Eq. (69) for different values of the parameter X. The

same 1nitial conditions are chosen as before, and the gain is
taken k& = 2. Figure 5 shows the time history of the Cayley-
Rodrigues parameters for A = 0.1,1 and 10. The respective
control histories are plotted in Fig. 6. Recall that it is de-
sirable to keep A small, but one may not make it too small
either, since then the fourth term in Eq. (69) may become
significant. By varying A one can shape the acceptable con-
trol and states profiles. The cost criterion in Eqs. (64) or
(72) can then be used as a guide for the best choice for A.
For this example it appears that a value approximately A = 1
provides a reasonable compromise.

Solid: Nonlinear, Dashed: Linear
1.5 T T T

i i i i
5 10 15 20 25 30 35 40
TIME (sec)

Fig. 1 Controller comparison; Rodrigues parameters history.

Solid: Nonlinear, Dashed: Linear
20 T T T

U_1(Nm)
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[¢] 5 10 15 20 25 30 35 40
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Fig. 2 Controller comparison; Control history for Rodrigues
parameters.

Conclusions

We have presented a minimal parameterization for the
kinematics of the attitude motion which — although similar
to the classical Cayley-Rodrigues parameter — does not have
the disadvantage of restricting the principal angle between 0
and 180 deg. In fact, using these parameters, all eigenaxis ro-
tations within 0 < & < 360 deg are allowed; this implies that
the inherent singularity of any three-dimensional parameter-
ization has been moved as far from the equilibrium point as
possible. This is clearly a desirable property, especially for
attitude control applications. We have also derived a new
class of feedback control laws for the attitude stabilization of
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Fig. 3 Controller comparison; Modified Rodrigues parame-
ters history.
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Fig. 4 Controller comparison; Control history for Modified
Rodrigues parameters.

a rigid body in terms of minimal, three-dimensional param-
eterizations. In particular, a new type of Lyapunov function
for this class of problems is proposed, which often leads to
linear control laws. The proposed Lyapunov functions in-
clude a quadratic term in the angular velocities (the kinetic
energy) and a logarithmic term in the kinematic parame-
ters. Finally, we have addressed the optimal feedback con-
trol problem for the attitude motion subject to a quadratic
cost. The optimal controllers are derived by analytically
solving the associated Hamilton-Jacobi equations. Although
the complete solution to this problem is still unknown, the
results reported in this paper may shed some light for possi-
ble candidate solutions. The numerical examples at the end
of the paper indicate that the Modified Rodrigues param-
eters are better conditioned for numerical simulations and
stabilization purposes than the classical Cayley-Rodrigues
parameters. This, along which the fact that they are not
limited to eigenaxis rotations of only upto 180 deg, makes
the Modified Rodrigues parameters an attractive choice for
attitude description and control problems.
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