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I. Introduction

B YAND large, the literature on optimal control deals with the
minimization of a performance index that penalizes control

energy, because the input appears in quadratic form as part of the
running cost. Such problems are typically referred to as minimum

energy problems in optimal control theory—they involve the
minimization of the L2-norm of an otherwise unconstrained control
signal. While L2 minimization can be useful in addressing several
optimal control problems in engineering (preventing engine
overheating, avoiding high-frequency control input signals etc.),

there are practical applications in which the control input is bounded
(e.g., due to actuation constraints), and theL1-norm is amore suitable
choice to penalize. These problems are also called minimum-fuel

problems, due to the nature of the running cost, which involves an
integral of the absolute value of the input signal. Minimum-fuel
control appears as a necessity in several settings, especially in

spacecraft guidance and control [1,2], in which fuel is a limited
resource. Indeed, in such applications, using the L2-norm results in
significantly more propellant consumption, as well as undesirable
continuous thrusting. In some illustrative examples, this fuel penalty
can be as high as 50% [3].
In this paper, we address a stochastic version of the so-called

soft-landing problem (SLP). The objective of the SLP is to find the
optimal thrust profile for a spacecraft attempting to make a soft

landing on a planet, using the minimum amount of fuel. The problem
was originally addressed by considering only one spatial dimension
(namely, the altitude with respect to the planet), in which case its
deterministic formulation offers a closed-form solution (initially
obtained by Miele [4,5] during the 1960s; see also [6,7]). In more
recent years, there has been renewed interest in the topic, appearing

under the name powered-descent guidance (PDG), mainly due to
the success of NASA’s Mars Science Laboratory program. Several
results appear in the literature, treating a more complex problem
involving all three spatial dimensions, more accurate modeling of the
dynamics to account for planetary rotation, and several state and

control constraints [8–12]. An analysis for fuel optimality is also
included in [13,14]. The challenges faced in the implementation of

planetary PDG controllers are the twofold: 1) the environmental
uncertainty and stochastic disturbances present, and 2) the limited
capabilities for onboard computation.
The aim of this paper is to present an application of the framework

of stochastic control using forward and backward sampling,
developed in previous work by the authors [15–17], to the SLP. The
problem considered within this paper is a combination of a stochastic
L1-optimal control problem with a first-exit type of formulation.
Such a combination has not been previously considered in our work,
and no results have been published containing applications of our
algorithm on first-exit problems in general. The motivation for this
problem formulation stems from the fact that the proposed algorithm
is intended to be deployed during the very last stage of the descent
(i.e., seconds before landing), when the altitude is relatively low. In
this setting, it is assumed that any constraints with respect to
navigating toward the landing site have been already satisfied, and the
final objective is to ensure that the spacecraft touches the ground
smoothly, despite environmental disturbances. In fact, to the best of
our knowledge, the majority of PDG controllers involve a terminal
stage (i.e., just before landing), where the trajectory is vertical (see,
e.g., [18]). Furthermore, this paper illustrates the advantages of a
control law stemming from our framework, as opposed to a closed-
loop deterministic control law that does not directly take stochasticity
into consideration. Specifically, it is shown that simply employing a
deterministic closed-loop controller in a model-predictive control
fashion does not mitigate the risk of a crash during landing. In
contrast, the proposed feedback controller, while subject to the
same control structure restrictions, drastically reduces the chances of
a crash, making them arbitrarily small. The proposed algorithm
demonstrates superior performance, offering a much lower mean and
variance for the touchdown speed. Depending on the given safety
specifications, we can further reduce this mean and variance, thus
gaining a more robust, safer controller, at the expense of slightly
increased fuel expenditure. Finally, the nature of the algorithm allows
for a complete solution of the problem a priori and off-line, thus
minimizing the required onboard computing capabilities of the
spacecraft.

II. Problem Description

In this section, we formally define the SLP. We first introduce the
deterministic setting and its closed-form solution, which we will use
later on for validation and comparison purposes. In the next section
we present a stochastic version of the problem, on which we will
apply the proposed algorithm. Finally, in the simulation section, we
compare the numerical results obtained by the proposed algorithm to
those of the closed-form solution (both in open-loop and closed-loop
implementation).

A. Deterministic Setting

Consider the problem of a spacecraft attempting to make a soft
landing on a planet, using theminimumamount of fuel. The dynamical
equations are given by

_h�t� � v�t� (1)

_v�t� � −g� u�t�
m�t� ; u�t� ∈ �umin; umax� (2)

_m�t� � −αu�t� (3)

with t ∈ �0; tf�, h�0� � h0, v�0� � v0, and m�0� � m0. Here,
h: �0; tf� → R�, v: �0; tf� → R, and m: �0; tf� → R� denote the
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altitude, vertical speed, and mass of the spacecraft at time t,
respectively; g is the gravitational acceleration, assumed to be

constant; α is a positive constant that describes the mass flow rate; and

u: �0; tf� → �umin; umax� is the control input (thrust), with umin,

umax ∈ R�. As admissible controls, we consider all piecewise

continuous control functions taking values in the aforementioned

interval. The initial conditions are �h0; v0; m0�, whereas the terminal

conditions are h�tf� � v�tf� � 0. Here, tf denotes the time instant of

landing, whose particular value is otherwise left unspecified. For the

mass, we assume that a reasonable value has been assigned to m0 so

that landingwith remainingmass at or above the drymass (mass of the

spaceship without fuel) is feasible. We wish to obtain the optimal

control u��⋅� that satisfies the above conditions, while minimizing the

amount of fuel spent:

Jdet�u�⋅�; h0; v0; m0� �
Z

tf

0

ju�t�j dt (4)

It can be shown [4,6,7] that the solution to this free final time

L1-optimal control problem yields a unique optimal bang-bang

controller. It is also known that the problem is normal (meaning

that singular control does not appear within the optimal control

sequence), and that there is at most one switch time. The optimal

control sequence is

u��t� �
(
umin; t ∈ �0; ts�;
umax; t ∈ �ts; tf�

(5)

where ts denotes the switching time. The values of ts and tf satisfy
the following system of equations:

h0�v0ts�
tf
α
−
1

α

�
ts−

m0

αumin

�
ln
�
1−

αumin

m0

ts

�
−
1

2
gt2s

�m0−αumints
α2umax

ln
�
1−

αumax

m0−αumints
�tf−ts�

�
�1

2
g�tf−ts�2�0 (6)

α�umax − umin�ts � αumaxtf �m0�exp�α�v0 − gtf� − 1�� (7)

The above system can be solved numerically for given values of

ts and tf.

B. Stochastic Setting

Toconstruct a stochastic extension to thepreviousmodel,weassume

that randomness appears in the spacecraft’s acceleration because of

unmodeled environmental disturbance forces. This uncertainty is then

integrated into the speed and altitude variables. Furthermore, the exact

thrust value exerted by the spacecraft is assumed to be uncertain, due to

limitations in the precision of our control. Thus, we introduce the

dynamics

dh�t� � v�t�dt (8)

dv�t� �
�
−g� u�t�

m�t�
�
dt� σ

umax

m�t� dWt; u�t� ∈ �umin; umax�
(9)

dm�t� � −αu�t�dt − σαumaxdWt (10)

with t ∈ �0; tf�, h�0� � h0, v�0� � v0, and m�0� � m0. Here, dWt

are increments of Brownianmotion, and σ is a constant. For notational
compactness, we define f ≜ �v;−g; 0�, G ≜ �0; 1∕m;−α�T , and Σ ≜
�0; σumax∕m;−σαumax�T and write Eqs. (8–10) as

dx � f�x�dt�G�x�udt� ΣdWt (11)

where x � �h; v;m�T .
In contrast to the deterministic case, terminal state conditions

are not meaningful in a stochastic setting, because whenever

the system dynamics are modeled by controlled diffusions, the

probability of hitting a particular point in state space exactly is

zero. Furthermore, in a stochastic setting, free final time problems

without cost discounting can be troublesome due to the absence of

boundedness guarantees. Because the approach used in this paper

is based on trajectory sampling (see Sec. III), allowing the process

to continue without imposing an upper bound on its duration may

yield trajectory samples that have a very large—or even possibly

infinite—time duration, and thus cannot be simulated (see relevant

discussion in [19]). Instead, we formulate a first-exit problemwith

time upper bound, in which the process terminates as soon as the

task has been achieved (here, landing), or a specified maximum

time duration has passed, whichever event occurs first. Thus,

for the problem under investigation, we consider a first-exit

formulation, in which the process terminates when the hyperplane

h � 0 is crossed, or an upper bound T on the time duration

has passed. We thus define the state space by G�
fh;v;m:h ∈ R�; v ∈ R;m ∈ R�g, with ∂G � fh; v;m ∈ G: h � 0g
being its boundary, the crossing of which signals early

termination. To account for the lack of terminal constraints, we

introduce them as soft constraints within the cost, which we define

as follows:

J�u�⋅�; h0; v0; m0; T� � E

�
Ψ�T ; h�T �; v�T �� �

Z
T

0

qju�t�j dt
�

(12)

with q being a positive constant, and T the minimum between the

time of first exit, τexit, and the upper bound T, namely,

T ≜ minfτexit; Tg; with τexit ≜ inffs ∈ �0; T�: x�s� ∈ ∂Gg
(13)

Finally, we define the terminal cost Ψ as

Ψ�t;h;v�≜
(
c1h

2�t��c2v
2�t�≜g�h;v�; �t;h;v;m�∈ fTg×G;

c3v
2�t�≜ψ�v�; �t;h;v;m�∈ �0;T�×∂G

(14)

where c1, c2, and c3 are positive constants. The motivation behind

this choice of terminal cost Ψ�⋅� is that trajectories that terminate

earlier than t � T because of touchdown (h � 0) are penalized a

high touchdown speed, whereas trajectories that terminate at t � T
(i.e., without a touchdown) are penalized for both residual altitude

and speed.

III. Solution of the Stochastic Problem

In this section, we provide a brief overview of the methodology

developed by the authors in [15–17] to address stochastic L2- and

L1-optimal control problems, which is suitablymodified in this paper

to address the peculiarities of the SLP. The interested reader is

referred to the above publications for a detailed, self-contained

exposition of the framework used herein.
Through Bellman’s principle of optimality, it is shown [20,21] that

minimizing Eq. (12) subject to the dynamics given by Eqs. (8–10) is

associated with the solution of the Hamilton-Jacobi-Bellman (HJB)

partial differential equation (PDE) for the Value function V, which—
omitting function arguments for brevity—assumes for the case at

hand the following form:
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8>>><
>>>:
Vt � inf

u∈U

�
1

2
tr�VxxΣΣT� � VT

x f� �VT
xG� q�u

�
� 0; �t; x� ∈ �0; T� × Rn;

V�T; x� � g�x�; x ∈ G;

V�t; x� � ψ�x�; �t; x� ∈ �0; T� × ∂G

(15)

where x ≜ �h; v;m�, g�⋅� and ψ�⋅� represent the boundary conditions
given for this problembyEq. (14), andVx andVxx denote the gradient

and the Hessian of V, respectively. The optimal control is given by

u� �
(
umax; VT

xG� q ≤ 0;

umin; VT
xG� q > 0

(16)

and substitution to the original HJB PDE (15) yields the following

equivalent form:

8>>><
>>>:
Vt �

1

2
tr�VxxΣ�t; x�ΣT�t; x�� � VT

x f�minf�VT
xG� q�umax; �VT

xG� q�uming � 0; �t; x� ∈ �0; T� × G;

V�T; x� � c1h
2�t� � c2v

2�t�; x ∈ G;

V�t; x� � c3v
2�t�; �t; x� ∈ �0; T� × ∂G

(17)

The cornerstone of our approach is the nonlinear Feynman-Kac

lemma, which states that instead of solving the PDE problem (17),

one may solve an equivalent system of forward and backward

stochastic differential equations (FBSDEs), to obtain the solution

V�t; x�, and through that, theoptimal controlu�t; x�. The corresponding
system of FBSDEs [15] consists of the forward process (forward

stochastic differential equation, FSDE)

(
dXt � �f�Xt� �G�Xt� �u�t��dt� Σ�Xt�dWt; t ∈ �0;T �;
X0 � x0

(18)

along with the backward process (backward stochastic differential

equation, BSDE)

(
dYt � −F�t; Z�dt� ZtdWt; t ∈ �0;T �;
YT � Ψ�XT �

(19)

wherein, for the problem at hand,

F�t; Z� ≜ min

��
Zt

bumaxσ
� q

�
umax;

�
Zt

bumaxσ
� q

�
umin

�

−
Zt

bumaxσ
�u�t�

and �u is any control input (it can be taken as zero, or an initial guess of

theoptimal control).Note that the forwardprocessXt is simply a copyof

the dynamics of the system, and is subject to a given initial condition. In

contrast, the backward process Yt needs to satisfy a terminal condition.

The solution V�t; x� is obtained by solving the above system of

FBSDEs, in which the process Yt is an evaluation of the value function

along trajectories of Xt, and the process Zt is an evaluation of ΣTVx,

again along trajectories of Xt, namely,

Yt � V�t; Xt�; Zt � ΣT�Xt�Vx�t; Xt� (20)

Themain difficulty in dealingwith backwardSDEs is that, in contrast

to forward SDEs (which can be easily simulated by sampling a noise

profile and performing Euler integration), due to the presence of a

terminal condition, integration must be performed in the same manner

that is backward in time. This presents a complication in practice,

because the BSDE involves the noise term ZtdWt, and thus a mere

backward integration would yield a solution that at each time instant

depends on future values of the noise. A way to avoid this issue is to

backpropagate the conditional expectationofYt. Thus, if onediscretizes

time, Eq. (19) takes the form

Yti � E�Yti�1
� ΔtF�ti�1; Zti�1

�jXti � � E� ~Yti jXti � (21)

in which the noise term vanishes due to the conditional expectation

(it has an expectation of zero), and in which we have denoted
~Yti ≜ Yti�1

� ΔtF�ti�1; Zti�1
�. The conditional expectation is then

numerically approximated using the least squares Monte Carlo method

(LSMC). Specifically, for any time ti and given sample pairs ofXti and
~Yti , LMSC consists of performing least squares regression to obtain the

function vti that minimizes jvti�Xti� − ~Yti j2. Then, the expectation

operator is approximated by taking the projection Yti � vti �Xti�. The
regressed function vti�x� is in fact an approximation of the value

function for that particular time ti, namely, vti�x� ≈ V�ti; x�. The entire
numerical process is as follows:
1) Simulate M forward processes Xt according to the system

dynamics (18) along a time grid ftigNi�0, using a suitable time
discretization (e.g., the Euler-Maruyama scheme [22]), until each
trajectory reaches the boundary condition states (h � 0, or
t � T).
2) For each terminated process, assign a final condition for YT

according to Eq. (19), and ZT � Σ�XT �Ψx�XT �, where Ψx denotes
the gradient ofΨ. Then, back-propagate each data point to the previous
time step on the grid by assigning ~Yti � Yti�1

� F�ti�1; Zti�1
�Δt.

Perform regression (e.g., linear regression using polynomial basis
functions) on the ~Yti dataset to obtain the value functionV�ti; x�. Take
Yti � V�ti; Xti�, and calculate Zi � Σ�Xti�Vx�ti; Xti �.
3) Repeat step (2) going backward along the time grid until t0.
This procedure allows us to obtain regressions for the value

function for each time step ti, namely, V�ti; x�, and thus obtain a

feedback control law according to Eq. (16). Initializing with �u � 0,
or another initial guess, the procedure is repeated by using �u � u�,
in whichu� is the optimal control law resulting from a previous run of

the procedure. In this way, results are refined and improved in an

iterative manner. The trajectory blending technique [16,17] is also

helpful in order to improve the overall convergence properties of the

algorithm. For more details on both the theory as well as the

algorithmic aspects of this section, we refer the reader to the above

publications. More on the theory of FBSDEs can also be found in

[23–25].
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IV. Results

For the purposes of simulation,we assumed the following constants:
g � 3.71 �m∕s2�, α � 4.83 × 10−4 �s∕m�, umin � 4.97 × 103 �N�,
umax�1.33×104 �N�, σ � 0.06, and initial conditions �h0; v0; m0� �
�80 �m�;−10 �m∕s�; 1905 �kg��. The upper bound on the duration of
the descent is T � 8.5 s. Comparison of performance is done via two
metrics, namely, the touchdown speed, and the fuel mass used; in both
cases, both mean and variance are calculated. Another indicator is the
percentage of trajectories that lead to a touchdown.

A. Deterministic Control: Open-Loop Implementation

In this case, we calculate the switching time and apply the
deterministic control law (5) in an open-loop fashion. The results are
depicted in Fig. 1. Out of the 1000 trajectories simulated, only 50.3%
lead to touchdown. The remaining trajectories lead to a hovering
above the ground, which also explains the spike in fuel expenditure
(shown in Fig. 1b). Of the 50.3% of the trajectories for which a
touchdown occurs, most of them are considered a crash, due to the

high-speed impact. Indeed, the mean touchdown speed is−5.24 m∕s,
with a variance of 5.40 m∕s.

B. Deterministic Control: Closed-Loop Implementation

Next, we simulated the control law (5) in a closed-loop fashion,
that is, at each time instant we recalculated the switching time.
Switching back and forth between controls (due to the influence of

the noise) is allowed. This is a deterministic feedback in the form of a
model predictive control (MPC) scheme. The results are depicted
in Fig. 2. All of the 1000 trajectories simulated now lead to a
touchdown.However,most of themare still considered a crash, due to
the high-speed impact. Indeed, the mean touchdown speed this time
is −3.19 m∕s, with a variance of 1.96 m∕s.

C. Proposed Algorithm

For T � 8.5 �s�, q � 1, we used 3000 trajectory samples on a time

grid of Δt � 0.005 �s�, and a trajectory blending ratio of 0.98. The

algorithm was run for 35 iterations. The results are depicted in Fig. 3.

After the final iteration of the proposed algorithm, we evaluate the

performance of the control law by simulating 1000 trajectories for time

intervals long enough to achieve touchdown (see Fig. 3b). For t > T,
weuse the samecontrol law as for t � T. In contrast to thedeterministic

setting, the costgivenbyEq. (12) canbeused to shape trajectories based

on whether we place more importance on minimizing the touchdown

speed even forworst-case disturbances (at the expense of increased fuel

usage), orwhether fuel expenditure is critical and shouldbe thus done in

a parsimoniousmanner. Two such cases are depicted in Fig. 4. In case I,

fuel is relatively expensive, and thus for some noise profiles the

spacecraft has a high touchdown speed (mean −0.62 m∕s, variance
0.061 m∕s). In contrast, case II corresponds to relatively cheap fuel,

and thus the algorithm increases the effort to contain the spread of

trajectories, thus avoiding a crashing impact even for bad noise profiles

(mean touchdown speed −0.55 m∕s, variance 0.006 m∕s). This

increases the fuel expenditure (used fuel mass of case II: mean 43.2 kg

variance 1.5 kg, as opposed to 39.7∕1.1 kg for case I).

D. Comparison to the Apollo Powered Descent Guidance Law

The venerable Apollo powered descent guidance (APDG) is a

simple feedback control law that receives initial and terminal

conditions for a given guidance phase and outputs an acceleration

profile that meets these conditions. Expressed in feedback form for

the thrust, the APDG law reads [14]

u�t��−
6m�t�
tgo

�v�−v�t���12m�t�
t2go

�r�−r�t�−v�t�tgo��u�f (22)

Fig. 1 Solution of the open-loop implementation of control law (5).
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Fig. 2 Solution of the closed-loop implementation of control law (5).

Fig. 3 Solution of the proposed algorithm.
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wherein v� and r� are the terminal conditions to be met, tgo is a

specified time-to-go to the target condition, and u�f is a specified final
thrust acceleration vector. The main weakness of the APDG law is

that it does not take thrust constraints (i.e., lower and upper bounds)

into account, and exhibits sensitivitywith respect to the parameter tgo.
In fact, depending on the initial conditions and tgo, saturation in

the thrust magnitude may occur, leading to a miss in the prescribed

terminal conditions [14]. In this paper,wesimulated aone-dimensional

expression of Eq. (22), implemented in closed-loop fashion (i.e., by

recalculating the thrust profile at each instant of time). We used the

same initial conditions as previously, and set v� � r� � 0, while tgo
and u�f were optimized to yield the best results. We do note, however,

that we enforced the same upper bound on the allowable time for

the duration of the descent; that is, the maximum tgo was equal to

T � 8.5 s. We tested the APDG law for both cases of unconstrained

and constrained thrust.

Fig. 4 Comparison between the touchdown speed and fuel consumption profiles for cases I and II.

Table 1 Comparison of all methods

Method Touchdown speed [m∕s] (mean/variance) Fuel usage [kg] (mean/variance) Touchdown percentage Crash percentage

Deterministic, open loop −5.24∕5.40 32.4∕25.3 50.3 95.0
Deterministic, closed loop −3.18∕1.96 31.9∕5.1 100 86.8
Stochastic, case I −0.62∕0.061 39.7∕1.1 100 2.3
Stochastic, case II −0.55∕0.006 43.2∕1.5 100 0a

APDG, unconstrained thrust −0.08∕0.003 37.9∕0.002 100 0a

APDG, constrained thrust −1.96∕1.302 34.8∕3.32 100 61.9

aNo crashes occur during simulation.

Fig. 5 Performance comparison of the three methods.
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Assuming that any touchdown speed higher than 5 ft∕s
(1.52 m∕s) is considered a crash,§ we may summarize the
comparison results in Table 1. The results are also shown in Fig. 5.
For case II of the proposed method, no crashes occur during
simulation; the Chebyshev-Cantelli Inequality gives an upper bound
of 0.6% on the probability of a crash occurring in this case. The
APDG law, when allowed to use unconstrained thrust, offers
exceptional performance, but yields a thrust magnitude that can be as
high as five times the upper bound in the final moments before
touchdown. Saturating the values between umin and umax deteriorates
the performance significantly, even if optimization over the
parameters tgo and u�f is performed. The optimal values were 8.5 s
(the maximum allowable value, which was similarly imposed to the
proposed algorithm) and umax, respectively. We conjecture that the
APDG performance could be improved by increasing the upper
bound on the time, but used the same bound in order to be as fair as
possible for all methods.
The superiority of the proposed algorithm in providing a control

solution leading to a smooth landing, which is furthermore robust to
stochastic disturbances, is evident, as it offers a much lower mean
and variance on the touchdown speed. Depending on given safety
specifications, we can further reduce this mean and variance, thus
gaining a more robust, safer controller, at the expense of slightly
increased fuel expenditure. In addition, all computations can be
performed off-line, leading to a simple implementation, which does
not require high on-board computational capability for the spacecraft.
Furthermore, this result illustrates an important finding, namely, that
deterministic model predictive control, in contrast to the proposed
approach, might fail to perform adequately in the presence of
stochastic disturbances.

E. Note on Convergence

The main sources of errors in the proposed numerical algorithm
consist of 1) the time discretization scheme, and 2) the LSMC
method of approximating conditional expectations. The time
discretization error in most FBSDE numerical schemes decreases at
a rate

����
N

p
, where N is the number of (equidistant) time steps [26].

The error due to the LSMC scheme can be reduced as the number of
basis functions tends to infinity and is inversely proportional to the
square root of the number of realizations,

�����
M

p
[27]. Note that the

PDE-FBSDE problem equivalence, illustrated by the nonlinear
Feynman-Kac lemma that links Eqs. (17) and (18), being exact,
does not introduce any errors. Proving the overall convergence of
the proposed scheme, however, is more involved, and is part of our
on-going research.

V. Conclusions

This paper has studied a stochastic version of the SLP, in which the
objective is to find the fuel-optimal thrust profile needed for a
spacecraft to land on a planet. The deterministic version of this
problem offers a closed-form solution. To address the case of a
stochastic environment, the framework of optimal control via
forward and backward sampling, developed recently by the authors,
was modified to fit the particular requirements of this problem. The
modified algorithm yields a feedback control law that is shown
to outperform both the open loop, as well as the closed-loop
implementation of the deterministic control law. More important,
this illustrates that deterministic MPC, in contrast to the proposed
approach, may fail to perform adequately in the presence of stochastic
disturbances.
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