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Based on the highly successful quaternionmultiplicative extended Kalman filter for spacecraft attitude estimation

using unit quaternions, this paper proposes a dual quaternion multiplicative extended Kalman filter for spacecraft

pose (i.e., attitude and position) and linear and angular velocity estimation using unit dual quaternions. By using the

concept of error unit dual quaternion, defined analogously to the concept of error unit quaternion in the quaternion

multiplicative extended Kalman filter, this paper proposes, as far as the authors know, the first multiplicative

extendedKalman filter for pose estimation. The state estimate of the dual quaternionmultiplicative extendedKalman

filter can directly be used by recently proposed pose controllers based on dual quaternions, without any additional

conversions, thus providing an elegant solution to the output dynamic compensation problem of the full six degree-of-

freedommotion of a rigid body. Three formulations of the dual quaternionmultiplicative extendedKalman filter are

presented.The first takes continuous-time linear andangular velocitymeasurementswithnoise andbias anddiscrete-

time pose measurements with noise. The second takes only discrete-time pose measurements with noise and hence is

suitable for satellite proximity operation scenarios where the chaser satellite has only access to measurements of the

relative pose, but requires the relative linear and angular velocities for control. The third formulation takes

continuous-time angular velocity and linear acceleration measurements with noise and bias and discrete-time pose

measurements with noise. The proposed dual quaternionmultiplicative extendedKalman filter is comparedwith two

alternative extended Kalman filter formulations on a five degree-of-freedom air-bearing platform and through

extensive Monte Carlo simulations.

I. Introduction

T HE highly successful quaternion multiplicative extended
Kalman filter (Q-MEKF) based on unit quaternions for space-

craft attitude estimation, described in detail in ([1] Sec. XI), has been
used extensively in several NASA spacecraft [2]. It has been analyzed
in great detail throughout the years [3–6]. Part of the Q-MEKF
success lies in the fact that unit quaternions provide a global
nonsingular representation of attitude with the minimum number of
parameters. Moreover, they appear linearly in the kinematic equa-
tions of motion, unlike Euler angles, which require the calculation of
computationally expensive trigonometric functions. Although newer
approaches, such as nonlinear observers, have been shown to have
some advantages over the classical extended Kalman filter (EKF), a
comprehensive survey of nonlinear attitude estimation methods has
concluded that the classical EKF is still the most useful and practical
solution to the attitude estimation problem [2]. Note that the lack of
success of Kalman filtering before 1967, when Richard Battin was
developing Apollo’s onboard navigation and guidance system, is
mainly attributed to the inability to model the system dynamics
accurately enough [1].
An additional major advantage of the Q-MEKF is that the 4 × 4

covariancematrix of the four elements of the unit quaternion does not
need to be computed. As stated in [1], propagating this covariance
matrix is the largest computational burden in any Kalman filter im-
plementation. By rewriting the state of the EKF in terms of the three
elements of the vector part of the unit error quaternion between the
true unit quaternion and its estimate, only a 3 × 3 covariance matrix
needs to be computed. The unavoidable drawback of this approach is
that all three-dimensional attitude representations are singular or

discontinuous for certain attitudes [4]. Indeed, by construction, the
Q-MEKF described in ([1] Sec. XI) will fail if the attitude error
between the true attitude and its estimate is larger than 180 deg.
However, unlike the true attitude of the body, which can vary arbi-
trarily, the attitude error between the true attitude of the body and its
estimate is expected to be close to zero, especially after the Q-MEKF
has converged. Hence, in the Q-MEKF, whereas the attitude covari-
ancematrix is only 3 × 3, the body can still have any arbitrary attitude.
This is one of the most appealing properties of the Q-MEKF. Note that
the 180 deg restriction in theQ-MEKF is benign because theQ-MEKF
will most likely fail even before the attitude error reaches 180 deg, due
to the linearization assumptions intrinsic to the EKF.
The vector part of a unit quaternion is only one of several possible

three-dimensional representations of the attitude error in the Q-
MEKF [4]. Other possible representations are, for example, the
rotation vector, the Rodrigues parameters, or the modified Rodrigues
parameters. These representations have been shown to be equivalent
up to third order and hence are equivalent for the EKF and second-
order filters [4]. In this paper, the attitude error is represented using
thevector part of a unit quaternion as in [1]. For a thorough discussion
of the pros and cons of each representation, the reader is referred to
[4]. Note, however, that, as mentioned earlier, all three-dimensional
attitude representations are singular or discontinuous for certain
attitudes [4].
Recently, Filipe and Tsiotras [7,8] have proposed a newmethod to

develop pose controllers starting from existing attitude-only control-
lers by using the transfer principle between quaternion and dual
quaternion descriptions [9]. In particular, unit dual quaternions offer
a compact representation of the position and attitude of a frame with
respect to another frame. Their properties, including examples of pre-
vious applications, are discussed in length in [8]. However, the
property that makes dual quaternions most appealing for the appli-
cations we are interested in, is that the combined translational and
rotational kinematic and dynamic equations of motion, when written
in terms of dual quaternions, have the same form as the rotational-
only kinematic and dynamic equations of motion written in terms of
quaternions (albeit the operations have now to be interpreted in dual
quaternion algebra).
The traditional approach to estimate the pose of a body consists

of developing separate estimators for attitude and position. For
example, Romano et al. [10] suggests two discrete-time linear
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Kalman filters to estimate the relative attitude and position separately.
Because the translation Kalman filter requires the attitude estimated
by the rotation Kalman filter, the former is only switched on after
the latter has converged. Owing to this inherent coupling between
rotation and translation, several authors have proposed estimating the
attitude and position simultaneously. For example, in [11], a lander’s
terrain-relative position and attitude are estimated simultaneously
using an EKF. The state of the EKF contains the vector part of the unit
error quaternion (like in the Q-MEKF) and the position vector of the
lander with respect to the inertial frame expressed in the inertial
frame. In [12], the relative position and attitude of two satellites are
also estimated simultaneously using an EKF. In this case, the state of
the EKF contains the vector part of the unit error quaternion (like the
Q-MEKF) and the position vector of the chaser satellite with respect
to the target satellite expressed in a reference frame attached to the
target satellite. The approach described in [12] is cooperative, in the
sense that the two satellites share their angular velocity measure-
ments. Finally, Goddard [13] also estimates the position and attitude
between two frames simultaneously using a discrete-time EKF. In
[13], the state contains the position vector of a body with respect to
some reference frame expressed in that reference frame along with
the four elements of the true quaternion describing the orientation of
the body. Hence, Goddard [13] does not take advantage of the con-
cept of unit error quaternion. Moreover, in [13], the optimal Kalman
state update is added to, and not multiplied with, the current best unit
quaternion estimate, making the EKF presented in [13] additive
instead of multiplicative. Next, we elaborate why a multiplicative
error description is more appropriate for this problem. Goddard [13]
takes advantage of the compactness of dual quaternions to represent
three-dimensional lines (and their relative position and orientation) to
develop the measurement update of the EKF.
As far as the authors know, the only previous EKF formulations

where the state includes a unit dual quaternion are given in [14,15].
However, these EKF formulations include the true unit dual qua-
ternion describing the pose of the body and not the error unit dual
quaternion between the true unit dual quaternion and its best estimate.
Therefore, the state of the EKF formulations presented in [14,15]
contains all eight elements of the unit dual quaternion. Moreover, the
EKF formulations proposed in [14,15] are additive EKF formulations
(i.e., the optimal Kalman state update is added to, and not multiplied
with, the current best unit dual quaternion estimate). As a conse-
quence, the predicted value of the unit dual quaternion immediately
after a measurement update does not fulfill the two algebraic con-
straints that a unit dual quaternion must satisfy. Hence, in [14], the
predicted value after a measurement update is further modified to
satisfy these constraints through a process that includes parameters
that must be tuned by the user. On the other hand, in [15], these two
algebraic constraints are simply not enforced after a measurement
update, which can lead to numerical problems. Finally, it should be
mentioned that the discrete-time EKF formulations in [14,15] are
designed to take only measurements from a camera.
Compared with the existing literature, the main contributions of

this paper are as follows:
1) By using the concept of error unit dual quaternion, defined

analogously to the concept of error unit quaternion of the Q-MEKF,
this paper proposes, as far as the authors know, the first multiplicative
EKF for pose estimation. As a consequence, the predicted value of
the unit dual quaternion immediately after a measurement update
automatically satisfies the two algebraic constraints of a unit dual
quaternion. Unlike in [14], no additional parameters need to be tuned
by the user.
2) By using the error unit dual quaternion instead of the true unit

dual quaternion, the state of the dual quaternion multiplicative
extended Kalman filter (DQ-MEKF) is reduced from eight elements
(as in [14,15]) to just six. As a consequence, the associated compu-
tational complexity for implementation is reduced. Moreover, the
state estimate of the DQ-MEKF can be directly used by the pose
controllers given in [7,8] without additional conversions.
3) Similar to theQ-MEKF, theDQ-MEKF is a continuous-discrete

Kalman filter [16] (i.e., the state and its covariance matrix are
propagated continuously between discrete-time measurements). One

of the advantages of this approach is that the discrete-time measure-
ments do not need to be equally spaced in time, making irregular or
intermittent measurements easy to handle. Moreover, this structure
eases the incorporation of different sensors with different update
rates. In particular, the DQ-MEKF described in this paper is designed
to take continuous-time linear and angular velocity measurements
with noise and bias and discrete-time pose measurements with noise.
This paper also proposes two extensions of this standard DQ-MEKF.
The first extension is designed to take only discrete-time pose mea-
surements with noise and estimate the linear and angular velocities.
This version is suitable for satellite proximity operation scenarios
where the chaser satellite has only access to measurements of the
relative pose (e.g., from a camera), but requires the relative linear and
angular velocities for control. In the second extension, the linear
velocity measurements of the standard DQ-MEKF are replaced with
linear acceleration measurements with bias and noise. This version is
suitable for a satellite equipped with an accelerometer and having no
means of directly measuring linear velocity.
4) Finally, the two extensions of the standard DQ-MEKF are

validated experimentally on a five degree-of-freedom (5-DOF) air-
bearing platform. The first extension is also compared with two
alternative EKF formulations, similar to the ones used in [10–13], on
the same 5-DOF platform and throughMonte Carlo simulations. It is
shown that the DQ-MEKF compares favorably with these alternative
formulations.
This paper is organized as follows. In Sec. II, themain equations of

a standard EKF are reviewed. Then, the DQ-MEKF is derived in
Sec. III, starting with a brief introduction about quaternions and dual
quaternions and ending with the derivation of two variations of the
DQ-MEKF that may be most useful for spacecraft proximity
operations in space. In Sec. IV, the DQ-MEKF is validated experi-
mentally and compared with two alternative EKF formulations.
Finally, in Sec. V, the first extension is compared again with the same
two alternative EKF formulations through Monte Carlo simulations.

II. Extended Kalman Filter

The main equations of the EKF are reviewed to introduce the
necessary notation for the remaining sections. The review is based on
a similar review provided in [1] and serves as the starting point of the
DQ-MEKF formulation.
The state equation of the EKF can be written as

_xn�t� � fn�xn�t�; t� � gn×p�xn�t�; t�wp�t� (1)

where xn�t� ∈ Rn is the state and wp�t� ∈ Rp is the process noise.
The process noise is assumed to be a Gaussian white noise process,
whose mean and covariance are given by Efwp�t�g� 0p×1 and

Efwp�t�wT
p�τ�g � Qp×p�t�δ�t − τ�, respectively, where Qp×p�t� ∈

Rp×p is a symmetric positive semidefinite matrix. The initial mean

and covariance of the state are given byEfxn�t0�g ≜ x̂n�t0� � xn;0 ∈
Rn and Ef�xn�t0� − xn;0��xn�t0� − xn;0�Tg ≜ Pn×n�t0� � Pn×n;0 ∈
Rn×n and are assumed to be known. [Note that in [14,15], p � n
and gn×p�xn�t�; t� � In×n].

A. Time Update

Given the initial mean of the state, the minimum covariance
estimate of the state at a future time t in the absence of measurements
is given by the conditional expectation x̂n�t� � Efxn�t�jx̂n�t0� �
xn;0g. This estimate satisfies the differential equation _̂xn�t� �
Effn�xn�t�; t�g, which is typically approximated as

_̂xn�t� ≈ fn�x̂n�t�; t� (2)

Hence, in the absence of measurements, the state estimate is
propagated using Eq. (2).
In addition to the state estimate, the covariance matrix of the state

also needs to be propagated. The covariance matrix of the state is
given by
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Pn×n�t� � EfΔxn�t�ΔxTn�t�g ∈ Rn×n

whereΔxn�t� � xn�t� − x̂n�t� ∈ Rn is the state error. As a first-order
approximation, the derivative of the state error is given by

d

dt
Δxn�t� � Fn×n�t�Δxn�t� �Gn×p�t�wp�t� (3)

and the covariance matrix of the state satisfies the Riccati equation

_Pn×n�t� � Fn×n�t�Pn×n�t� � Pn×n�t�FT
n×n�t�

�Gn×p�t�Qp×p�t�GT
n×p�t� (4)

where

Fn×n�t� ≜
∂fn�xn; t�

∂xn

����
x̂n�t�

∈ Rn×n

and Gn×p�t� ≜ gn×p�x̂n�t�; t� ∈ Rn×p (5)

Hence, in the absence of measurements, the covariance matrix of the
state is propagated using Eqs. (4) and (5).

B. Measurement Update

Assume that a measurement is taken at time tk that is related with
the state of the EKF through the nonlinear output equation

zm�tk� � hm�xn�tk�� � vm�tk� ∈ Rm (6)

where vm�tk� ∈ Rm is the measurement noise assumed to be a
discrete Gaussian white noise process, whose mean and covari-

ance are given by Efvm�tk�g � 0m×1 and Efvm�tk�vTm�tl�g �
Rm×m�tk�δtktl , where Rm×m�tk� ∈ Rm×m is a symmetric positive

definite matrix.
Immediately following the measurement at time tk, the minimum

variance estimate of xn�tk� is given by

x̂�n �tk� � x̂−n �tk� � Δ⋆x̂n�tk� (7)

where

Δ⋆x̂n�tk� � Kn×m�tk��zm�tk� − ẑm�tk�� (8)

is the optimal Kalman state update, where

ẑm�tk� � hm�x̂−n �tk�� (9)

and x̂−n �tk� and x̂�n �tk� are the predicted values of the state
immediately before and after the measurement, and Kn×m�tk� is the
Kalman gain. The Kalman gain is given by

Kn×m�tk��P−
n×n�tk�HT

m×n�tk��Hm×n�tk�P−
n×n�tk�HT

m×n�tk�
�Rm×m�tk��−1 �10�

where P−
n×n�tk� is the predicted state covariance matrix immediately

before the measurement and

Hm×n�tk� �
∂hm�xn�
∂xn

����
x̂−n �tk�

∈ Rm×n (11)

is the measurement sensitivity matrix.
Immediately after the measurement, the state covariance matrix is

given by

P�n×n�tk� � �In×n − Kn×m�tk�Hm×n�tk��P−
n×n�tk�

� �In×n − Kn×m�tk�Hm×n�tk��P−
n×n�tk�

× �In×n − Kn×m�tk�Hm×n�tk��T (12)

�Kn×m�tk�Rm×m�tk�Kn×m�tk�T (13)

where Eq. (13) is numerically more stable than Eq. (12).

III. Extended Kalman Filter for Spacecraft Pose
Estimation Using Dual Quaternions

This section provides a quick introduction to quaternions and dual
quaternions. Then, a combined angular and linear velocity measure-
ment model analogous to the angular velocity measurement model
described in [1] is proposed. After that, the DQ-MEKF for pose
estimation based on dual quaternions is derived using dual quaternion
algebra. Finally, two versions of the DQ-MEKF that may be useful in
practice are proposed. The first one is useful when angular and linear
velocity measurements are not available (i.e., only pose measure-
ments are available) and the second is useful when linear velocity
measurements are replaced by linear acceleration measurements.

A. Mathematical Preliminaries

For the benefit of the reader, themain properties of quaternions and
dual quaternions, which are essential for deriving the results pre-
sented in this paper, are summarized in this section. For additional
information on quaternions and dual quaternions, the reader is
referred to [7,17].

1. Quaternions

A quaternion is defined as q � q0 � q1i� q2j� q3k, where q0,
q1, q2, q3 ∈ R and i, j, and k satisfy i2 � j2 � k2 � −1,
i � jk � −kj, j � ki � −ik, and k � ij � −ji [18]. A quaternion
can also be represented as the ordered pair q � �q0; �q�, where
�q � �q1 q2 q3 �T ∈ R3 is the vector part of the quaternion and
q0 ∈ R is the scalar part of the quaternion. Vector quaternions and
scalar quaternions are quaternions with zero scalar part and vector
part, respectively. The set of quaternions, vector quaternions, and
scalar quaternions will be denoted by H � fq: q � q0 � q1i�
q2j� q3k; q0; q1; q2; q3 ∈ Rg, Hv � fq ∈ H: q0 � 0g, and Hs �
fq ∈ H: q1 � q2 � q3 � 0g, respectively.
The basic operations between quaternions are defined as follows:
Addition:

a� b � �a0 � b0; �a� �b� ∈ H

Multiplication by a scalar:

λa � �λa0; λ �a� ∈ H

Multiplication:

ab � �a0b0 − �a · �b; a0 �b� b0 �a� �a × �b� ∈ H (14)

Conjugation:

a� � �a0;− �a� ∈ H

Dot product:

a · b� 1

2
�a�b�b�a�� 1

2
�ab��ba��� �a0b0� �a · �b;03×1�∈Hs

Cross Product:

a × b � 1

2
�ab − b�a�� � �0; b0 �a� a0 �b� �a × �b� ∈ Hv

where a; b ∈ H, λ ∈ R, and 0m×n is an m × n matrix of zeros. Note
that the quaternion multiplication is not commutative. In fact, some
authors [1] define Eq. (14) as ba, and not as ab as originally defined
by Hamilton [19]. This paper follows the original definition by
Hamilton. Finally, the quaternions �1; �0� and �0; �0�will be denoted by
1 and 0, respectively.
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The bijective mapping between the set of quaternions and R4 will

be denoted by �·�: H → R4, where �q� � �q0 q1 q2 q3 �T. Using
this mapping, the cross product of a ∈ Hv with b ∈ Hv can be

computed as �a × b� � �a�×�b�, where �·�×: Hv → R4×4 is defined as

�a�× �
�

0 01×3
03×1 �a×

�
; where �a× �

24 0 −a3 a2
a3 0 −a1
−a2 a1 0

35 (15)

Likewise, the left quaternionmultiplication of a ∈ Hwith b ∈ H can

be computed as �ab� � ⟦a⟧�b�, where ⟦ · ⟧: H → R4×4 is defined as

⟦a⟧ �
�
a0 −āT
ā �ã�

�
; where �ã� � a0I3×3 � ā× (16)

The relative orientation of a frame fixed to a body with respect to
another frame, denoted here as the I frame, can be represented by the
unit quaternion

qB∕I �
�
cos

�
ϕ

2

�
; sin

�
ϕ

2

�
�n

�
where the body frame is said to be rotated with respect to
the I frame about the unit vector �n by an angle ϕ. A unit
quaternion is defined as a quaternion that belongs to the
set Hu � fq ∈ H: q · q � qq� � q�q � 1g. From this constraint,
assuming that −180 < ϕ < 180 deg, the scalar part of a unit
quaternion can be computed from

q0 �
�������������������
1 − k �qk2

q
(17)

where k · k denotes the usual Euclidean norm in R3.
The coordinates of a vector in the B frame �vB can be calculated

from the coordinates of the same vector in the I frame �vI , and
vice versa, via vB � q�B∕IvIqB∕I and vI � qB∕IvBq�B∕I , where vB �
�0; �vB� and vI � �0; �vI�. This is equivalent to �vB � R�qB∕I� �vI and
�vI � R�q�B∕I� �vB, whereR�qB∕I� andR�q�B∕I� are the rotationmatrices

corresponding to qB∕I and q
�
B∕I, respectively.

2. Dual Quaternions

A dual quaternion is defined as q � qr � ϵqd, where ϵ is the dual
unit defined by ϵ2 � 0 and ϵ ≠ 0. The quaternions qr, qd ∈ H are the
real part and the dual part of the dual quaternion, respectively. Dual
vector quaternions and dual scalar quaternions are dual quaternions
formed from vector quaternions (i.e., qr, qd ∈ Hv) and scalar quater-
nions (i.e., qr, qd ∈ Hs), respectively. The set of dual quaternions,
dual scalar quaternions, and dual vector quaternions will be denoted
by Hd � fq: q � qr � ϵqd; qr; qd ∈ Hg, Hs

d � fq: q � qr � ϵqd;
qr; qd ∈ Hsg, and Hv

d � fq: q � qr � ϵqd; qr; qd ∈ Hvg, respec-
tively.
The basic operations between dual quaternions are defined as

follows [20,21]:
Addition:

a� b � �ar � br� � ϵ�ad � bd� ∈ Hd

Multiplication by a scalar:

λa � �λar� � ϵ�λad� ∈ Hd

Multiplication:

ab � �arbr� � ϵ�arbd � adbr� ∈ Hd

Conjugation:

a� � a�r � ϵa�d ∈ Hd

Dot product:

a · b � 1

2
�a�b� b�a� � 1

2
�ab� � ba�� � ar

· br � ϵ�ad · br � ar · bd� ∈ Hs
d

Cross product:

a × b � 1

2
�ab − b�a�� � ar × br � ϵ�ad × br � ar × bd� ∈ Hv

d

where a;b ∈ Hd and λ ∈ R. Note that the dual quaternion
multiplication is not commutative. In this paper, the dual quaternions
1� ϵ0 and 0� ϵ0 will be denoted by 1 and 0, respectively.
The bijective mapping between the set of dual quaternions andR8

will be denoted by �·�: Hd → R8, where �q� � ��qr�T�qd�T�T. Using
this mapping, the left dual quaternion multiplication of a ∈ Hd with

b ∈ Hd can be computed as �ab� � ⟦a⟧�b�, where ⟦ · ⟧: Hd → R8×8

is defined as

⟦a⟧ �
�
⟦ar⟧ 04×4
⟦ad⟧ ⟦ar⟧

�
(18)

Finally, it is convenient to define �·�: Hd → R6×6 as

� ~a� �
�
�ear � 03×3
�ead � �ear �

�
(19)

where �·: Hd → R6 is defined as �a � �arTadT�T ∈ R6, and �·×: Hd →
R6×6 is defined as

�a× �
�
�a×r 03×3
�a×d �a×r

�
(20)

Similarly, �·�r: Hd → H is defined as �a�r � ar and �·�d: Hd → H is
defined as �a�d � ad.
The attitude and position (i.e., pose) of a body frame with respect

to another frame, say, the I frame, can be represented by a unit

quaternion qB∕I ∈ Hu and by a translation vector �rIB∕I ∈ R3 or

�rBB∕I ∈ R3, where �rXY∕Z is the translation vector from the origin of theZ

frame to the origin of the Y frame expressed in the X frame.
Alternatively, the pose of the body framewith respect to another frame
can be represented more compactly by the unit dual quaternion [22]

qB∕I�qB∕I;r� ϵqB∕I;d�qB∕I� ϵ
1

2
rIB∕IqB∕I� qB∕I� ϵ

1

2
qB∕Ir

B
B∕I

(21)

where rXY∕Z � �0; �rXY∕Z�. Note that the dual part of qB∕I (i.e.,qB∕I;d) is a
representation of the position of the body frame with respect to
the I frame. Given qB∕I , the position of the body frame with respect

to the I frame can be obtained in I frame coordinates from rIB∕I �
2qB∕I;dq

�
B∕I and in B frame coordinates from rBB∕I � 2q�B∕IqB∕I;d.

Figure 1 illustrates this relation between rBB∕I , qB∕I;d, and r
I
B∕I . Note

that, whereas the relation between rBB∕I and r
I
B∕I is quadratic in qB∕I ,

qB∕I;d is related linearly in qB∕I with r
B
B∕I and r

I
B∕I .

A unit dual quaternion is defined as a dual quaternion that belongs
to the set [23]

Fig. 1 Relation between rBB∕I, qB∕I;d, and r
I
B∕I.
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Hu
d � fq ∈ Hd: q · q � qq� � q�q � 1g
� fq ∈ Hd: qr · qr � 1 and qr · qd � 0g (22)

From this constraint, assuming that −180 < ϕ < 180 deg, the scalar
parts of the real and dual parts of a unit dual quaternion can be com-
puted from their respective vector parts from

qr;0 �
��������������������
1 − k �qrk2

q
and qd;0 �

−qrTqd
qr;0

(23)

The rotational and translational kinematic equations of the body
framewith respect to another frame can bewritten compactly in terms
of dual quaternions as [22]

_qB∕I �
1

2
ωIB∕IqB∕I �

1

2
qB∕IωBB∕I (24)

where ωXY∕Z is the dual velocity of the Y frame with respect to the Z
frameexpressed in theX frame,ωBB∕I ≜ ωBB∕I � ϵvBB∕I ,ω

I
B∕I ≜ ωIB∕I�

ϵ�vIB∕I − ωIB∕I × r
I
B∕I�,ωXY∕Z � �0; �ωXY∕Z�, �ωXY∕Z is the angular velocity

of the Y frame with respect to the Z frame expressed in the X frame,
vXY∕Z � �0; �vXY∕Z�, and �vXY∕Z is the linear velocity of the origin of the Y
frame with respect to the Z frame expressed in the X frame. Note that
the rotational and translational kinematic equations written in terms of
dual quaternions [7].

B. Angular and Linear Velocity Measurement Model

The dual velocity measurement model is defined analogously to
the angular velocity measurement model typically used in literature
[1,2], that is,

ωBB∕I;m � ωBB∕I � bω � ηω (25)

where ωBB∕I;m � ωBB∕I;m � ϵvBB∕I;m ∈ Hv
d; ωBB∕I;m � �0; �ωBB∕I;m�;

�ωBB∕I;m is a measurement of the angular velocity of the body frame

with respect to the I frame expressed in the body frame, vBB∕I;m �
�0; �vBB∕I;m�; �vBB∕I;m is ameasurement of the linear velocity of the origin

of the body frame with respect to the I frame expressed in the body

frame; bω � bω � ϵbv is the dual bias, bω � �0; �bω�; �bω ∈ R3 is the

bias of the angular velocity measurement, bv � �0; �bv�; �bv ∈ R3 is
the bias of the linear velocity measurement, ηω � ηω � ϵηv, ηω �
�0; �ηω�; �ηω ∈ R3 is the noise of the angular velocity measurement
assumed to be a zero-mean Gaussian white noise process, ηv �
�0; �ηv�; and �ηv ∈ R3 is the noise of the linear velocity measurement
assumed to be aGaussianwhite noise processwithEf�ηωg� 06×1, and
covariance

Ef�ηω�t��ηTω�τ�g � �Qω�t�δ�t − τ� �
�

�Qω�t� �Qωv�t�
�Qωv�t� �Qv�t�

�
δ�t − τ�

(26)

where �Qω�t� ∈ R6×6 is a symmetric positive semidefinitematrix. The
dual bias is not constant, but assumed to be driven by another zero-
mean Gaussian white noise process through

_bω � ηbω (27)

where ηbω � �0; �ηbω� � ϵ�0; �ηbv �, Ef�ηbωg� 06×1, and covariance

Ef�ηbω �t��ηTbω�τ�g � �Qbω �t�δ�t − τ�

�
"

�Qbω�t� �Qbωbv �t�
�Qbωbv�t� �Qbv�t�

#
δ�t − τ� (28)

where �Qbω�t� ∈ R6×6 is a symmetric positive semidefinite matrix.

If the I frame is inertial, ωBB∕I should be interpreted as the inertial
angular and linear velocities of the satellite expressed in the B frame.

In that case, ωBB∕I can be measured using a combination of, say, rate

gyros, Doppler radar, andGPS.On the other hand, if the I frame is not

inertial, ωBB∕I should be interpreted as the relative angular and linear
velocities of the satellite with respect to a frame attached, for

example, to another satellite. In that case,ωBB∕I can bemeasured using

a combination of, say, rate gyros on both satellites [12], Doppler
radar, differential GPS, and light detection and ranging.

C. Dual Quaternion Multiplicative Extended Kalman Filter

In this section, the DQ-MEKF for pose estimation is derived. The
state and process noise of the DQ-MEKF are initially selected as

x16 �
�
�δqB∕I �
�bω�

�
∈ R16 and w16 �

�
�ηω�
�ηbω �

�
∈ R16 (29)

where the dual error quaternion δqB∕I ∈ Hu
d is defined analogously to

the error quaternion [1] δqB∕I � q̂�B∕IqB∕I ∈ Hu as

δqB∕I � q̂�B∕IqB∕I ∈ Hu
d (30)

that is, δqB∕I ∈ Hu
d is the dual quaternion between the actual dual

quaternion qB∕I ∈ Hu
d and its current best guess q̂B∕I ∈ Hu

d.
Analogously to the propagation of q̂B∕I ∈ Hu in [4], q̂B∕I is
propagated using

d

dt
�q̂B∕I� ≈

1

2
q̂B∕Iω̂BB∕I (31)

where, from Eq. (25),

ω̂BB∕I ≜ EfωBB∕Ig � EfωBB∕I;m − bω − ηωg � ωBB∕I;m − b̂ω (32)

with b̂ω ≜ Efbωg and

d

dt
�b̂ω� � Efηbωg � 0 (33)

The approximation in Eq. (31) is a result of using the typical EKF
approximation given by Eq. (2) in the derivation of Eq. (31) [4].
Analogously to [4], for −180 < ϕ < 180 deg, δqB∕I is para-

meterized by δqB∕I and the expected value of δqB∕I is required to be

zero (i.e., EfδqB∕Ig� 06×1). Hence, EfδqB∕I�δqB∕I�g � 1.
Note that the current best guess of qB∕I , given by q̂B∕I, is not

defined as the standard expected value of the random variable qB∕I
because this would require the expectation to be defined with respect
to a nontrivial probability density function in Hu

d. As shown in [5],

even the definition of probability density function onHu is not trivial.
A complete discussion of probability density functions in Hu

d is
outside the scope of this paper. The reader is referred to [5] for a
discussion of possible probability density functions in Hu.
A geometric interpretation of the dual error quaternion δqB∕I is

given in Fig. 2. It is the dual unit quaternion that describes the relative
pose between theB frame and the B̂ frame. TheB frame represents the
true pose of the body frame, whereas the B̂ frame represents the
expected pose of the body frame; in other words, it represents the best
available guess of the pose of the body frame.
To determine the state equation of the DQ-MEKF, the time

derivative of δqB∕I needs to be calculated. Taking the time derivative
of Eq. (30) yields

d

dt
�δqB∕I� �

d

dt
�q̂�B∕I�qB∕I � q̂�B∕I

d

dt
�qB∕I� (34)

Substituting Eqs. (24) and (31) in Eq. (34) yields
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d

dt
�δqB∕I� ≈

1

2
�ω̂BB∕I��q̂�B∕IqB∕I �

1

2
q̂�B∕IqB∕Iω

B
B∕I

� −
1

2
ω̂BB∕IδqB∕I �

1

2
δqB∕IωBB∕I (35)

Combining Eqs. (32) and (25) yields

ωBB∕I � ω̂BB∕I � b̂ω − bω − ηω (36)

Finally, inserting Eq. (36) in Eq. (35) results in

d

dt
�δqB∕I� ≈ −

1

2
ω̂BB∕IδqB∕I �

1

2
δqB∕Iω̂BB∕I �

1

2
δqB∕Ib̂ω

−
1

2
δqB∕Ibω −

1

2
δqB∕Iηω

(37)

At this point, as in the derivation of theQ-MEKF, reduced state and
process noise vectors are selected, namely,

x12 �
�
δqB∕I
�bω

�
∈ R12 and w12 �

�
�ηω
�ηbω

�
∈ R12 (38)

where δqB∕I and �bω are the vector parts of δqB∕I and bω, respectively.
The state equations of the DQ-MEKF are then given by the vector
parts of Eqs. (37) and (27), yielding

f12�x12�t�;t��
�
−1

2
ω̂BB∕IδqB∕I�1

2
δqB∕Iω̂BB∕I�1

2
δqB∕Ib̂ω−1

2
δqB∕Ibω

06×1

�
(39)

g12×12�x12�t�; t� �
�
− 1

2
�eδqB∕I � 06×6
06×6 I6×6

�
(40)

By replacing the scalar parts δqB∕I;r;0 and δqB∕I;d;0 throughEq. (23) in
Eqs. (39) and (40) and using Eq. (5), F12×12�t� and G12×12�t� can be
determined to be

F12×12�t� �

24−ω̂BB∕I
× − 1

2
I6×6

06×6 06×6

35
and G12×12�t� �

"
− 1

2
I6×6 06×6

06×6 I6×6

#
(41)

1. Time Update

For the time update of the DQ-MEKF, q̂B∕I , ω̂BB∕I , and b̂ω
are propagated using Eqs. (31–33), respectively, given q̂B∕I�t0� and
b̂ω�t0�.

Numerical errors in the propagation of q̂B∕I through Eq. (31) can
result in the violation of the algebraic constraints specified by
Eq. (22). Hence, after each integration step, these algebraic con-
straints are enforced by calculating

�qB∕I;r� �
�qB∕I;r�
k�qB∕I;r�k

and

�qB∕I;d� �
�
I4×4 −

�qB∕I;r��qB∕I;r�T

k�qB∕I;r�k2
�
�qB∕I;d� (42)

where the latter equation corresponds to the projection of �qB∕I;d�onto
the subspace orthogonal to �qB∕I;r�.
As for the covariance matrix of x12, that is,

P12×12�t� ≜ EfΔx12�t�Δx12�t�Tg

≜ E
���

δqB∕I�t�
�bω�t�

�
−
�
06×1
�̂
bω�t�

����
δqB∕I�t�
�bω�t�

�
−
�
06×1
�̂
bω�t�

��
T
	

(43)

it is propagated according to Eq. (4) given P12×12�t0� and where

Q12×12�t� �
�

�Qω�t� 06×6
06×6 �Qbω�t�

�
(44)

2. Measurement Update

In this section, it is assumed that a measurement of qB∕I is
available. If the I frame is a moving frame, this measurement can
come, for example, from a vision-based system. If the I frame is an
inertial frame, this measurement can come, for example, from a
combination of a star sensor and a GPS. If the pose measurement is
available in terms of a quaternion and a translation vector, then the
corresponding dual quaternion can be computed fromEq. (21). Then,
the output equation is defined analogously to the output equation
used in [4,12] when a quaternion measurement is available, that is,

�q̂−B∕I�tk���qB∕I;m�tk� � δqB∕I�tk� � v6�tk� (45)

where, in accordance with Eq. (6),

z6�tk� � �q̂−B∕I�tk���qB∕I;m�tk� and h6�x12�tk�� � δqB∕I�tk�

Hence, using Eq. (11) to calculate themeasurement sensitivitymatrix
yields

H6×12�tk� � � I6×6 06×6 � (46)

In summary, for the measurement update of the DQ-MEKF, the
Kalman gain is calculated fromEq. (10),whereas the optimalKalman
state update is calculated from Eq. (8) as

Δ⋆x̂12�tk� ≜

24Δ⋆δq̂B∕I�tk�

Δ⋆ �̂bω�tk�

35 � K12×6�tk��z6�tk� − ẑ6�tk��

� K12×6�q̂−B∕I�tk���qB∕I;m�tk� (47)

The estimate of the state at time tk after the measurement is then
calculated from

q̂�B∕I�tk� � q̂−B∕I�tk�Δ⋆δq̂B∕I�tk� (48)

�̂
b
�
ω �tk� �

�̂
b
−
ω�tk� � Δ⋆ �̂bω�tk� (49)

where Δ⋆δq̂B∕I is defined as the unit dual quaternion

Fig. 2 Interpretation of the dual error quaternion.
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Δ⋆δq̂B∕I �
 ������������������������������������

1 − kΔ⋆δq̂B∕I;rk2
q

;Δ⋆δq̂B∕I;r

!

� ϵ

 
−Δ⋆δq̂B∕I;r

TΔ⋆δq̂B∕I;d������������������������������������
1 − kΔ⋆δq̂B∕I;rk2

q ;Δ⋆δq̂B∕I;d

!
(50)

Note that Eq. (50) assumes that the attitude error between the true
attitude and its estimate is smaller than 180 deg. Moreover, note that
Eq. (50) does not assume that the scalar part of the real part of
Δ⋆δq̂B∕I is identically one as in [1], but instead uses the nonlinear

quaternion reset suggested in [4].
If the initial guess of the state is not close enough to the real state,

the norm ofΔ⋆δq̂B∕I;r may become larger than one, which will make

the scalar part of the quaternions in Eq. (50) complex. Hence, if the

norm of Δ⋆δq̂B∕I;r is larger than one, Eq. (50) is replaced by

Δ⋆δq̂B∕I �

0@ 1�������������������������������������
1� kΔ⋆δq̂B∕I;rk2

q ;
Δ⋆δq̂B∕I;r�������������������������������������

1� kΔ⋆δq̂B∕I;rk2
q

1A

� ϵ

0@−Δ⋆δq̂B∕I;r
TΔ⋆δq̂B∕I;d

1∕
�������������������������������������
1� kΔ⋆δq̂B∕I;rk2

q ;Δ⋆δq̂B∕I;d

1A
Note that, whereas Eq. (49) is a direct application of Eq. (7), Eq. (48)

isnot. SinceΔ⋆δq̂B∕I�tk� is a unit dualquaternion, q̂�B∕I�tk� is calculated
using the dual quaternion multiplication, making the proposed EKF
multiplicative. Finally, the covariance matrix of the state immediately
after the measurement at tk is computed from Eq. (13).
Any measurement that is a nonlinear function of the state of the

DQ-MEKF [i.e., any measurement that satisfies Eq. (6)] can be used
in the measurement update. If another measurement is used, only the
measurement sensitivity matrix given by Eq. (46) needs to be
recalculated. For example, if the measurements are qB∕I;m and rIB∕I;m,
then the output equation is defined as24 �q̂−B∕I�tk���qB∕I;m�tk�

rIB∕I;m�tk�

35�
24 δqB∕I;r�tk�

2

�
q̂B∕IδqB∕I

�
d

δq�B∕Iq̂B∕I

35� v6�tk�
(51)

since rIB∕I � 2qB∕I;dq
�
B∕I � 2�q̂B∕IδqB∕I�dδq�B∕Iq̂B∕I . By replacing

δqB∕I;r;0 and δqB∕I;d;0 throughEq. (23) in Eq. (51), the new sensitivity

matrix can be determined to be

H6×12�tk� �
�
I3×3 03×3 03×3 03×3
03×3 2R��q̂−B∕I��� 03×3 03×3

�
(52)

D. Special Case: No Angular or Linear Velocity Measurements

Aspecial case of particular interest is when posemeasurements are
available, but angular or linear velocity measurements are not avail-
able. Although angular and linear velocity measurements are not
available, angular and linear velocity estimates might be required for
pose stabilization or tracking [8]. In this section, it is shown how this
case can be handled bymodifying the inputs and the parameters of the
DQ-MEKF algorithm, without any modification to the structure and
basic equations of the DQ-MEKF algorithm. This version of the DQ-
MEKF is specially suited for satellite proximity operations where the
relative pose is measured using vision-based systems, which typi-
cally do not provide direct relative velocity measurements [24]. In
this scenario, the I frame is the moving frame of the target satellite.
If angular and linear velocity measurements are not available, but

estimates are required,ωBB∕I;m and ηω are set to zero in Eq. (25). This
results in

bω � −ωBB∕I (53)

and �Qω� 06×6. The dual velocity estimate is still given by Eq. (32),

which now has the form ω̂BB∕I � −b̂ω. The time derivative of bω is

still calculated as in Eq. (27). However, because bω is now expected
to be time varying and not constant, the effect of the noise ηbω might

have to be increased by increasing �Qbω .
In summary, this special case can be handled by just settingωBB∕I;m

and �Qω to zero and, if necessary, by increasing �Qbω .

E. Special Case: Linear Acceleration Measurements

Unlike the previous case, the structure of theDQ-MEKFalgorithm
described in Sec. III.C needs to be modified for the case of a satellite
having no means of directly measuring linear velocity, but with the
ability to measure linear acceleration using an accelerometer or an
inertial measurement unit (IMU). Because an accelerometer mea-
sures accelerations with respect to the inertial frame, in this section,
the I frame should be interpreted as an inertial frame. The main
modifications compared with the algorithm described in Sec. III.C
are the addition of the bias of the accelerometer to the state of theDQ-
MEKF and a new expression for the time derivative of bv, which in
this case is not calculated from Eq. (27). Because angular (but not
linear) velocity measurements and linear (but not angular) acceler-
ation measurements are assumed to be available, the duality between
the linear and angular motion is broken in this case. Hence, the
equations of the DQ-MEKF for this particular case cannot be written
compactly in terms of dual quaternions as in Secs. III.C and III.D.
First, similar to the angular and linear velocity measurement

model, the linear acceleration measurement model is defined as [11]

nBA∕I;m � nBA∕I � bn � ηn (54)

where nBA∕I � �0; �nBA∕I�, �nBA∕I is the nondimensional specific force at
the location of the accelerometer with respect to the inertial frame
expressed in the body frame, nBA∕I;m � �0; �nBA∕I;m�, �nBA∕I;m is a mea-

surement of �nBA∕I produced by the accelerometer/IMU, bn � �0; �bn�,
�bn is the bias of the specific forcemeasurement, ηn � �0; �ηn�, and �ηn is
the noise of the specific force measurement assumed to be a Gaussian

white noise process with Ef�ηng � 03×1 and Ef�ηn�t��ηTn�τ�g �
�Qn�t�δ�t − τ�, where �Qn�t� ∈ R3×3 is a symmetric positive semi-
definite matrix. The bias is not constant, but assumed to be driven by
another zero-mean Gaussian white noise process through

_bn � ηbn (55)

where ηbn � �0; �ηbn�, Ef�ηbng� 03×1, and Ef�ηbn�t��ηTbn�τ�g �
�Qbn�t�δ�t − τ�, and �Qbn�t� ∈ R3×3 is a symmetric positive semi-

definite matrix. From Eq. (54), the expected value of nBA∕I is given by

n̂BA∕I � nBA∕I;m − b̂n (56)

where b̂n ≜ Efbng. Likewise,

d

dt
�b̂n� � Efηbng � 0 (57)

Moreover, combining Eqs. (54) and (56) yields

nBA∕I � n̂BA∕I � b̂n − bn − ηn (58)

The state and process noise of the DQ-MEKF are now selected as

x20 � � �δqB∕I �T �bω�T �bn�T �T ∈ R20

and w20 � � �ηω�T �ηbω �T �ηn�T �ηbn �T �T ∈ R20 (59)

where the state equation for δqB∕I is given by Eq. (37) and the state

equation for bω (i.e., the real part of bω) is given as in Eq. (27) by
_bω � ηbω , which implies that
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d

dt
�b̂ω� � Efηbωg � 0 (60)

Whereas, in Sec. III.C, the time derivative of bv was also calculated
from Eq. (27), here, the time derivative of bv is calculated as follows.
Because there are no linear velocity measurements, vBB∕I;m and ηv are

set to zero (as in Sec. III.D) in Eq. (25), resulting in bv � −vBB∕I and
�Qv � �Qωv� 03×3. This, in turn, implies that

v̂BB∕I � −b̂v (61)

Taking the time derivative of both sides of bv � −vBB∕I leads to

_bv � − _vBB∕I . Note that _v
B
B∕I is related to n

B
A∕I through

_vBB∕I � −ωBB∕I × v
B
B∕I � cnBA∕I − q�B∕IgIqB∕I

− αBB∕I × r
B
A∕B − ωBB∕I × �ωBB∕I × rBA∕B� (62)

where c ∈ R is a scaling constant specific to each accelerometer,

gI � �0; �gI�, �gI is the local gravity accelerationvector expressed in the
inertial frame (assumed to be known), αBB∕I � �0; �αBB∕I�, �αBB∕I is the
angular acceleration of the body framewith respect to the inertial frame

expressed in the body frame, rBA∕B � �0; �rBA∕B�, and �rBA∕B is the

translation vector from the origin of the body frame to the accel-
erometer expressed in the body frame (assumed to be known). Hence,

_bv � − _vBB∕I � −ωBB∕I × bv − cn
B
A∕I

� q�B∕IgIqB∕I � αBB∕I × r
B
A∕B � ωBB∕I × �ωBB∕I × rBA∕B�

Finally, neglecting αBB∕I , which is assumed to be unknown, and using

Eq. (58) and the real parts of Eqs. (30) and (36) results in

_bv�− _vBB∕I≈−�ω̂BB∕I� b̂ω−bω−ηω�×bv−c�n̂BA∕I� b̂n−bn−ηn�

�δq�B∕Iq̂
�
B∕Ig

Iq̂B∕IδqB∕I

��ω̂BB∕I� b̂ω−bω−ηω�×��ω̂BB∕I� b̂ω−bω−ηω�×rBA∕B�

�−�ω̂BB∕I� b̂ω−bω�×bv−c�n̂BA∕I� b̂n−bn�

�δq�B∕Iq̂
�
B∕Ig

Iq̂B∕IδqB∕I

��ω̂BB∕I� b̂ω−bω�×��ω̂BB∕I� b̂ω−bω�×rBA∕B�

−bv×ηω�cηn−ηω×��ω̂BB∕I� b̂ω−bω�×rBA∕B�

��ω̂BB∕I� b̂ω−bω�×�−ηω×rBA∕B�

��−ηω�×�−ηω×rBA∕B� (63)

The last term of Eq. (63) is quadratic with respect to ηω and hence does
not have the same form as Eq. (1). Because the typical EKF formu-
lation does not account for terms quadratic with respect to the process
noise, this term is neglected.
Note that, by using the typical approximation given by Eq. (2), the

time derivative of b̂v can be calculated from Eq. (63) to be

_̂
bv≈−ω̂BB∕I × b̂v−cn̂

B
A∕I� q̂�B∕IgIq̂B∕I� ω̂BB∕I × �ω̂BB∕I × rBA∕B� (64)

At this point, as before, reduced state and process noise vectors are
selected, namely,

x15 � � δqB∕IT �bTω �bTn �T ∈ R15

and w15 � � �ηTω �ηTbω �ηTn �ηTbn �
T ∈ R15 (65)

The state equations of the DQ-MEKF when linear acceleration
measurements are available are then given by f15�x15�t�; t� and
g15×15�x15�t�; t�, defined, respectively, as

26664
− 1

2
ω̂BB∕IδqB∕I � 1

2
δqB∕Iω̂BB∕I � 1

2
δqB∕Ib̂ω − 1

2
δqB∕Ibω

03×1

−�ω̂BB∕I � b̂ω − bω� × bv − c�n̂BA∕I � b̂n − bn� � δq�B∕Iq̂
�
B∕Ig

Iq̂B∕IδqB∕I � �ω̂BB∕I � b̂ω − bω� × ��ω̂BB∕I � b̂ω − bω� × rBA∕B�
03×1

37775;
2666664

− 1
2
�eδqB∕I;r� 03×3 03×3 03×3 03×3

− 1
2
�eδqB∕I;d� − 1

2
�eδqB∕I;r� 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3

−bv× � �ω̂BB∕I � b̂ω − bω� × rBA∕B
× � ω̂BB∕I � b̂ω − bω

×
rBA∕B

×
03×3 03×3 cI3×3 03×3

03×3 03×3 03×3 03×3 I3×3

3777775
By replacing δqB∕I;r;0 and δqB∕I;d;0 through Eq. (23) in f15�x15�t�; t� and g15×15�x15�t�; t� and using Eq. (5), F15×15�t� and G15×15�t� can be

determined to be

F15×15�t� �

26666664
−ω̂BB∕I

×
03×3 − 1

2
I3×3 03×3 03×3

−v̂BB∕I
× −ω̂BB∕I

×
03×3 − 1

2
I3×3 03×3

03×3 03×3 03×3 03×3 03×3

2q̂�B∕Ig
Iq̂B∕I

×
03×3 −b̂v

× � ω̂BB∕I × r
B
A∕B

× � ω̂BB∕I
×
rBA∕B

× −ω̂BB∕I
×

cI3×3
03×3 03×3 03×3 03×3 03×3

37777775 (66)

and

G15×15�t� �

26666664
− 1

2
I3×3 03×3 03×3 03×3 03×3

03×3 − 1
2
I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3

−b̂v
× � ω̂BB∕I × r

B
A∕B

× � ω̂BB∕I
×
rBA∕B

×
03×3 03×3 cI3×3 03×3

03×3 03×3 03×3 03×3 I3×3

37777775 (67)
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1. Time Update

When accelerationmeasurements are available, for the time update

of the DQ-MEKF, q̂B∕I , b̂ω, b̂v, b̂n, v̂
B
B∕I, and ω̂BB∕I are propagated

using Eqs. (31), (60), (64), (57), and (61), and the real part of Eq. (32)

(i.e., ω̂BB∕I � ωBB∕I;m − b̂ω), respectively, given q̂B∕I�t0�, b̂ω�t0�,
and b̂n�t0�.
Numerical errors in the propagation of q̂B∕I through Eq. (31) can

result in the violation of the algebraic constraints specified by
Eq. (22). Hence, after each integration step, these algebraic con-
straints are enforced by using Eq. (42).
As for the covariance matrix of x15,

P15×15�t�

�E

8<:
0@24δqB∕I�t��bω�t�

�bn�t�

35−

24 06×1
�̂
bω�t�
�̂
bn�t�

351A0@24δqB∕I�t��bω�t�
�bn�t�

#
−

24 06×1
�̂
bω�t�
�̂
bn�t�

351AT9=;
(68)

it is propagated according to Eq. (4) given P15×15�t0�, and where

Q15×15�t� �

2666664
�Qω�t� 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3
03×3 03×3 �Qbω�t� 03×3 03×3
03×3 03×3 03×3 �Qn�t� 03×3
03×3 03×3 03×3 03×3 �Qbn�t�

3777775 (69)

2. Measurement Update

When acceleration measurements are available, the measurement
update is performed as in Sec. III.C with the measurement sensitivity
matrix now given by

H6×15�tk� � � I6×6 06×6 06×3 � (70)

The optimal Kalman state update is now calculated based on Eq. (8)
from

Δ⋆x̂15�tk� ≜

26664
Δ⋆δq̂B∕I�tk�

Δ⋆ �̂bω�tk�

Δ⋆ �̂bn�tk�

37775 � K15×6�tk��z6�tk� − ẑ6�tk��

� K15×6�q̂−B∕I�tk���qB∕I;m�tk� (71)

Finally, the estimate of the state at time tk after the measurement is

calculated fromEqs. (48) and (49) and
�̂
b
�
n �tk� �

�̂
b
−
n �tk� � Δ⋆ �̂bn�tk�.

IV. Experimental Results

In this section, the two special cases of the DQ-MEKF are
validated experimentally on the Autonomous Spacecraft Testing of
Robotic Operations in Space (ASTROS) facility at the School of
Aerospace Engineering of the Georgia Institute of Technology.
This experimental facility includes a 5-DOF platform supported on
hemispherical and linear air bearings moving over a flat epoxy floor
to simulate as best as possible the frictionless environment of space.
The experimental facility also includes a VICON motion capture
system mounted on an aluminum grid above the experimental area.
The VICON system measures the attitude and position of the plat-
form with respect to a reference frame fixed to the room. These
measurements are then transmitted wirelessly to the platform. A
picture of the platform is shown in Fig. 3.More information about the
ASTROS facility and its 5-DOF platform can be found in [25,26].
The most relevant characteristics of the sensors used in the experi-
ments are summarized in Table 1, where SD stands for standard
deviation. The scaling constant of the IMU is c � 9.8 m∕s2 and it is
located at rBA∕B � �0.113;−0.016;−0.089�T m.
The ground truth for attitude and position was obtained from

VICONmeasurements at 100Hz. The ground truth for linear velocity
was obtained by passing these position measurements through a
linear time-invariant (LTI) system with transfer matrix H�s� �
3s∕�s� 3�I3×3. The position of the polewas chosen by trial and error
to minimize noise and lag. Finally, the ground truth for the angular
velocity was obtained by passing the quaternion measurements
through an LTI system with transfer matrix H�s� � 3s∕�s� 3�I4×4
and by using the relation ωBB∕I � 2q�B∕I _qB∕I . Note that, whereas the
LTI filters can reduce the noise at the cost of lag, the ground truth for
linear and angular velocity will still have some noise.

A. DQ-MEKF with No Angular and Linear Velocity Measurements

For this experiment, the DQ-MEKF was fed attitude and position
measurements from the VICON system at 10 Hz, modeled through
the output equation given by Eq. (51). The initial estimate of the state
is given in Table 2. The same table also shows an a posteriori guess of
the initial state based on the measurements. The DQ-MEKF was
initialized with the covariance matrices given in Table 3.
The pose estimated by theDQ-MEKF is comparedwith the ground

truth in Fig. 4. The two appear almost identical. This is to be expected
due to the relatively high update rate of pose measurements in this
case. Note that the motion only starts around 20 s after the beginning
of the experiment.
The pose estimation error obtained with the DQ-MEKF is plotted

in Fig. 5. Note that the pose error increases at around 20 s, when the

Fig. 3 Five degree-of-freedom experimental platform of the ASTROS
facility.

Table 1 Characteristics of the sensors

Measurement Sensor Noise SD Bias Refresh rate

�ωBB∕I;m Humphrey RG02-3227-1 rate gyro 0.027 deg ∕s <2 deg ∕s 100 Hz
�nBA∕I;m Crossbow AHRS400CC-100 IMU 1.5 mg <8.5 mg 100 Hz
qB∕I;m 8 VICON Bonita B10 cameras <7 × 10−5 — — Variable (≤250 Hz)
�rIB∕I;m 8 VICON Bonita B10 cameras <1 mm — — Variable (≤250 Hz)
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motion starts. The same figure also shows the pose estimation error
obtained with two alternative EKF formulations.
This first alternative EKF formulation, the quaternion vector

additive EKF (QV-AEKF), is an additive EKF, where the state con-
tains the vector part of the unit error quaternion (like in the Q-MEKF)
and the position vector of the body with respect to the inertial frame
expressed in the body frame. The QV-AEKF is derived in detail in
AppendixA. The biggest differences between theDQ-MEKFand the
QV-AEKF are that, in the former, the position is represented by the
dual part of the dual quaternion and the positionmeasurement update
is performed using the dual quaternionmultiplication, whereas, in the
latter, the position is represented by the body coordinates of the
positionvector, and the positionmeasurement update is performed by
adding the optimal correction to the current best estimate.
The second alternative EKF formulation, the split quaternion

vector additive EKF (SQV-AEKF), is essentially the QV-AEKF split
into two additive EKFs, one for the attitude and another one for the
position. The SQV-AEKF is derived in detail in Appendix B.
For the comparison between the DQ-MEKF, the QV-AEKF, and

the SQV-AEKF to be fair, the three filters were fed the samemeasure-
ments, were initialized with the same initial estimate of the state
(given in Table 2), and were tuned with the same covariance matrices
(given in Table 3). The linear and angular velocity estimation errors
obtained with the three filters are shown in Fig. 6.
The rms attitude, position, angular velocity, and linear velocity

estimation errors after 20 s, obtainedwith the three filters, are given in
Table 4. Note that the rms attitude and angular velocity estimation
errors obtained with the three filters are the same. This is not surpris-
ing because the DQ-MEKF, QV-AEKF, and SQV-AEKF represent
and update the attitude in the same way and the attitude is indepen-
dent from the position. However, whereas the rms position and linear
velocity estimation errors obtained with the DQ-MEKF and the QV-
AEKF are the same, the rms position and linear velocity estimation
errors obtained with the SQV-AEKF are higher. This is under-
standable because the DQ-MEKF and the QV-AEKF take into
consideration the fact that the positionvector of the bodywith respect
to the inertial frame expressed in the body frame depends on the
attitude of the body, whereas the SQV-AEKF does not. Another way
to see this is to realize that some of the elements of Eqs. (A4) and (A8)
do not appear in Eqs. (B2), (B6), (B9), and (B13).
To compare the filters in a more demanding scenario, the same

experimental data were fed into the DQ-MEKF, QV-AEKF, and
SQV-AEKF, but now with an update rate of 0.5 Hz. All other param-
eters were kept the same. The pose estimated by the DQ-MEKF is
compared with the ground truth in Fig. 7. As expected, the pose
estimation error in this case is visibly higher than in Fig. 4.
The attitude, position, angular velocity, and linear velocity estima-

tion errors obtained with the DQ-MEKF, QV-AEKF, and SQV-
AEKF are compared in Figs. 8 and 9, and in Table 5. Like in Table 4,
the rms attitude and angular velocity estimation errors obtained with
the three filters are the same, and the SQV-AEKF exhibits the highest
rms position and linear velocity estimation errors. However, unlike in
Table 4, the rms position and linear velocity estimation errors ob-
tainedwith theDQ-MEKFare smaller than the ones obtainedwith the

QV-AEKF. In other words, as the update rate of the pose measure-
ments decreases, the DQ-MEKF starts producing better position and
linear velocity estimates than the QV-AEKF. This can be justified in
part by Fig. 1. Because the relation between rBB∕I and r

I
B∕I is quadratic

in qB∕I , whereas the relation between qB∕I;d and r
I
B∕I is linear in qB∕I ,

the linearization error committed when linearizing the output equa-
tions of theQV-AEKFand of theDQ-MEKF [i.e., Eqs. (A7) and (51),
respectively] with respect to δqB∕I is smaller in the DQ-MEKF case.

B. DQ-MEKF with Linear Acceleration Measurements

For this experiment, the DQ-MEKF was fed attitude and
position measurements from the VICON system at 1 Hz, linear
acceleration measurements from the IMU at 100 Hz, and angular
velocity measurements from the rate gyro at 100 Hz. The initial

Table 2 Case 1: initial estimate and a posteriori guess of the state

Variable Initial estimate A posteriori guess

qB∕I�0� �0.7071; 0; 0; 0.7071�T �0.7987;−0.0221;−0.0195; 0.6009�T
�rIB∕I�0� �−0.5; 2;−1�T, m �−0.5256; 2.0425;−0.9887�T, m
�bω�0� �0; 0; 0�T, deg ∕s �0; 0; 0�T, deg ∕s
�bv�0� �0; 0; 0�T, m∕s �0; 0; 0�T, m∕s

Table 3 Case 1: covariance matrices

Matrix Value

P12×12�0� diag (�1 × 10−9; 1 × 10−9; 1 × 10−9; 1 × 10−9; 1 × 10−9; 1 × 10−9; 1 × 10−9; 1 × 10−9; 1 × 10−9; 1 × 10−9; 1 × 10−9; 1 × 10−9�)
Q12×12 diag (�0; 0; 0; 0; 0; 0; 1 × 10−3; 1 × 10−3; 1 × 10−3; 1 × 10−1; 1 × 10−1; 1 × 10−1�)
R6×6 diag (�1.4 × 10−6; 1.4 × 10−6; 1.4 × 10−6; 2.25 × 10−6; 2.25 × 10−6; 2.25 × 10−6�)

Fig. 4 Case 1: estimated and true pose (pose measurements at 10 Hz).

Fig. 5 Case 1: pose estimation error (pose measurements at 10 Hz).
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estimate of the state is given in Table 6. The same table also shows an
a posteriori guess of the initial state based on the measurements. The
DQ-MEKF was initialized with the covariance matrices given in
Table 7.
The measured and estimated (i.e., without bias) nondimensional

specific force captured by the accelerometer are plotted in Fig. 10.
The difference between the two is the estimated bias of the
accelerometer. This estimated bias is higher than the expected bias
listed in the accelerometer’s datasheet, also given in Table 1. In
addition, the estimated bias varies with time when the platform is
moving. These two phenomena can be interpreted as the DQ-MEKF
trying to compensate for errors in the determination of the center of
rotation of the upper stage of the 5-DOF platform, errors in the
determination of the position of the accelerometer, and errors due to
the assumption of zero angular acceleration in Eq. (63).
The measured and estimated (i.e., without bias) angular velocity

captured by the rate gyro are compared in Fig. 11. The difference
between the two is the estimated bias of the rate gyro. This estimated
bias is within the expected bias listed in Table 1 and, compared with
Fig. 10, does not show any significant variation with time. This is
expected because the errors that effect the bias of the accelerometer
do not affect the bias of the rate gyro.
The estimated pose is compared with the ground truth in Fig. 12

and the pose estimation error is plotted in Fig. 13. After 20 s, the rms
attitude estimation error is 0.20 deg and the rms position estimation
error is 1.8 cm.
Finally, Fig. 14 shows the linear and angular velocity estimation

errors for this case. After 20 s, the rms angular velocity estimation
error is 0.67 deg ∕s and the rms linear velocity estimation error is
3.9 cm∕s.

V. Monte Carlo Simulations

In this section, the DQ-MEKF with no linear and angular velocity
measurements is compared with the QV-AEKF and with the SQV-
AEKF through 100 Monte Carlo simulations. A high-fidelity
Simulink model of the 5-DOF platform [26] was used to generate

pose measurements at different update rates. Measurements of qB∕I
were simulated by adding additive white Gaussian noise (AWGN)
with covariance matrix 1.44 × 10−6I4×4 to the true qB∕I , which is
available in simulation. After adding the AWGN, the correct norm of
the measurements of qB∕I was restored through Eq. (42). Further-
more, measurements of �rIB∕I were simulated by adding AWGN with
covariance matrix 2.25 × 10−6I3×3 m2 to the true �rIB∕I . Note that in
simulation, the exact state is known and can be used as ground truth.
First, the three filters were fed the same measurements of qB∕I and

�rIB∕I at 10 Hz. The initial estimate of the state used to initialize the
three filters is given in Table 8. The same table also shows the true
initial state. The three filters were initialized with the covariance
matrices given in Table 3.
The pose estimated by the DQ-MEKF in one Monte Carlo run is

compared with the true pose in Fig. 15 to show the simulated motion
of the 5-DOF platform. The motion starts 20 s after the beginning of
the simulation.
The rms attitude, position, angular velocity, and linear velocity

estimation errors after 20 s obtained in everyMonte Carlo simulation
with pose measurements at 10 Hz are shown in Fig. 16. As in the
experimental results presented in Sec. IV, the rms attitude and angular
velocity estimation errors obtained with the three filters are the same.
Again, this is not surprising because the DQ-MEKF, QV-AEKF,

Fig. 6 Case 1: velocity estimation error (pose measurements at 10 Hz).

Table 4 Case 1: rms estimation errors after 20 s obtained
with the three filters (pose measurements at 10 Hz)

Property Filter

Rms estimation error DQ-MEKF QV-AEKF SQV-AEKF

Attitude, deg 0.13 0.13 0.13
Position, mm 4.5 4.5 5.1
Angular velocity, deg ∕s 0.44 0.44 0.44
Linear velocity, mm∕s 4.4 4.4 12.6

Fig. 7 Case 1: estimated and true pose (pose measurements at 0.5 Hz).

Fig. 8 Case 1: pose estimation error (pose measurements at 0.5 Hz).
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and SQV-AEKF represent and update the attitude in the same way
and the attitude is independent from the position. Moreover, as in the
experimental results presented in Sec. IV, the rms position and linear
velocity estimation errors obtained with the DQ-MEKF and the QV-
AEKF are the same for this measurement update rate. However,
compared with the DQ-MEKF and the QV-AEKF, the rms position
estimation error obtained with the SQV-AEKF is slightly better,
whereas the rms linear velocity estimation error is clearly worse.
Hence, for this update rate, as in Sec. IV, the DQ-MEKF and QV-
AEKF perform slightly better than the SQV-AEKF. However,
because the DQ-MEKF and the QV-AEKF require more states to

propagate the state covariance matrix, the SQV-AEKF might be a
reasonable choice for a measurement update rate of 10 Hz.
As in Sec. IV, to compare the filters in a more demanding scenario,

the Monte Carlo simulations were repeated but now with pose

Fig. 9 Case 1: velocity estimation error (pose measurements at 0.5 Hz).

Table 5 Case 1: rms estimation errors after 20 s obtained
with the three filters (pose measurements at 0.5 Hz)

Property Filter

Rms estimation error DQ-MEKF QV-AEKF SQV-AEKF

Attitude, deg 2.22 2.22 2.22
Position, mm 70.8 69.5 122.8
Angular velocity, deg ∕s 1.91 1.91 1.91
Linear velocity, mm∕s 22.7 22.2 80.7

Table 6 Case 2: initial estimate and a posteriori guess of the state

Variable Initial estimate A posteriori guess

qB∕I�0� �0.6947;−0.0004; 0.0247; 0.7189�T �0.7987;−0.0221;−0.0195; 0.6009�T

�rIB∕I�0� �0; 0; 0�T, m �−0.5256; 2.0425;−0.9887�T, m
�bω�0� �−1; 1; 1�T, deg ∕s �−0.7583; 1.044; 0.6717�T, deg ∕s
�bv�0� �0; 0; 0�T, m∕s �0; 0; 0�T, m∕s
�bn�0� �0; 0; 0�T �0.0251; 0.0160; 0.0005�T

Table 7 Case 2: covariance matrices

Matrix Value

P15×15�0� diag (�6.9 × 10−3; 6.9 × 10−3; 6.9 × 10−3; 0.69; 0.69; 0.69; 2 × 10−6; 2 × 10−6; 2 × 10−6; 1 × 10−9; 1 × 10−9; 1 × 10−9;
1.6 × 10−5; 1.6 × 10−5; 1.6 × 10−5�)

Q15×15 diag (�7 × 10−7; 7 × 10−7; 7 × 10−7; 0; 0; 0; 2 × 10−6; 2 × 10−6; 2 × 10−6; 2 × 10−7; 2 × 10−7; 2 × 10−7; 1.6 × 10−5; 1.6 × 10−5; 1.6 × 10−5�)
R6×6 diag (�1 × 10−9; 1 × 10−9; 1 × 10−9; 2.5 × 10−7; 2.5 × 10−7; 2.5 × 10−7�)

Fig. 10 Case 2: estimated andmeasured nondimensional specific force.

Fig. 11 Case 2: estimated and measured angular velocity.
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measurements at 0.5 Hz. All other parameters were kept the same.
The results are shown in Fig. 17. As in Fig. 16, the rms attitude and
angular velocity estimation errors obtained with the three filters are
the same. However, now the SQV-AEKF clearly exhibits the highest
rms position and linear velocity estimation errors.Moreover, as in the
experimental results presented in Sec. IV, for this case, the rms
position and linear velocity estimation errors obtained with the DQ-
MEKF are smaller than the ones obtained with the QV-AEKF in
every Monte Carlo run.

Fig. 12 Case 2: estimated and true pose.

Fig. 13 Case 2: pose estimation error.

Fig. 14 Case 2: angular and linear velocity estimation errors.

Table 8 Monte Carlo simulation: Initial estimate and true initial
state

Variable Initial estimate True initial state

qB∕I�0� �1; 0; 0; 0�T �1; 0; 0; 0�T
�rIB∕I�0� �0.1170; 0.9650;−0.0003�T, m �0.1170; 0.9650;−0.0003�T, m
�bω�0� �0; 0; 0�T, deg ∕s �0; 0; 0�T, deg ∕s
�bv�0� �0; 0; 0�T, m∕s �0; 0; 0�T, m∕s

Fig. 16 Rms state estimation error in simulations (pose measurements
at 10 Hz).

Fig. 15 Estimated and true pose (pose measurements at 10 Hz).
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VI. Conclusions

This paper proposes a DQ-MEKF for pose estimation that is an
extension of thewell-known andwidely usedQ-MEKF for spacecraft
attitude estimation. By using the dual quaternion multiplication and
the concept of error unit dual quaternion, the two algebraic con-
straints of unit dual quaternions are automatically satisfied during the
measurement update of the DQ-MEKF and the number of states is
reduced from eight to six. Three different forms of theDQ-MEKF are
presented, each with a different application in mind. Experimental
results show that the DQ-MEKF does not encounter singularities and
is accurate, precise, and fast enough for operational use. Moreover,
when compared with two other EKF formulations, experimental
results and Monte Carlo simulations suggest that the DQ-MEKF
might be the best formulation if the measurements are expressed in a
different reference frame than the variable to be estimated. This is the
case, for example, when one needs the inertial position of a satellite
expressed in the body frame (e.g., to implement a control law), but the
measurements are expressed in the inertial frame, like the inertial
position measurements produced by a GPS. Finally, it should be
mentioned that, whereas the derivations presented in this paper do not
rely on a model of the system dynamics, because they may be hard to
model accurately enough, it is relatively straightforward to do so, if
desired.

Appendix A: Derivation of the QV-AEKF

Instead of representing the pose of a body with respect to the I
frame with a unit dual quaternion (expressed neither in the body
frame, nor in the I frame), the attitude and position of a body can be
represented separately with a unit quaternion and a translation vector
(expressed either in the body frame or in the I frame). This is the
approach taken in [11–13]. Hereby, an additive EKF based on this
representation of the pose is derived for comparison with the DQ-
MEKF with no linear and angular velocity measurements. This
formulation is referred to as the QV-AEKF.
The linear and angular velocity measurementmodel is still given by

Eq. (25) by separating the real part from the dual part, that is,ωBB∕I;m �
ωBB∕I � bω � ηω and vBB∕I;m � vBB∕I � bv � ηv, where Ef�ηωg� 03×1,

Ef�ηvg� 03×1, Ef�ηω�t��ηTω�τ�g � �Qω�t�δ�t − τ�, Ef�ηv�t��ηTv �τ�g �
�Qv�t�δ�t − τ�, _bω � ηbω ,

_bv � ηbv , Ef�ηbωg� 03×1, Ef�ηbvg� 03×1,

Ef�ηbω�t��ηTbω�τ�g � �Qbω�t�δ�t − τ�, and Ef�ηbv�t��ηTbv �τ�g � �Qbv�t�
δ�t − τ�.

The state and process noise of the QV-AEKF are initially
selected as

x16 � � �δqB∕I �T �rBB∕I �T �bω�T �bv�T �T ∈ R16 and

w16 � � �ηω�T �ηv�T �ηbω �T �ηbv �T �T ∈ R16

The time derivative of δqB∕I is given by the real part of Eq. (37),
that is,

d

dt
�δqB∕I� ≈ −

1

2
ω̂BB∕IδqB∕I �

1

2
δqB∕Iω̂

B
B∕I

� 1

2
δqB∕Ib̂ω −

1

2
δqB∕Ibω −

1

2
δqB∕Iηω

whereas the time derivative of rBB∕I is given by

d

dt
�rBB∕I� � vBB∕I − ωBB∕I × r

B
B∕I

� �v̂BB∕I � b̂v − bv − ηv� − �ω̂BB∕I � b̂ω − bω − ηω� × rBB∕I (A1)

At this point, reduced state and process noise vectors are selected,
namely,

x12 � � δqB∕IT � �rBB∕I�T �bTω �bTv �T ∈ R12 and

w12 � � �ηTω �ηTv �ηTbω �ηTbv �
T ∈ R12

The state equations of the QV-AEKF are then given by

f12�x12�t�; t�

�

26664
− 1

2
ω̂BB∕IδqB∕I� 1

2
δqB∕Iω̂

B
B∕I� 1

2
δqB∕Ib̂ω− 1

2
δqB∕Ibω

�v̂BB∕I� b̂v−bv�− �ω̂BB∕I� b̂ω−bω�×rBB∕I
03×1
03×1

37775 (A2)

g16×16�x16�t�; t� �

2664
− 1

2
�eδqB∕I � 03×3 03×3 03×3

−rBB∕I
× −I3×3 03×3 03×3

03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3

3775 (A3)

By replacing δqB∕I;0 through Eq. (17) in Eqs. (A2) and (A3) and
using Eq. (5), F12×12�t� and G12×12�t� can be determined to be,
respectively, 26664

−ω̂BB∕I
×

03×3 − 1
2
I3×3 03×3

03×3 −ω̂BB∕I
× −r̂BB∕I

× −I3×3
03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3

37775;
2664
− 1

2
I3×3 03×3 03×3 03×3

−r̂BB∕I
× −I3×3 03×3 03×3

03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3

3775
(A4)

A1 Time Update

For the time update of the QV-AEKF, q̂B∕I, r̂
B
B∕I , ω̂

B
B∕I , v̂

B
B∕I , b̂ω,

and b̂v are propagated using the real part of Eq. (31), that is,

Fig. 17 Rms state estimation error in simulations (pose measurements
at 0.5 Hz).
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d

dt
�q̂B∕I� ≈

1

2
q̂B∕Iω̂

B
B∕I

d

dt
�r̂BB∕I� ≈ v̂BB∕I − ω̂BB∕I × r̂

B
B∕I

ω̂BB∕I � ωBB∕I;m − b̂ω; v̂BB∕I � vBB∕I;m − b̂v
d

dt
�b̂ω� � 0 and

d

dt
�b̂v� � 0

respectively, given q̂B∕I�t0�, r̂BB∕I�t0�, b̂ω�t0�, and b̂v�t0�.
Numerical errors in the propagation of q̂B∕I may result in q̂B∕I

violating the unit norm constraint. Hence, after each integration step,
this algebraic constraint is enforced by using Eq. (42).
As for the covariance matrix of x12,

P12×12�t�

≜E

8>>>>><>>>>>:

0BBBBB@

2666664
δqB∕I�t�
�rBB∕I�t�
�bω�t�
�bv�t�

3777775−

2666664
03×1

�̂rBB∕I�t�

�̂bω�t�
�̂bv�t�

3777775

1CCCCCA

0BBBBB@

2666664
δqB∕I�t�
�rBB∕I�t�
�bω�t�
�bv�t�

3777775−

2666664
03×1

�̂rBB∕I�t�

�̂bω�t�
�̂bv�t�

3777775

1CCCCCA
T
9>>>>>=>>>>>;

(A5)

it is propagated according to Eq. (4) given P12×12�t0� and where

Q12×12�t� �

26664
�Qω�t� 03×3 03×3 03×3
03×3 �Qv�t� 03×3 03×3
03×3 03×3 �Qbω�t� 03×3
03×3 03×3 03×3 �Qbv�t�

37775 (A6)

A2 Measurement Update

For direct comparison with the DQ-MEKF with output equation
given by Eq. (51), it is assumed that the QV-AEKF is fed measure-
ments of qB∕I and r

I
B∕I . The output equation of the QV-AEKF is

defined as24 �q̂−B∕I�tk���qB∕I;m�tk�
rIB∕I;m�tk�

35
�

24 δqB∕I�tk�

q̂B∕I�tk�δqB∕I�tk�rBB∕I�tk�δq�B∕I�tk�q̂�B∕I�tk�

35� v6�tk� (A7)

Hence, using Eq. (11) to calculate themeasurement sensitivitymatrix
yields

H6×12�tk� �
�

I3×3 03×3 03×3 03×3

−2R��q̂−B∕I���r̂
B;−
B∕I

×
R��q̂−B∕I��� 03×3 03×3:

�
(A8)

In summary, for the measurement update of the QV-AEKF, the
Kalmangain is calculated fromEq. (10),whereas the optimalKalman
state update is calculated from Eq. (8) as

Δ⋆x̂12�tk� ≜

2666664
Δ⋆δq̂B∕I�tk�

Δ⋆ �̂rBB∕I�tk�

Δ⋆ �̂bω�tk�

Δ⋆ �̂bv�tk�

3777775
� K12×6�tk�

0@24 �q̂−B∕I�tk���qB∕I;m�tk�
rIB∕I;m�tk�

35 −

"
03×3

r̂I;−B∕I�tk�

#!

The estimate of the state at time tk after the measurement is then

calculated from q̂�B∕I�tk� � q̂−B∕I�tk�Δ⋆δq̂B∕I�tk�,
�̂
b
�
ω �tk� �

�̂
b
−
ω�tk��

Δ⋆ �̂bω�tk�,
�̂
b
�
v �tk� �

�̂
b
−
v �tk� � Δ⋆ �̂bv�tk�, and

�̂rB;�B∕I �tk� � �̂rB;−B∕I�tk� � Δ⋆ �̂rBB∕I (A9)

where Δ⋆δq̂B∕I is defined as the unit quaternion� ���������������������������������
1 − kΔ⋆δq̂B∕Ik2

q
;Δ⋆δq̂B∕I

�

or

0B@ 1����������������������������������
1� kΔ⋆δq̂B∕Ik2

q ;
Δ⋆δq̂B∕I����������������������������������

1� kΔ⋆δq̂B∕Ik2
q

1CA (A10)

if the norm of Δ⋆δq̂B∕I is larger than one. Note that, whereas the
optimal Kalman state update is added in Eq. (A9), it is multiplied in
Eq. (48). Finally, the covariance matrix of the state immediately after
the measurement at tk is computed from Eq. (13).
As before, when position and attitude measurements are available,

but linear and angular velocity measurements are not, estimates of

ωBB∕I and v
B
B∕I can be determined by setting ωBB∕I;m, v

B
B∕I;m,

�Qω, and

�Qv to zero, and by increasing �Qbω and �Qbv if necessary.

Appendix B: Derivation of the SQV-AEKF

Whereas the states of the DQ-MEKF and of the QV-AEKF include
both the attitude and position of the body, the traditional approach to
estimating the pose consists of developing separate estimators for the
attitude and the position [10]. To compare this traditional approach to
theDQ-MEKFand theQV-AEKF, theQV-AEKF is split here into two
additive EKFs, one for the attitude and another one for the position.
This alternative formulation is referred to as the SQV-AEKF.

B1 Attitude Estimation with the SQV-AEKF

As in the QV-AEKF, the angular velocity measurement

model is given by ωBB∕I;m � ωBB∕I � bω � ηω, where Ef�ηωg� 03×1,

Ef�ηω�t��ηTω�τ�g � �Qω�t�δ�t − τ�, _bω � ηbω , Ef�ηbωg� 03×1, and

Ef�ηbω �t��ηTbω �τ�g � �Qbω �t�δ�t − τ�.
The state and process noise of the attitude part of the SQV-AEKF

are initially selected as

x8� ��δqB∕I �T �bω�T �T ∈R8 and w8� ��ηω�T �ηbω �T �T ∈R8

As in the QV-AEKF, the time derivative of δqB∕I is given by

d

dt
�δqB∕I� ≈ −

1

2
ω̂BB∕IδqB∕I �

1

2
δqB∕Iω̂

B
B∕I

� 1

2
δqB∕Ib̂ω −

1

2
δqB∕Ibω −

1

2
δqB∕Iηω

At this point, reduced state and process noise vectors are selected,
namely,

x6 � � δqB∕IT �bTω �T ∈ R6 and w6 � � �ηTω �ηTbω �
T ∈ R6

The state equations of the attitude part of the SQV-AEKF are then
defined by f6�x6�t�; t� and g6×6�x6�t�; t�, which are given by,
respectively,
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24− 1
2
ω̂BB∕IδqB∕I � 1

2
δqB∕Iω̂

B
B∕I � 1

2
δqB∕Ib̂ω − 1

2
δqB∕Ibω

03×1

35;
24− 1

2
�eδqB∕I � 03×3

03×3 I3×3

35 (B1)

By replacing δqB∕I;0 throughEq. (17) inf6�x6�t�; t� andg6×6�x6�t�; t�
and using Eq. (5), F6×6�t� and G6×6�t� can be determined to be

F6×6�t� �
�
−ω̂BB∕I

× − 1
2
I3×3

03×3 03×3

�
; G6×6�t� �

�
− 1

2
I3×3 03×3

03×3 I3×3

�
(B2)

B1.a Time Update

For the time update of the attitude part of the SQV-AEKF, q̂B∕I ,
ω̂BB∕I , and b̂ω are propagated using

d

dt
�q̂B∕I�≈

1

2
q̂B∕Iω̂

B
B∕I; ω̂BB∕I �ωBB∕I;m − b̂ω; and

d

dt
�b̂ω� � 0

respectively, given q̂B∕I�t0� and b̂ω�t0�. After each integration step,
the unit norm constraint for q̂B∕I is enforced using Eq. (42).
As for the covariance matrix of x6,

P6×6�t� ≜ E
���

δqB∕I�t�
�bω�t�

�
−
�
03×1
�̂bω�t�

����
δqB∕I�t�
�bω�t�

�
−
�
03×1
�̂bω�t�

��
T
	

(B3)

it is propagated according to Eq. (4) given P6×6�t0� and where

Q6×6�t� �
�

�Qω�t� 03×3
03×3 �Qbω�t�

�
(B4)

B1.b Measurement Update

It is assumed that the attitude part of the SQV-AEKF is fed
measurements ofqB∕I (whereas the position part of the SQV-AEKF is
fed measurements of rIB∕I). Hence, the output equation of the attitude
part of the SQV-AEKF is given by

�q̂−B∕I�tk���qB∕I;m�tk� � δqB∕I�tk� � v3�tk� (B5)

Hence, using Eq. (11) to calculate themeasurement sensitivitymatrix
yields

H3×6�tk� � � I3×3 03×3 � (B6)

In summary, for the measurement update of the attitude part of the
SQV-AEKF, the Kalman gain is calculated from Eq. (10), whereas
the optimal Kalman state update is calculated from Eq. (8) as

Δ⋆x̂6�tk�≜
�
Δ⋆δq̂B∕I�tk�
Δ⋆ �̂bω�tk�

�
�K6×3�tk���q̂−B∕I�tk���qB∕I;m�tk�−03×3�

(B7)

The estimate of the state at time tk after the measurement is

then calculated from q̂�B∕I�tk� � q̂−B∕I�tk�Δ⋆δq̂B∕I�tk� and
�̂
b
�
ω �tk� �

�̂
b
−
ω�tk� � Δ⋆ �̂bω�tk�, whereΔ⋆δq̂B∕I is the unit quaternion defined in

Eq. (A10). Finally, the covariance matrix of the state immediately
after the measurement at tk is computed from Eq. (13).

As before, when attitude measurements are available, but angular
velocity measurements are not, estimates of ωBB∕I can be determined
by settingωBB∕I;m and �Qω to zero, and by increasing �Qbω if necessary.

B2 Position Estimation with the SQV-AEKF

As in the QV-AEKF, the linear velocity measurement model
is given by vBB∕I;m � vBB∕I � bv � ηv, where Ef�ηvg� 03×1,

Ef�ηv�t��ηTv �τ�g � �Qv�t�δ�t − τ�, _bv � ηbv , Ef�ηbvg� 03×1, and

Ef�ηbv �t��ηTbv�τ�g � �Qbv�t�δ�t − τ�.
The state and process noise of the position part of the SQV-AEKF

are selected as

x6 � � � �rBB∕I�T �bTv �T ∈ R6 and w6 � � �ηTv �ηTbv �
T ∈ R6

The time derivative of rBB∕I is given by Eq. (A1). Hence, the state
equations of the position part of the SQV-AEKF are defined by
f6�x6�t�; t� and g6×6�x6�t�; t�, which are given by, respectively,24 �v̂BB∕I � b̂v − bv� − �ω̂BB∕I � b̂ω − bω� × rBB∕I

03×1

35;
"
−I3×3 03×3

03×3 I3×3

#
(B8)

Using Eq. (5), F6×6�t� and G6×6�t� can be determined to be

F6×6�t� �
�
−ω̂BB∕I

× −I3×3
03×3 03×3

�
; G6×6�t� �

�
−I3×3 03×3
03×3 I3×3

�
(B9)

Note that F6×6�t� is a function of ω̂BB∕I , which is an output of the
attitude part of the SQV-AEKF.

B2.a Time Update

For the time update of the position part of the SQV-AEKF, r̂BB∕I ,
v̂BB∕I , and b̂v are propagated using

d

dt
�r̂BB∕I�≈ v̂BB∕I−ω̂BB∕I× r̂

B
B∕I; v̂BB∕I�vBB∕I;m− b̂v; and

d

dt
�b̂v��0

respectively, given r̂BB∕I�t0� and b̂v�t0�. Note that d∕dt�r̂BB∕I� is a
function of ω̂BB∕I , which is an output of the attitude part of the
SQV-AEKF.
As for the covariance matrix of x6,

P6×6�t�≜E
���

�rBB∕I�t�
�bv�t�

�
−
�
�̂rBB∕I�t�
�̂bv�t�

����
�rBB∕I�t�
�bv�t�

�
−
�
�̂rBB∕I�t�
�̂bv�t�

��T	
(B10)

it is propagated according to Eq. (4) given P12×12�t0� and where

Q12×12�t� �
�

�Qv�t� 03×3
03×3 �Qbv�t�

�
(B11)

B2.b Measurement Update

It is assumed that the position part of the SQV-AEKF is fed
measurements of rIB∕I (whereas the attitude part of the SQV-AEKF is
fedmeasurements ofqB∕I). Hence, the output equation of the position
part of the SQV-AEKF is given by

�rIB∕I;m�tk� � q̂B∕I�tk�δqB∕I�tk�rBB∕I�tk�δq�B∕I�tk�q̂�B∕I�tk� � v3�tk�
(B12)

Calculating the measurement sensitivity matrix using Eq. (11) yields
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H3×6�tk� � �R��q̂−B∕I��� 03×3 � (B13)

where q̂B∕I is an output of the attitude part of the SQV-AEKF.
In summary, for the measurement update of the position part of the

SQV-AEKF, the Kalman gain is calculated from Eq. (10), whereas
the optimal Kalman state update is calculated from Eq. (8) as

Δ⋆x̂6�tk� ≜
�

Δ⋆ �̂rBB∕I

Δ⋆ �̂bv�tk�

�
� K6×3�tk��rIB∕I;m�tk� − r̂

I;−
B∕I�tk��

(B14)

The estimate of the state at time tk after the measurement is

then calculated from
�̂
b
�
v �tk� �

�̂
b
−
v �tk� � Δ⋆ �̂bv�tk� and �̂rB;�B∕I �tk� �

�̂rB;−B∕I�tk� � Δ⋆ �̂rBB∕I . Finally, the covariance matrix of the state

immediately after the measurement at tk is computed from Eq. (13).
As before, when position measurements are available, but linear

velocity measurements are not, estimates of vBB∕I can be determined
by setting vBB∕I;m and �Qv to zero, and by increasing �Qbv if necessary.
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