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Based on the highly successful Quaternion Multiplicative Extended Kal-

man Filter (Q-MEKF) for spacecraft attitude estimation using unit quater-

nions, this paper proposes a Dual Quaternion Multiplicative Extended Kal-

man Filter (DQ-MEKF) for spacecraft pose (i.e., attitude and position) and

linear and angular velocity estimation using unit dual quaternions. By us-

ing the concept of error unit dual quaternion, defined analogously to the

concept of error unit quaternion in the Q-MEKF, this paper proposes, as far

as the authors know, the first multiplicative EKF for pose estimation. The

state estimate of the DQ-MEKF can directly be used by recently proposed

pose controllers based on dual quaternions, without any additional conver-

sions, thus providing an elegant solution to the output dynamic compensa-

tion problem of the full 6DOF motion of a rigid body. Three formulations

of the DQ-MEKF are presented. The first takes continuous-time linear

and angular velocity measurements with noise and bias and discrete-time

pose measurements with noise. The second takes only discrete-time pose

measurements with noise and, hence, is suitable for satellite proximity op-

eration scenarios where the chaser satellite has only access to measurements

of the relative pose, but requires the relative linear and angular velocities

for control. The third formulation takes continuous-time angular velocity

and linear acceleration measurements with noise and bias and discrete-time

pose measurements with noise. The proposed DQ-MEKF is compared with

two alternative EKF formulations on a 5-DOF air-bearing platform and

through extensive Monte-Carlo simulations.
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I. Introduction

The highly successful Quaternion Multiplicative Extended Kalman Filter (Q-MEKF)

based on unit quaternions for spacecraft attitude estimation, described in detail in Section

XI of Ref. [1], has been used extensively in several NASA spacecraft.2 It has been analyzed

in great detail throughout the years.3–6 Part of the Q-MEKF success lies on the fact that

unit quaternions provide a global non-singular representation of attitude with the minimum

number of parameters. Moreover, they appear linearly in the kinematic equations of motion,

unlike Euler angles which require the calculation of computationally expensive trigonometric

functions. Although newer approaches, such as nonlinear observers, have been shown to

have some advantages over the classical EKF, a comprehensive survey of nonlinear attitude

estimation methods has concluded that the classical EKF is still the most useful and practical

solution to the attitude estimation problem.2 Note that the lack of success of Kalman

filtering before 1967, when Richard Battin was developing Apollo’s on-board navigation

and guidance system, is mainly attributed to the inability to model the system dynamics

accurately enough.1

An additional major advantage of the Q-MEKF is that the 4-by-4 covariance matrix of

the four elements of the unit quaternion does not need to be computed. As stated in Ref. [1],

propagating this covariance matrix is the largest computational burden in any Kalman filter

implementation. By rewriting the state of the EKF in terms of the three elements of the

vector part of the unit error quaternion between the true unit quaternion and its estimate,

only a 3-by-3 covariance matrix needs to be computed. The unavoidable drawback of this

approach is that all three-dimensional attitude representations are singular or discontinuous

for certain attitudes.4 Indeed, by construction, the Q-MEKF described in Section XI of

Ref. [1] will fail if the attitude error between the true attitude and its estimate is larger

than 180 deg. However, unlike the true attitude of the body which can vary arbitrarily, the

attitude error between the true attitude of the body and its estimate is expected to be close

to zero, especially after the Q-MEFK has converged. Hence, in the Q-MEKF, whereas the

attitude covariance matrix is only 3-by-3, the body can still have any arbitrary attitude. This

is one of the most appealing properties of the Q-MEKF. Note that the 180 deg restriction

in Q-MEKF is benign since the Q-MEKF will most likely fail even before the attitude error

reaches 180 deg, due to the linearization assumptions intrinsic to the EKF.

The vector part of a unit quaternion is only one of several possible three-dimensional

representations of the attitude error in the Q-MEKF.4 Other possible representations are,

for example, the rotation vector, the Rodrigues parameters, or the modified Rodrigues pa-

rameters. These representations have been shown to be equivalent up to third-order and,

hence, are equivalent for the EKF and second-order filters.4 In this paper, the attitude error
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is represented using the vector part of a unit quaternion as in Ref. [1]. For a thorough

discussion of the pros and cons of each representation, the reader is referred to Ref. [4].

Note however that, as mentioned above, all three-dimensional attitude representations are

singular or discontinuous for certain attitudes.4

Recently, Refs. [7, 8], have proposed a new method to develop pose controllers starting

from existing attitude-only controllers by utilizing the transfer principle between quaternion

and dual quaternion descriptions.9 In particular, unit dual quaternions offer a compact

representation of the position and attitude of a frame with respect to another frame. Their

properties, including examples of previous applications, are discussed in length in Ref. [8].

However, the property that makes dual quaternions most appealing for the applications we

are interested in, is that the combined translational and rotational kinematic and dynamic

equations of motion when written in terms of dual quaternions have the same form as the

rotational-only kinematic and dynamic equations of motion written in terms of quaternions

(albeit the operations have now to be interpreted in dual quaternion algebra).

The traditional approach to estimate the pose of a body consists on developing separate

estimators for attitude and position. For example, Ref. [10] suggests two discrete-time linear

Kalman filters to estimate the relative attitude and position separately. Since the translation

Kalman filter requires the attitude estimated by the rotation Kalman filter, the former is

only switched on after the latter has converged. Owing to this inherent coupling between

rotation and translation, several authors have proposed estimating the attitude and position

simultaneously. For example, in Ref. [11], a lander’s terrain-relative position and attitude

are estimated simultaneously using an EKF. The state of the EKF contains the vector part

of the unit error quaternion (like in the Q-MEKF) and the position vector of the lander with

respect to the inertial frame expressed in the inertial frame. In Ref. [12] the relative position

and attitude of two satellites are also estimated simultaneously using an EKF. In this case,

the state of the EKF contains the vector part of the unit error quaternion (like the Q-MEKF)

and the position vector of the chaser satellite with respect to the target satellite expressed

in a reference frame attached to the target satellite. The approach described in Ref. [12] is

cooperative, in the sense that the two satellites share their angular velocity measurements.

Finally, Ref. [13] also estimates the position and attitude between two frames simultaneously

using a discrete-time EKF. In Ref. [13], the state contains the position vector of a body with

respect to some reference frame expressed in that reference frame along with the four elements

of the true quaternion describing the orientation of the body. Hence, Reference [13] does not

take advantage of the concept of unit error quaternion. Moreover, in Ref. [13], the optimal

Kalman state update is added to, and not multiplied with, the current best unit quaternion

estimate, making the EKF presented in Ref. [13] additive instead of multiplicative. Below

we elaborate why a multiplicative error description is more appropriate for this problem.
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Reference [13] takes advantage of the compactness of dual quaternions to represent 3-D lines

(and their relative position and orientation) to develop the measurement update of the EKF.

As far as the authors know, the only previous EKF formulations where the state includes

a unit dual quaternion are given in Refs. [14,15]. However, these EKF formulations include

the true unit dual quaternion describing the pose of the body and not the error unit dual

quaternion between the true unit dual quaternion and its best estimate. Therefore, the state

of the EKF formulations presented in Refs. [14,15] contains all eight elements of the unit dual

quaternion. Moreover, the EKF formulations proposed in Refs. [14, 15] are additive EKF

formulations, i.e., the optimal Kalman state update is added to and not multiplied with the

current best unit dual quaternion estimate. As a consequence, the predicted value of the unit

dual quaternion immediately after a measurement update does not fulfill the two algebraic

constraints that a unit dual quaternion must satisfy. Hence, in Ref. [14], the predicted value

after a measurement update is further modified to satisfy these constraints through a process

that includes parameters that must be tuned by the user. On the other hand, in Ref. [15],

these two algebraic constraints are simply not enforced after a measurement update, which

can lead to numerical problems. Finally, it should be mentioned that the discrete-time EKF

formulations in Refs. [14,15] are designed to take only measurements from a camera.

Compared to the existing literature, the main contributions of this paper are:

1) By using the concept of error unit dual quaternion defined analogously to the concept of

error unit quaternion of the Q-MEKF, this paper proposes, as far as the authors know,

the first multiplicative EKF for pose estimation. As a consequence, the predicted value

of the unit dual quaternion immediately after a measurement update automatically

satisfies the two algebraic constraints of a unit dual quaternion. Unlike in Ref. [14], no

additional parameters need to be tuned by the user.

2) By using the error unit dual quaternion instead of the true unit dual quaternion, the

state of the DQ-MEKF is reduced from eight elements (as in Refs. [14, 15]) to just

six. As a consequence, the associated computational complexity for implementation is

reduced. Moreover, the state estimate of the DQ-MEKF can be directly used by the

pose controllers given in Refs. [7, 8] without additional conversions.

3) Similarly to the Q-MEKF, the DQ-MEKF is a continuous-discrete Kalman filter ,16

i.e., the state and its covariance matrix are propagated continuously between discrete-

time measurements. One of the advantages of this approach is that the discrete-time

measurements do not need to be equally spaced in time, making irregular or intermit-

tent measurements easy to handle. Moreover, this structure eases the incorporation of

different sensors with different update rates. In particular, the DQ-MEKF described

in this paper is designed to take continuous-time linear and angular velocity mea-

surements with noise and bias and discrete-time pose measurements with noise. This
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paper also proposes two extensions of this standard DQ-MEKF. The first extension

is designed to take only discrete-time pose measurements with noise and estimate the

linear and angular velocities. This version is suitable for satellite proximity operation

scenarios where the chaser satellite has only access to measurements of the relative

pose (e.g., from a camera), but requires the relative linear and angular velocities for

control. In the second extension, the linear velocity measurements of the standard

DQ-MEKF are replaced with linear acceleration measurements with bias and noise.

This version is suitable for a satellite equipped with an accelerometer and having no

means of directly measuring linear velocity.

4) Finally, the two extensions of the standard DQ-MEKF are validated experimentally on

a 5-DOF air-bearing platform. The first extension is also compared with two alterna-

tive EKF formulations, similar to the ones used in Refs. [10–13], on the same 5-DOF

platform and through Monte-Carlo simulations. It is shown that the DQ-MEKF com-

pares favorably with these alternative formulations.

This paper is organized as follows. In Section II the main equations of a standard EKF are

reviewed. Then, the DQ-MEKF is derived in Section III, starting with a brief introduction

about quaternions and dual quaternions and ending with the derivation of two variations of

the DQ-MEKF that may be most useful for spacecraft proximity operations in space. In

Section IV the DQ-MEKF is validated experimentally and compared with two alternative

EKF formulations. Finally, in Section V the first extension is compared again with the same

two alternative EKF formulations through Monte-Carlo simulations.

II. The Extended Kalman Filter

The main equations of the EKF are reviewed in order to introduce the necessary notation

for the remaining sections. The review is based on a similar review provided in Ref. [1] and

serves as the starting point of the DQ-MEKF formulation.

The state equation of the EKF can be written as

ẋn(t) = fn(xn(t), t) + gn×p(xn(t), t)wp(t), (1)

where xn(t) ∈ Rn is the state and wp(t) ∈ Rp is the process noise. The process noise is

assumed to be a Gaussian white-noise process, whose mean and covariance are given by

E {wp(t)} = 0p×1 and E
{
wp(t)w

T
p(τ)

}
= Qp×p(t)δ(t− τ), respectively, where Qp×p(t) ∈ Rp×p

is a symmetric positive semidefinite matrix. The initial mean and covariance of the state

are given by E {xn(t0)} , x̂n(t0) = xn,0 ∈ Rn and E {(xn(t0)− xn,0)(xn(t0)− xn,0)T} ,

Pn×n(t0) = Pn×n,0 ∈ Rn×n and are assumed to be known. (Note that in Refs. [14, 15], p = n
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and gn×p(xn(t), t) = In×n.)

II.A. Time Update

Given the initial mean of the state, the minimum covariance estimate of the state at

a future time t in the absence of measurements is given by the conditional expectation

x̂n(t) = E {xn(t)|x̂n(t0) = xn,0}. This estimate satisfies the differential equation ˙̂xn(t) =

E {fn(xn(t), t)}, which is typically approximated as

˙̂xn(t) ≈ fn(x̂n(t), t). (2)

Hence, in the absence of measurements, the state estimate is propagated using Eq. (2).

In addition to the state estimate, also the covariance matrix of the state needs to be

propagated. The covariance matrix of the state is given by Pn×n(t) = E {∆xn(t)∆xT
n(t)} ∈

Rn×n, where ∆xn(t) = xn(t)− x̂n(t) ∈ Rn is the state error. As a first-order approximation,

the derivative of the state error is given by

d

dt
∆xn(t) = Fn×n(t)∆xn(t) +Gn×p(t)wp(t), (3)

and the covariance matrix of the state satisfies the Riccati equation

Ṗn×n(t) = Fn×n(t)Pn×n(t) + Pn×n(t)F T

n×n(t) +Gn×p(t)Qp×p(t)G
T

n×p(t), (4)

where

Fn×n(t) ,
∂fn(xn, t)

∂xn

∣∣∣∣
x̂n(t)

∈ Rn×n and Gn×p(t) , gn×p(x̂n(t), t) ∈ Rn×p (5)

Hence, in the absence of measurements, the covariance matrix of the state is propagated

using Eq. (4)-(5).

II.B. Measurement Update

Assume that a measurement is taken at time tk that is related with the state of the EKF

through the nonlinear output equation

zm(tk) = hm(xn(tk)) + vm(tk) ∈ Rm, (6)

where vm(tk) ∈ Rm is the measurement noise assumed to be a discrete Gaussian white-noise

process, whose mean and covariance are given by E {vm(tk)} = 0m×1 and E {vm(tk)v
T
m(t`)} =

Rm×m(tk)δtkt` , where Rm×m(tk) ∈ Rm×m is a symmetric positive definite matrix.
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Immediately following the measurement at time tk, the minimum variance estimate of

xn(tk) is given by

x̂+n (tk) = x̂−n (tk) + ∆?x̂n(tk), (7)

where

∆?x̂n(tk) = Kn×m(tk)[zm(tk)− ẑm(tk)] (8)

is the optimal Kalman state update, where

ẑm(tk) = hm(x̂−n (tk)), (9)

and x̂−n (tk) and x̂+n (tk) are the predicted values of the state immediately before and after the

measurement, and Kn×m(tk) is the Kalman gain. The Kalman gain is given by

Kn×m(tk) = P−
n×n(tk)H

T

m×n(tk)[Hm×n(tk)P
−
n×n(tk)H

T

m×n(tk) +Rm×m(tk)]
−1, (10)

where P−
n×n(tk) is the predicted state covariance matrix immediately before the measurement

and

Hm×n(tk) =
∂hm(xn)

∂xn

∣∣∣∣
x̂−n (tk)

∈ Rm×n (11)

is the measurement sensitivity matrix.

Immediately after the measurement, the state covariance matrix is given by

P+
n×n(tk) = (In×n −Kn×m(tk)Hm×n(tk))P

−
n×n(tk) (12)

= (In×n −Kn×m(tk)Hm×n(tk))P
−
n×n(tk)(In×n −Kn×m(tk)Hm×n(tk))

T

+Kn×m(tk)Rm×m(tk)Kn×m(tk)
T, (13)

where Eq. (13) is numerically more stable than Eq. (12).

III. Extended Kalman Filter for Spacecraft Pose Estimation

Using Dual Quaternions

This section provides a quick introduction to quaternions and dual quaternions. Then, a

combined angular and linear velocity measurement model analogous to the angular velocity

measurement model described in Ref. [1] is proposed. After that, the DQ-MEKF for pose

estimation based on dual quaternions is derived using dual quaternion algebra. Finally,

two versions of the DQ-MEKF that may be useful in practice are proposed. The first one

is useful when angular and linear velocity measurements are not available, i.e., only pose

measurements are available, and the second is useful when linear velocity measurements are
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replaced by linear acceleration measurements.

III.A. Mathematical Preliminaries

For the benefit of the reader, the main properties of quaternions and dual quaternions, which

are essential for deriving the results presented in this paper, are summarized in this section.

For additional information on quaternions and dual quaternions, the reader is referred to

Refs. [7, 17].

III.A.1. Quaternions

A quaternion is defined as q = q0 + q1i + q2j + q3k, where q0, q1, q2, q3 ∈ R and i, j, and

k satisfy i2 = j2 = k2 = −1, i = jk = −kj, j = ki = −ik, and k = ij = −ji.18 A

quaternion can also be represented as the ordered pair q = (q0, q), where q = [q1 q2 q3]
T ∈ R3

is the vector part of the quaternion and q0 ∈ R is the scalar part of the quaternion. Vector

quaternions and scalar quaternions are quaternions with zero scalar part and vector part,

respectively. The set of quaternions, vector quaternions, and scalar quaternions will be

denoted by H = {q : q = q0 + q1i + q2j + q3k, q0, q1, q2, q3 ∈ R}, Hv = {q ∈ H : q0 = 0},
and Hs = {q ∈ H : q1 = q2 = q3 = 0}, respectively.

The basic operations between quaternions are defined as follows:

Addition: a+ b = (a0 + b0, a+ b) ∈ H,

Multiplication by a scalar: λa = (λa0, λa) ∈ H,

Multiplication: ab=(a0b0 − a · b, a0b+ b0a+ a× b) ∈ H, (14)

Conjugation: a∗ = (a0,−a) ∈ H,

Dot product: a · b = 1
2
(a∗b+ b∗a) = 1

2
(ab∗ + ba∗) = (a0b0 + a · b, 03×1) ∈ Hs,

Cross product: a× b = 1
2
(ab− b∗a∗) = (0, b0a+ a0b+ a× b) ∈ Hv,

where a, b ∈ H, λ ∈ R, and 0m×n is a m-by-n matrix of zeros. Note that the quaternion

multiplication is not commutative. In fact, some authors1 define Eq. (14) as ba, and not as ab

as originally defined by Hamilton.19 This paper follows the original definition by Hamilton.

Finally, the quaternions (1, 0̄) and (0, 0̄) will be denoted by 1 and 0, respectively.

The bijective mapping between the set of quaternions and R4 will be denoted by [ · ] :

H → R4, where [q] = [q0 q1 q2 q3]
T. Using this mapping, the cross product of a ∈ Hv with
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b ∈ Hv can be computed as [a× b] = [a]×[b], where [ · ]× : Hv → R4×4 is defined as

[a]× =

 0 01×3

03×1 a×

 , where a× =


0 −a3 a2

a3 0 −a1
−a2 a1 0

 . (15)

Likewise, the left quaternion multiplication of a ∈ H with b ∈ H can be computed as

[ab] = [[a]][b], where [[ · ]] : H→ R4×4 is defined as

[[a]] =

a0 −aT

a [ã]

 , where [ã] = a0I3×3 + a×. (16)

The relative orientation of a frame fixed to a body with respect to another frame, denoted

here as the I-frame, can be represented by the unit quaternion qB/I =
(
cos(φ

2
), sin(φ

2
)n̄
)
,

where the body frame is said to be rotated with respect to the I-frame about the unit vector

n̄ by an angle φ. A unit quaternion is defined as a quaternion that belongs to the set

Hu = {q ∈ H : q · q = qq∗ = q∗q = 1}. From this constraint, assuming that −180 < φ < 180

deg, the scalar part of a unit quaternion can be computed from

q0 =
√

1− ‖q‖2, (17)

where ‖ · ‖ denotes the usual Euclidean norm in R3.

The coordinates of a vector in the B-frame, vB, can be calculated from the coordinates of

the same vector in the I-frame, vI, and vice-versa, via vB = q∗B/Iv
IqB/I and vI = qB/Iv

Bq∗B/I, where

vB = (0, vB) and vI = (0, vI). This is equivalent to vB = R(qB/I)v
I and vI = R(q∗B/I)v

B, where

R(qB/I) and R(q∗B/I) are the rotation matrices corresponding to qB/I and q∗B/I, respectively.

III.A.2. Dual Quaternions

A dual quaternion is defined as q = qr + εqd, where ε is the dual unit defined by ε2 = 0 and

ε 6= 0. The quaternions qr, qd ∈ H are the real part and the dual part of the dual quater-

nion, respectively. Dual vector quaternions and dual scalar quaternions are dual quaternions

formed from vector quaternions (i.e., qr, qd ∈ Hv) and scalar quaternions (i.e., qr, qd ∈ Hs), re-

spectively. The set of dual quaternions, dual scalar quaternions, and dual vector quaternions

will be denoted by Hd = {q : q = qr + εqd, qr, qd ∈ H}, Hs
d = {q : q = qr + εqd, qr, qd ∈ Hs},

and Hv
d = {q : q = qr + εqd, qr, qd ∈ Hv}, respectively.
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The basic operations between dual quaternions are defined as follows:20,21

Addition: a+ b = (ar + br) + ε(ad + bd) ∈ Hd,

Multiplication by a scalar: λa = (λar) + ε(λad) ∈ Hd,

Multiplication: ab = (arbr) + ε(arbd + adbr) ∈ Hd,

Conjugation: a∗ = a∗r + εa∗d ∈ Hd,

Dot product: a · b=1
2
(a∗b+ b∗a)=1

2
(ab∗ + ba∗)=ar · br + ε(ad · br + ar · bd) ∈ Hs

d,

Cross product: a× b = 1
2
(ab− b∗a∗) = ar × br + ε(ad × br + ar × bd) ∈ Hv

d,

where a, b ∈ Hd and λ ∈ R. Note that the dual quaternion multiplication is not commutative.

In this paper, the dual quaternions 1+ε0 and 0+ε0 will be denoted by 1 and 0, respectively.

The bijective mapping between the set of dual quaternions and R8 will be denoted by

[ · ] : Hd → R8, where [q] = [[qr]
T[qd]

T]T. Using this mapping, the left dual quaternion

multiplication of a ∈ Hd with b ∈ Hd can be computed as [ab] = [[a]][b], where [[ · ]] : Hd →
R8×8 is defined as

[[a]] =

[[ar]] 04×4

[[ad]] [[ar]]

 . (18)

Finally, it is convenient to define [ ·̃ ] : Hd → R6×6 as

[ã] =

[ãr] 03×3

[ãd] [ãr]

 , (19)

where · : Hd → R6 is defined as a = [ar
T ad

T]T ∈ R6, and · × : Hd → R6×6 is defined as

a× =

a×r 03×3

a×d a×r

 . (20)

Similarly, ( · )r : Hd → H is defined as (a)r = ar and ( · )d : Hd → H is defined as (a)d = ad.

The attitude and position (i.e., pose) of a body frame with respect to another frame, say,

the I-frame, can be represented by a unit quaternion qB/I ∈ Hu and by a translation vector

rIB/I ∈ R3 or rBB/I ∈ R3, where rXY/Z is the translation vector from the origin of the Z-frame

to the origin of the Y-frame expressed in the X-frame. Alternatively, the pose of the body

frame with respect to another frame can be represented more compactly by the unit dual

quaternion22

qB/I = qB/I,r + εqB/I,d = qB/I + ε1
2
rIB/IqB/I = qB/I + ε1

2
qB/Ir

B

B/I, (21)

where rXY/Z = (0, rXY/Z). Note that the dual part of qB/I, i.e., qB/I,d, is a representation of
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the position of the body frame with respect to the I-frame. Given qB/I, the position of

the body frame with respect to the I-frame can be obtained in I-frame coordinates from

rIB/I = 2qB/I,dq
∗
B/I and in B-frame coordinates from rBB/I = 2q∗B/IqB/I,d. Figure 1 illustrates this

relation between rBB/I, qB/I,d, and rIB/I. Note that whereas the relation between rBB/I and rIB/I is

quadratic in qB/I, qB/I,d is related linearly in qB/I with rBB/I and rIB/I.


B/I

0.5( )q
I

B/I
rB/I,d

qB

B/I
r

*

B/I
2 ( )q

*

B/I B/I
( )q q

 *

B/I B/I
( )q q


B/I

0.5 ( )q  *

B/I
2( )q

Figure 1. Relation between rB
B/I

, qB/I,d, and rI
B/I

.

A unit dual quaternion is defined as a dual quaternion that belongs to the set23

Hu
d = {q ∈ Hd : q · q = qq∗ = q∗q = 1} = {q ∈ Hd : qr · qr = 1 and qr · qd = 0}. (22)

From this constraint, assuming that −180 < φ < 180 deg, the scalar parts of the real and

dual parts of a unit dual quaternion can be computed from their respective vector parts from

qr,0 =
√

1− ‖qr‖2 and qd,0 =
−qrTqd
qr,0

. (23)

The rotational and translational kinematic equations of the body frame with respect to

another frame can be written compactly in terms of dual quaternions as22

q̇B/I=
1
2
ωI

B/IqB/I=
1
2
qB/Iω

B

B/I, (24)

where ωX
Y/Z is the dual velocity of the Y-frame with respect to the Z-frame expressed in the

X-frame, ωB
B/I , ωB

B/I + εvB
B/I, ω

I
B/I , ωI

B/I + ε(vI
B/I − ωI

B/I × rIB/I), ω
X
Y/Z = (0, ωX

Y/Z), ωX
Y/Z is

the angular velocity of the Y-frame with respect to the Z-frame expressed in the X-frame,

vX
Y/Z = (0, vX

Y/Z), and vX
Y/Z is the linear velocity of the origin of the Y-frame with respect to

the Z-frame expressed in the X-frame. Note that the rotational and translational kinematic

equations written in terms of dual quaternions have the same form as the rotational-only

kinematic equations written in terms of quaternions.7

11 of 45



III.B. Angular and Linear Velocity Measurement Model

The dual velocity measurement model is defined analogously to the angular velocity mea-

surement model typically used in literature,1,2 i.e.,

ωB

B/I,m = ωB

B/I + bω + ηω, (25)

where ωB
B/I,m = ωB

B/I,m + εvB
B/I,m ∈ Hv

d, ω
B
B/I,m = (0, ωB

B/I,m), ωB
B/I,m is a measurement of the

angular velocity of the body frame with respect to the I-frame expressed in the body frame,

vB
B/I,m = (0, vB

B/I,m), vB
B/I,m is a measurement of the linear velocity of the origin of the body

frame with respect to the I-frame expressed in the body frame, bω = bω+εbv is the dual bias,

bω = (0, bω), bω ∈ R3 is the bias of the angular velocity measurement, bv = (0, bv), bv ∈ R3

is the bias of the linear velocity measurement, ηω = ηω + εηv, ηω = (0, ηω), ηω ∈ R3 is the

noise of the angular velocity measurement assumed to be a zero-mean Gaussian white noise

process, ηv = (0, ηv), and ηv ∈ R3 is the noise of the linear velocity measurement assumed

to be a Gaussian white-noise process with E {ηω} = 06×1, and covariance

E {ηω(t)ηT

ω(τ)} = Qω(t)δ(t− τ) =

Qω(t) Qωv(t)

Qωv(t) Qv(t)

 δ(t− τ), (26)

where Qω(t) ∈ R6×6 is a symmetric positive semidefinite matrix. The dual bias is not

constant, but assumed to be driven by another zero-mean Gaussian white noise process

through

ḃω = ηbω , (27)

where ηbω = (0, ηbω) + ε(0, ηbv), E
{
ηbω

}
= 06×1, and covariance

E
{
ηbω(t)ηT

bω(τ)
}

= Qbω(t)δ(t− τ) =

 Qbω(t) Qbωbv(t)

Qbωbv(t) Qbv(t)

 δ(t− τ), (28)

where Qbω(t) ∈ R6×6 is a symmetric positive semidefinite matrix.

If the I-frame is inertial, ωB
B/I should be interpreted as the inertial angular and linear

velocities of the satellite expressed in the B-frame. In that case, ωB
B/I can be measured using

a combination of, say, rate-gyros, Doppler radar, and GPS. On the other hand, if the I-frame

is not inertial, ωB
B/I should be interpreted as the relative angular and linear velocities of the

satellite with respect to a frame attached, for example, to another satellite. In that case,

ωB
B/I can be measured using a combination of, say, rate-gyros on both satellites,12 Doppler

radar, differential GPS, and LIDAR.
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III.C. Dual Quaternion Multiplicative Extended Kalman Filter (DQ-MEFK)

In this section, the DQ-MEKF for pose estimation is derived. The state and process noise

of the DQ-MEKF are initially selected as

x16 =

[δqB/I]

[bω]

 ∈ R16 and w16 =

 [ηω]

[ηbω ]

 ∈ R16, (29)

where the dual error quaternion δqB/I ∈ Hu
d is defined analogously to the error quaternion1

δqB/I = q̂∗B/IqB/I ∈ Hu as

δqB/I = q̂∗B/IqB/I ∈ Hu
d , (30)

i.e., δqB/I ∈ Hu
d is the dual quaternion between the actual dual quaternion qB/I ∈ Hu

d and its

current best guess q̂B/I ∈ Hu
d . Analogously to the propagation of q̂B/I ∈ Hu in Ref. [4], q̂B/I is

propagated using
d

dt
(q̂B/I) ≈ 1

2
q̂B/Iω̂

B

B/I, (31)

where, from Eq. (25),

ω̂B

B/I , E
{
ωB

B/I

}
= E

{
ωB

B/I,m − bω − ηω

}
= ωB

B/I,m − b̂ω, (32)

with b̂ω , E {bω} and
d

dt

(
b̂ω

)
= E

{
ηbω

}
= 0. (33)

The approximation in Eq. (31) is a result of using the typical EKF approximation given by

Eq. (2) in the derivation of Eq. (31).4

Analogously to Ref. [4], for −180 < φ < 180 deg, δqB/I is parameterized by δqB/I

and the expected value of δqB/I is required to be zero, i.e., E
{
δqB/I

}
= 06×1. Hence,

E
{
δqB/I

(
δqB/I

)}
= 1.

Note that the current best guess of qB/I, given by q̂B/I, is not defined as the standard

expected value of the random variable qB/I as this would require the expectation to be defined

with respect to a non-trivial probability density function in Hu
d . As shown in Ref. [5], even

the definition of probability density function on Hu is not trivial. A complete discussion of

probability density functions in Hu
d is outside the scope of this paper. The reader is referred

to Ref. [5] for a discussion of possible probability density functions in Hu.

A geometric interpretation of the dual error quaternion δqB/I is given in Fig. 2. It is the

dual unit quaternion that describes the relative pose between the B-frame and the B̂-frame.

The B-frame represents the true pose of the body-frame, whereas the B̂-frame represents the

expected pose of the body-frame, in other words, it represents the best available guess of the
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pose of the body-frame.
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ˆ /B/B B I
q q

ˆ B/IB/I
ˆq q

B/I
q

Figure 2. Interpretation of the dual error quaternion.

To determine the state equation of the DQ-MEKF, the time derivative of δqB/I needs to

be calculated. Taking the time derivative of Eq. (30) yields

d

dt
(δqB/I) =

d

dt
(q̂∗B/I)qB/I + q̂∗B/I

d

dt
(qB/I). (34)

Substituting Eqs. (24) and (31) in Eq. (34) yields

d

dt
(δqB/I) ≈ 1

2
(ω̂B

B/I)
∗q̂∗B/IqB/I + 1

2
q̂∗B/IqB/Iω

B

B/I = −1
2
ω̂B

B/IδqB/I + 1
2
δqB/Iω

B

B/I. (35)

Combining Eqs. (32) and (25) yields

ωB

B/I = ω̂B

B/I + b̂ω − bω − ηω. (36)

Finally, inserting Eq. (36) in Eq. (35) results in

d

dt
(δqB/I) ≈ −1

2
ω̂B

B/IδqB/I + 1
2
δqB/Iω̂

B

B/I + 1
2
δqB/Ib̂ω − 1

2
δqB/Ibω − 1

2
δqB/Iηω. (37)

At this point, as in the derivation of the Q-MEKF, reduced state and process noise

vectors are selected, namely

x12 =

δqB/I

bω

 ∈ R12 and w12 =

ηω

ηbω

 ∈ R12, (38)

where δqB/I and bω are the vector parts of δqB/I and bω, respectively. The state equations
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of the DQ-MEKF are then given by the vector parts of Eq. (37) and Eq. (27), yielding

f12(x12(t), t) =

−1
2
ω̂B

B/IδqB/I + 1
2
δqB/Iω̂

B

B/I + 1
2
δqB/Ib̂ω − 1

2
δqB/Ibω

06×1

 , (39)

g12×12(x12(t), t) =

−1
2
[δ̃qB/I] 06×6

06×6 I6×6

 . (40)

By replacing the scalar parts δqB/I,r,0 and δqB/I,d,0 through Eq. (23) in Eqs. (39) and (40)

and using Eq. (5), F12×12(t) and G12×12(t) can be determined to be

F12×12(t) =

−ω̂B

B/I

×
−1

2
I6×6

06×6 06×6

 and G12×12(t) =

−1
2
I6×6 06×6

06×6 I6×6

 . (41)

III.C.1. Time Update

For the time update of the DQ-MEKF, the q̂B/I, ω̂
B

B/I, and b̂ω are propagated using Eqs. (31),

(32), and (33), respectively, given q̂B/I(t0) and b̂ω(t0).

Numerical errors in the propagation of q̂B/I through Eq. (31) can result in the violation

of the algebraic constraints specified by Eq. (22). Hence, after each integration step, these

algebraic constraints are enforced by calculating

[qB/I,r] =
[qB/I,r]

‖[qB/I,r]‖
and [qB/I,d] =

(
I4×4 −

[qB/I,r][qB/I,r]
T

‖[qB/I,r]‖2

)
[qB/I,d], (42)

where the latter equation corresponds to the projection of [qB/I,d] onto the subspace orthog-

onal to [qB/I,r].

As for the covariance matrix of x12, i.e.,

P12×12(t) , E {∆x12(t)∆x12(t)T}]

, E


δqB/I(t)

bω(t)

−
 06×1

b̂ω(t)

δqB/I(t)

bω(t)

−
 06×1

b̂ω(t)

T
 , (43)

it is propagated according to Eq. (4) given P12×12(t0) and where

Q12×12(t) =

Qω(t) 06×6

06×6 Qbω(t)

 . (44)
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III.C.2. Measurement Update

In this section, it is assumed that a measurement of qB/I is available. If the I-frame is a

moving frame, this measurement can come, for example, from a vision-based system. If the

I-frame is an inertial frame, this measurement can come, for example, from a combination of

a star sensor and a GPS. If the pose measurement is available in terms of a quaternion and a

translation vector, then the corresponding dual quaternion can be computed from Eq. (21).

Then, the output equation is defined analogously to the output equation used in Refs. [4,12]

when a quaternion measurement is available, i.e.,

(q̂−B/I(tk))
∗qB/I,m(tk) = δqB/I(tk) + v6(tk), (45)

where, in accordance with Eq. (6), z6(tk) = (q̂−B/I(tk))
∗qB/I,m(tk) and h6(x12(tk)) = δqB/I(tk).

Hence, using Eq. (11) to calculate the measurement sensitivity matrix, yields

H6×12(tk) =
[
I6×6 06×6

]
. (46)

In summary, for the measurement update of the DQ-MEKF, the Kalman gain is calcu-

lated from Eq. (10), whereas the optimal Kalman state update is calculated from Eq. (8)

as

∆?x̂12(tk),

∆?δq̂B/I(tk)

∆?b̂ω(tk)

=K12×6(tk)(z6(tk)−ẑ6(tk))=K12×6(q̂
−
B/I(tk))

∗qB/I,m(tk). (47)

The estimate of the state at time tk after the measurement is then calculated from

q̂+B/I(tk) = q̂−B/I(tk)∆
?δq̂B/I(tk), (48)

b̂
+

ω(tk) = b̂
−

ω(tk) + ∆?b̂ω(tk), (49)

where ∆?δq̂B/I is defined as the unit dual quaternion

∆?δq̂B/I=

(√
1−‖∆?δq̂B/I,r‖2,∆?δq̂B/I,r

)
+ε

−∆?δq̂B/I,r
T
∆?δq̂B/I,d√

1−‖∆?δq̂B/I,r‖2
,∆?δq̂B/I,d

 . (50)

Note that Eq. (50) assumes that the attitude error between the true attitude and its estimate

is smaller than 180 deg. Moreover, note that Eq. (50) does not assume that the scalar part

of the real part of ∆?δq̂B/I is identically one as in Ref. [1], but instead uses the nonlinear

quaternion reset suggested in Ref. [4].
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If the initial guess of the state is not close enough to the real state, the norm of ∆?δq̂B/I,r

may become larger than one, which will make the scalar part of the quaternions in Eq. (50)

complex. Hence, if the norm of ∆?δq̂B/I,r is larger than one, Eq. (50) is replaced by

∆?δq̂B/I=

 1√
1+‖∆?δq̂B/I,r‖2

,
∆?δq̂B/I,r√

1+‖∆?δq̂B/I,r‖2

+ε

 −∆?δq̂B/I,r
T
∆?δq̂B/I,d

1

/√
1+‖∆?δq̂B/I,r‖2

,∆?δq̂B/I,d

 .

Note that whereas Eq. (49) is a direct application of Eq. (7), Eq. (48) is not. Since

∆?δq̂B/I(tk) is a unit dual quaternion, q̂+B/I(tk) is calculated using the dual quaternion mul-

tiplication, making the proposed EKF multiplicative. Finally, the covariance matrix of the

state immediately after the measurement at tk is computed from Eq. (13).

Any measurement that is a nonlinear function of the state of the DQ-MEKF, i.e., any

measurement that satisfies Eq. (6), can be used in the measurement update. If another

measurement is used, only the measurement sensitivity matrix given by Eq. (46) needs to

be recalculated. For example, if the measurements are qB/I,m and rIB/I,m, then the output

equation is defined as(q̂−B/I(tk))∗qB/I,m(tk)

rIB/I,m(tk)

=

 δqB/I,r(tk)

2
(
q̂B/IδqB/I

)
d
δq∗B/Iq̂B/I

+v6(tk), (51)

since rIB/I = 2qB/I,dq
∗
B/I = 2

(
q̂B/IδqB/I

)
d
δq∗B/Iq̂B/I. By replacing δqB/I,r,0 and δqB/I,d,0 through

Eq. (23) in Eq. (51), the new sensitivity matrix can be determined to be

H6×12(tk) =

I3×3 03×3 03×3 03×3

03×3 2R
(
(q̂−B/I)

∗) 03×3 03×3.

 . (52)

III.D. Special Case: No Angular or Linear Velocity Measurements

A special case of particular interest is when pose measurements are available, but angular

or linear velocity measurements are not available. Although angular and linear velocity

measurements are not available, angular and linear velocity estimates might be required for

pose stabilization or tracking.8 In this section, it is shown how this case can be handled by

modifying the inputs and the parameters of the DQ-MEKF algorithm, without any modifi-

cation to the structure and basic equations of the DQ-MEKF algorithm. This version of the

DQ-MEKF is specially suited for satellite proximity operations where the relative pose is

measured using vision-based systems, which typically do not provide direct relative velocity

measurements.24 In this scenario, the I-frame is the moving frame of the target satellite.
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If angular and linear velocity measurements are not available, but estimates are required,

ωB
B/I,m and ηω are set to zero in Eq. (25). This results in

bω = −ωB

B/I (53)

and Qω = 06×6. The dual velocity estimate is still given by Eq. (32), which now has the

form ω̂B

B/I = −b̂ω. The time derivative of bω is still calculated as in Eq. (27). However, since

bω is now expected to be time-varying and not constant, the effect of the noise ηbω might

have to be increased by increasing Qbω .

In summary, this special case can be handled by just setting ωB
B/I,m and Qω to zero and,

if necessary, by increasing Qbω .

III.E. Special Case: Linear Acceleration Measurements

Unlike the previous case, the structure of the DQ-MEKF algorithm described in Section

III.C needs to be modified for the case of a satellite having no means of directly measuring

linear velocity, but with the ability to measure linear acceleration using an accelerometer or

an Inertial Measurement Unit (IMU). Since an accelerometer measures accelerations with

respect to the inertial frame, in this section, the I-frame should be interpreted as an inertial

frame. The main modifications compared to the algorithm described in Section III.C are the

addition of the bias of the accelerometer to the state of the DQ-MEKF and a new expression

for the time derivative of bv, which in this case is not calculated from Eq. (27). Since

angular (but not linear) velocity measurements and linear (but not angular) acceleration

measurements are assumed to be available, the duality between the linear and angular motion

is broken in this case. Hence, the equations of the DQ-MEKF for this particular case cannot

be written compactly in terms of dual quaternions as in Sections III.C and III.D.

First, similarly to the angular and linear velocity measurement model, the linear accel-

eration measurement model is defined as11

nB

A/I,m = nB

A/I + bn + ηn, (54)

where nB
A/I = (0, nB

A/I), n
B
A/I is the non-dimensional specific force at the location of the

accelerometer with respect to the inertial frame expressed in the body frame, nB
A/I,m =

(0, nB
A/I,m), nB

A/I,m is a measurement of nB
A/I produced by the accelerometer/IMU, bn = (0, bn),

bn is the bias of the specific force measurement, ηn = (0, ηn), and ηn is the noise of the spe-

cific force measurement assumed to be a Gaussian white-noise process with E {ηn(t)ηT
n(τ)} =

Qn(t)δ(t− τ), where Qn(t) ∈ R3×3 is a symmetric positive semidefinite matrix. The bias is

not constant, but assumed to be driven by another zero-mean Gaussian white noise process
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through

ḃn = ηbn , (55)

where ηbn = (0, ηbn), E
{
ηbn
}

= 03×1, E
{
ηbn(t)ηT

bn
(τ)
}

= Qbn(t)δ(t− τ), and Qbn(t) ∈ R3×3

is a symmetric positive semidefinite matrix. From Eq. (54), the expected value of nB
A/I is

given by

n̂B

A/I = nB

A/I,m − b̂n, (56)

where b̂n , E {bn}. Likewise,
d

dt

(
b̂n

)
= E {ηbn} = 0. (57)

Moreover, combining Eqs. (54) and (56) yields

nB

A/I = n̂B

A/I + b̂n − bn − ηn. (58)

The state and process noise of the DQ-MEKF are now selected as

x20=
[
[δqB/I]

T [bω]T [bn]T
]T
∈ R20 and w20=

[
[ηω]T [ηbω ]T [ηn]T [ηbn ]T

]T
∈ R20, (59)

where the state equation for δqB/I is given by Eq. (37) and the state equation for bω, i.e.,

the real part of bω, is given as in Eq. (27) by ḃω = ηbω , which implies that

d

dt

(
b̂ω

)
= E {ηbω} = 0. (60)

Whereas in Section III.C, the time derivative of bv was also calculated from Eq. (27), here the

time derivative of bv is calculated as follows. Since there are no linear velocity measurements,

vB
B/I,m and ηv are set to zero (as in Section III.D) in Eq. (25), resulting in bv = −vB

B/I and

Qv = Qωv = 03×3. This, in turn, implies that

v̂B

B/I = −b̂v. (61)

Taking the time derivative of both sides of bv = −vB
B/I leads to ḃv = −v̇B

B/I. Note that v̇B
B/I is

related to nB
A/I through

v̇B

B/I = −ωB

B/I × vB

B/I + cnB

A/I − q∗B/Ig
IqB/I − αB

B/I × rBA/B − ωB

B/I × (ωB

B/I × rBA/B), (62)

where c ∈ R is a scaling constant specific to each accelerometer, gI = (0, gI), gI is the

local gravity acceleration vector expressed in the inertial frame (assumed to be known),

αB
B/I = (0, αB

B/I), α
B
B/I is the angular acceleration of the body frame with respect to the inertial

frame expressed in the body frame, rBA/B = (0, rBA/B), and rBA/B is the translation vector from
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the origin of the body frame to the accelerometer expressed in the body frame (assumed to

be known). Hence, ḃv = −v̇B
B/I = −ωB

B/I×bv−cnB
A/I+q

∗
B/Ig

IqB/I+α
B
B/I×rBA/B+ωB

B/I×(ωB
B/I×rBA/B).

Finally, neglecting αB
B/I, which is assumed to be unknown, and using Eq. (58) and the real

parts of Eqs. (30) and (36), results in

ḃv=−v̇B

B/I≈−(ω̂B

B/I+b̂ω−bω−ηω)×bv−c(n̂B

A/I+b̂n−bn−ηn)+δq∗B/Iq̂
∗
B/Ig

Iq̂B/IδqB/I

+(ω̂B

B/I+b̂ω−bω−ηω)×((ω̂B

B/I+b̂ω−bω−ηω)×rBA/B)

=−(ω̂B

B/I+b̂ω−bω)×bv−c(n̂B

A/I+b̂n−bn)+δq∗B/Iq̂
∗
B/Ig

Iq̂B/IδqB/I

+(ω̂B

B/I+b̂ω−bω)×((ω̂B

B/I+b̂ω−bω)×rBA/B)

−bv×ηω+cηn−ηω×((ω̂B

B/I+b̂ω−bω)×rBA/B)+(ω̂B

B/I+b̂ω−bω)×(−ηω×rBA/B)

+(−ηω)×(−ηω×rBA/B). (63)

The last term of Eq. (63) is quadratic with respect to ηω and, hence, does not have the same

form as Eq. (1). Since the typical EKF formulation does not account for terms quadratic

with respect to the process noise, this term is neglected.

Note that by using the typical approximation given by Eq. (2), the time derivative of b̂v

can be calculated from Eq. (63) to be

˙̂
bv≈−ω̂B

B/I×b̂v−cn̂B

A/I+q̂
∗
B/Ig

Iq̂B/I+ω̂
B

B/I×(ω̂B

B/I×rBA/B). (64)

At this point, as before, reduced state and process noise vectors are selected, namely

x15 =
[
δqB/I

T
b

T

ω b
T

n

]T
∈ R15 and w15 =

[
ηT
ω ηT

bω
ηT
n ηT

bn

]T
∈ R15. (65)

The state equations of the DQ-MEKF when linear acceleration measurements are available

are then given by f15(x15(t), t) and g15×15(x15(t), t), defined, respectively, as
−1

2 ω̂
B
B/IδqB/I + 1

2δqB/Iω̂
B
B/I + 1

2δqB/Ib̂ω − 1
2δqB/Ibω

03×1

−(ω̂B
B/I+b̂ω−bω)×bv−c(n̂B

A/I+b̂n−bn)+δq∗B/Iq̂
∗
B/Ig

Iq̂B/IδqB/I+(ω̂B
B/I+b̂ω−bω)×((ω̂B

B/I+b̂ω−bω)×rBA/B)

03×1

 ,
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

−1
2
[δ̃qB/I,r] 03×3 03×3 03×3 03×3

−1
2
[δ̃qB/I,d] −1

2
[δ̃qB/I,r] 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3

−bv
×

+(ω̂B
B/I+b̂ω−bω)×rBA/B

×
+ω̂B

B/I+b̂ω−bω
×
rBA/B

×
03×3 03×3 cI3×3 03×3

03×3 03×3 03×3 03×3 I3×3


.

By replacing δqB/I,r,0 and δqB/I,d,0 through Eq. (23) in f15(x15(t), t) and g15×15(x15(t), t)

and using Eq. (5), F15×15(t) and G15×15(t) can be determined to be

F15×15(t) =



−ω̂B
B/I

×
03×3 −1

2
I3×3 03×3 03×3

−v̂B
B/I

× −ω̂B
B/I

×
03×3 −1

2
I3×3 03×3

03×3 03×3 03×3 03×3 03×3

2q̂∗B/Ig
Iq̂B/I

×
03×3 −b̂v

×
+ω̂B

B/I×rBA/B

×
+ω̂B

B/I

×
rBA/B

× −ω̂B
B/I

×
cI3×3

03×3 03×3 03×3 03×3 03×3


(66)

and

G15×15(t) =



−1
2
I3×3 03×3 03×3 03×3 03×3

03×3 −1
2
I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3

−b̂v
×

+ω̂B
B/I×rBA/B

×
+ω̂B

B/I

×
rBA/B

×
03×3 03×3 cI3×3 03×3

03×3 03×3 03×3 03×3 I3×3


. (67)

III.E.1. Time Update

When acceleration measurements are available, for the time update of the DQ-MEKF, q̂B/I,

b̂ω, b̂v, b̂n, v̂B
B/I, ω̂

B
B/I are propagated using Eqs. (31), (60), (64), (57), (61), and the real part

of Eq. (32), i.e., ω̂B
B/I = ωB

B/I,m − b̂ω, respectively, given q̂B/I(t0), b̂ω(t0), and b̂n(t0).

Numerical errors in the propagation of q̂B/I through Eq. (31) can result in the violation

of the algebraic constraints specified by Eq. (22). Hence, after each integration step, these

algebraic constraints are enforced by using Eq. (42).

As for the covariance matrix of x15,

P15×15(t) = E




δqB/I(t)

bω(t)

bn(t)

−


06×1

b̂ω(t)

b̂n(t)





δqB/I(t)

bω(t)

bn(t)

−


06×1

b̂ω(t)

b̂n(t)




T , (68)
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it is propagated according to Eq. (4) given P15×15(t0), and where

Q15×15(t) =



Qω(t) 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 Qbω(t) 03×3 03×3

03×3 03×3 03×3 Qn(t) 03×3

03×3 03×3 03×3 03×3 Qbn(t)


. (69)

III.E.2. Measurement Update

When acceleration measurements are available, the measurement update is performed as in

Section III.C with the measurement sensitivity matrix now given by

H6×15(tk) =
[
I6×6 06×6 06×3

]
. (70)

The optimal Kalman state update is now calculated based on Eq. (8) from

∆?x̂15(tk) ,


∆?δq̂B/I(tk)

∆?b̂ω(tk)

∆?b̂n(tk)

 = K15×6(tk)(z6(tk)− ẑ6(tk)) = K15×6(q̂
−
B/I(tk))

∗qB/I,m(tk). (71)

Finally, the estimate of the state at time tk after the measurement is calculated from

Eqs. (48), (49), and b̂
+

n (tk) = b̂
−

n (tk) + ∆?b̂n(tk).

IV. Experimental Results

In this section, the two special cases of the DQ-MEKF are validated experimentally on

the Autonomous Spacecraft Testing of Robotic Operations in Space (ASTROS) facility at the

School of Aerospace Engineering of the Georgia Institute of Technology. This experimental

facility includes a 5-DOF platform supported on hemispherical and linear air-bearings mov-

ing over a flat epoxy floor in order to simulate as best as possible the frictionless environment

of space. The experimental facility also includes a VICON motion capture system mounted

on an aluminum grid above the experimental area. The VICON system measures the atti-

tude and position of the platform with respect to a reference frame fixed to the room. These

measurements are then transmitted wirelessly to the platform. A picture of the platform is

shown in Fig. 3. More information about the ASTROS facility and its 5-DOF platform can

be found in Refs. [25, 26]. The most relevant characteristics of the sensors used in the ex-

periments are summarized in Table 1, where SD stands for Standard Deviation. The scaling
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constant of the IMU is c = 9.8 m/s2 and it is located at rBA/B = [0.113,−0.016,−0.089]T (m).

Figure 3. The 5-DOF experimental platform of the ASTROS facility.

Table 1. Characteristics of the sensors.

Meas. Sensor Noise SD Bias Refresh Rate

ω̄B
B/I,m

Humphrey RG02-3227-1 rate-
gyro

0.027 deg/s <2 deg/s 100 Hz

n̄B
A/I,m

Crossbow AHRS400CC-100
IMU

1.5 mg <8.5 mg 100 Hz

qB/I,m 8 VICON Bonita B10 cameras < 7× 10−5 -
Variable
(≤ 250 Hz)

r̄IB/I,m 8 VICON Bonita B10 cameras < 1 mm -
Variable
(≤ 250 Hz)

The ground truth for attitude and position was obtained from VICON measurements

at 100 Hz. The ground truth for linear velocity was obtained by passing these position

measurements through a Linear Time-Invariant (LTI) system with transfer matrix H(s) =

3s/(s+ 3)I3×3. The position of the pole was chosen by trial-and-error to minimize noise and

lag. Finally, the ground truth for the angular velocity was obtained by passing the quaternion

measurements through an LTI system with transfer matrix H(s) = 3s/(s+ 3)I4×4 and by

using the relation ωB
B/I = 2q∗B/Iq̇B/I. Note that whereas the LTI filters can reduce the noise at
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the cost of lag, the ground truth for linear and angular velocity will still have some noise.

IV.A. DQ-MEKF With No Angular and Linear Velocity Measurements

For this experiment, the DQ-MEKF was fed attitude and position measurements from the

VICON system at 10 Hz modeled through the output equation given by Eq. (51). The initial

estimate of the state is given in Table 2. The same table also shows an a posteriori guess

of the initial state based on the measurements. The DQ-MEKF was initialized with the

covariance matrices given in Table 3.

Table 2. Case 1: Initial estimate and a posteriori guess of the state.

Variable Initial Estimate A Posteriori Guess

qB/I(0) [0.7071, 0, 0, 0.7071]T (-) [0.7987,−0.0221,−0.0195, 0.6009]T (-)

r̄IB/I(0) [−0.5, 2,−1]T (m) [−0.5256, 2.0425,−0.9887]T (m)

b̄ω(0) [0, 0, 0]T (deg/s) [0, 0, 0]T (deg/s)

b̄v(0) [0, 0, 0]T (m/s) [0, 0, 0]T (m/s)

Table 3. Case 1: Covariance matrices.

P12×12(0)
diag([1× 10−9, 1× 10−9, 1× 10−9, 1× 10−9, 1× 10−9, 1× 10−9, 1× 10−9, 1×
10−9, 1× 10−9, 1× 10−9, 1× 10−9, 1× 10−9])

Q12×12 diag([0, 0, 0, 0, 0, 0, 1× 10−3, 1× 10−3, 1× 10−3, 1× 10−1, 1× 10−1, 1× 10−1])

R6×6 diag([1.4×10−6, 1.4×10−6, 1.4×10−6, 2.25×10−6, 2.25×10−6, 2.25×10−6])

The pose estimated by the DQ-MEKF is compared with the ground truth in Fig. 4. The

two appear almost identical. This is to be expected due to the relatively high update rate

of pose measurements in this case. Note that the motion only starts around 20 sec after the

beginning of the experiment.

The pose estimation error obtained with the DQ-MEKF is plotted in Fig. 5. Note that

the pose error increases at around 20 sec, when the motion starts. The same figure also

shows the pose estimation error obtained with two alternative EKF formulations.

This first alternative EKF formulation, hereby referred to as the QV-AEKF, is an additive

EKF, where the state contains the vector part of the unit error quaternion (like in the Q-

MEKF) and the position vector of the body with respect to the inertial frame expressed in

the body frame. The QV-AEKF is derived in detail in Appendix A. The biggest differences

between the DQ-MEKF and the QV-AEKF are that in the former the position is represented

by the dual part of the dual quaternion and the position measurement update is performed

using the dual quaternion multiplication, whereas in the latter the position is represented
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Figure 4. Case 1: estimated and true pose (pose measurements at 10 Hz).

by the body coordinates of the position vector and the position measurement update is

performed by adding the optimal correction to the current best estimate.

The second alternative EKF formulation, hereby referred to as the SQV-AEKF, is essen-

tially the QV-AEKF split into two additive EKFs, one for the attitude and another one for

the position. The SQV-AEKF is derived in detail in Appendix B.

For the comparison between the DQ-MEKF, the QV-AEKF, and the SQV-AEKF to be

fair, the three filters were fed the same measurements, were initialized with the same initial

estimate of the state (given in Table 2), and were tuned with the same covariance matrices

(given in Table 3).

The linear and angular velocity estimation errors obtained with the three filters are shown

in Fig. 6.

The Root-Mean-Square (RMS) attitude, position, angular velocity, and linear velocity

estimation errors after 20 sec obtained with the three filters are given in Table 4. Note that

the RMS attitude and angular velocity estimation errors obtained with the three filters are

the same. This is not surprising since the DQ-MEKF, the QV-AEKF, and the SQV-AEKF

represent and update the attitude in the same way and the attitude is independent from the

position. However, whereas the RMS position and linear velocity estimation errors obtained
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Figure 5. Case 1: pose estimation error (pose measurements at 10 Hz).

with the DQ-MEKF and the QV-AEKF are the same, the RMS position and linear velocity

estimation errors obtained with the SQV-AEKF are higher. This is understandable since

the DQ-MEKF and the QV-AEKF take into consideration the fact that the position vector

of the body with respect to the inertial frame expressed in the body frame depends on the

attitude of the body, whereas the SQV-AEKF does not. Another way to see this is to realize

that some of the elements of Eqs. (75) and (79) do not appear in Eqs. (83), (90), (87), and

(94).

Table 4. Case 1: RMS estimation errors after 20 sec obtained with the three filters (pose measurements at
10 Hz).

RMS Estimation Error DQ-MEKF QV-AEKF SQV-AEKF

Attitude (deg) 0.13 0.13 0.13

Position (mm) 4.5 4.5 5.1

Angular Velocity (deg/s) 0.44 0.44 0.44

Linear Velocity (mm/s) 4.4 4.4 12.6
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Figure 6. Case 1: angular and linear velocity estimation errors (pose measurements at 10 Hz).

To compare the filters in a more demanding scenario, the same experimental data were

fed into the DQ-MEKF, the QV-AEKF, and the SQV-AEKF, but now with an update rate

of 0.5 Hz. All other parameters were kept the same. The pose estimated by the DQ-MEKF

is compared with the ground truth in Fig. 7. As expected, the pose estimation error in this

case is visibly higher than in Fig. 4.

The attitude, position, angular velocity, and linear velocity estimation errors obtained

with the DQ-MEKF, the QV-AEKF, and the SQV-AEKF are compared in Fig. 8, Fig. 9,

and Table 5. Like in Table 4, the RMS attitude and angular velocity estimation errors

obtained with the three filters are the same, and the SQV-AEKF exhibits the highest RMS

position and linear velocity estimation errors. However, unlike in Table 4, the RMS position

and linear velocity estimation errors obtained with the DQ-MEKF are smaller than the ones

obtained with the QV-AEKF. In other words, as the update rate of the pose measurements

decreases, the DQ-MEKF starts producing better position and linear velocity estimates than

the QV-AEKF. This can be justified in part by Fig. 1. Since the relation between rBB/I and

rIB/I is quadratic in qB/I, whereas the relation between qB/I,d and rIB/I is linear in qB/I, the

linearization error committed when linearizing the output equations of the QV-AEKF and
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Figure 7. Case 1: estimated and true pose (pose measurements at 0.5 Hz).

of the DQ-MEKF (i.e., Eq. (78) and Eq. (51), respectively) with respect to δqB/I is smaller

in the DQ-MEKF case.

Table 5. Case 1: RMS estimation errors after 20 sec obtained with the three filters (pose measurements at
0.5 Hz).

RMS Estimation Error DQ-MEKF QV-AEKF SQV-AEKF

Attitude (deg) 2.22 2.22 2.22

Position (mm) 70.8 69.5 122.8

Angular Velocity (deg/s) 1.91 1.91 1.91

Linear Velocity (mm/s) 22.7 22.2 80.7

IV.B. DQ-MEKF With Linear Acceleration Measurements

For this experiment, the DQ-MEKF was fed attitude and position measurements from the

VICON system at 1 Hz, linear acceleration measurements from the IMU at 100 Hz, and

angular velocity measurements from the rate-gyro at 100 Hz. The initial estimate of the
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Figure 8. Case 1: pose estimation error (pose measurements at 0.5 Hz).

state is given in Table 6. The same table also shows an a posteriori guess of the initial state

based on the measurements. The DQ-MEKF was initialized with the covariance matrices

given in Table 7.

Table 6. Case 2: Initial estimate and a posteriori guess of the state.

Variable Initial Estimate A Posteriori Guess

qB/I(0) [0.6947,−0.0004, 0.0247, 0.7189]T (-) [0.7987,−0.0221,−0.0195, 0.6009]T (-)

r̄IB/I(0) [0, 0, 0]T (m) [−0.5256, 2.0425,−0.9887]T (m)

b̄ω(0) [−1, 1, 1]T (deg/s) [−0.7583, 1.044, 0.6717]T (deg/s)

b̄v(0) [0, 0, 0]T (m/s) [0, 0, 0]T (m/s)

b̄n(0) [0, 0, 0]T (-) [0.0251, 0.0160, 0.0005]T (-)

The measured and estimated (i.e., without bias) non-dimensional specific force captured

by the accelerometer are plotted in Fig. 10. The difference between the two is the estimated

bias of the accelerometer. This estimated bias is higher than the expected bias listed in

the accelerometer’s datasheet, also given in Table 1. In addition, the estimated bias varies

with time when the platform is moving. These two phenomena can be interpreted as the
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Figure 9. Case 1: angular and linear velocity estimation errors (pose measurements at 0.5 Hz).

DQ-MEKF trying to compensate for errors in the determination of the center of rotation of

the upper stage of the 5-DOF platform, errors in the determination of the position of the

accelerometer, and errors due to the assumption of zero angular acceleration in Eq. (63).

The measured and estimated (i.e., without bias) angular velocity captured by the rate-

gyro are compared in Fig. 11. The difference between the two is the estimated bias of the

rate-gyro. This estimated bias is within the expected bias listed in Table 1 and, compared

with Fig. 10, does not show any significant variation with time. This is expected, as the

errors that effect the bias of the accelerometer do not affect the bias of the rate-gyro.

The estimated pose is compared with the ground truth in Fig. 12 and the pose estimation

Table 7. Case 2: Covariance matrices.

P15×15(0)
diag([6.9× 10−3, 6.9× 10−3, 6.9× 10−3, 0.69, 0.69, 0.69, 2× 10−6, 2× 10−6, 2×
10−6, 1× 10−9, 1× 10−9, 1× 10−9, 1.6× 10−5, 1.6× 10−5, 1.6× 10−5])

Q15×15
diag([7×10−7, 7×10−7, 7×10−7, 0, 0, 0, 2×10−6, 2×10−6, 2×10−6, 2×10−7, 2×
10−7, 2× 10−7])

R6×6 diag([1× 10−9, 1× 10−9, 1× 10−9, 2.5× 10−7, 2.5× 10−7, 2.5× 10−7])
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Figure 10. Case 2: estimated and measured non-dimensional specific force.

error is plotted in Fig. 13. After 20 sec, the RMS attitude estimation error is 0.20 deg and

the RMS position estimation error is 1.8 cm.

Finally, Fig. 14 shows the linear and angular velocity estimation errors for this case.

After 20 sec, the RMS angular velocity estimation error is 0.67 deg/s and the RMS linear

velocity estimation error is 3.9 cm/s.

V. Monte-Carlo Simulations

In this section, the DQ-MEKF with no linear and angular velocity measurements is com-

pared with the QV-AEKF and with the SQV-AEKF through 100 Monte-Carlo simulations.

A high-fidelity Simulink model of the 5-DOF platform26 was used to generate pose measure-

ments at different update rates. Measurements of qB/I were simulated by adding Additive

White Gaussian Noise (AWGN) with covariance matrix 1.44× 10−6I4×4 (-) to the true qB/I,

which is available in simulation. After adding the AWGN, the correct norm of the mea-

surements of qB/I was restored through Eq. (42). Furthermore, measurements of rIB/I were

simulated by adding AWGN with covariance matrix 2.25 × 10−6I3×3 (m2) to the true rIB/I.

Note that in simulation, the exact state is known and can be used as ground truth.

First, the three filters were fed the same measurements of qB/I and rIB/I at 10 Hz. The

initial estimate of the state used to initialize the three filters is given in Table 8. The same

table also shows the true initial state. The three filters were initialized with the covariance
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Figure 11. Case 2: estimated and measured angular velocity.

matrices given in Table 3.

Table 8. Monte-Carlo simulation: Initial estimate and true initial state.

Variable Initial Estimate True Initial State

qB/I(0) [1, 0, 0, 0]T (-) [1, 0, 0, 0]T (-)

r̄IB/I(0) [0.1170, 0.9650,−0.0003]T (m) [0.1170, 0.9650,−0.0003]T (m)

b̄ω(0) [0, 0, 0]T (deg/s) [0, 0, 0]T (deg/s)

b̄v(0) [0, 0, 0]T (m/s) [0, 0, 0]T (m/s)

The pose estimated by the DQ-MEKF in one Monte-Carlo run is compared with the true

pose in Figure 15 to show the simulated motion of the 5-DOF platform. The motion starts

20 sec after the beginning of the simulation.

The RMS attitude, position, angular velocity, and linear velocity estimation errors after

20 sec obtained in every Monte-Carlo simulation with pose measurements at 10 Hz are shown

in Figure 16. As in the experimental results presented in Section IV, the RMS attitude and

angular velocity estimation errors obtained with the three filters are the same. Again, this

is not surprising since the DQ-MEKF, the QV-AEKF, and the SQV-AEKF represent and

update the attitude in the same way and the attitude is independent from the position.

Moreover, as in the experimental results presented in Section IV, the RMS position and

linear velocity estimation errors obtained with the DQ-MEKF and the QV-AEKF are the
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Figure 12. Case 2: estimated and true pose.

same for this measurement update rate. However, compared with the DQ-MEKF and the

QV-AEKF, the RMS position estimation error obtained with the SQV-AEKF is slight better,

whereas the RMS linear velocity estimation error is clearly worse. Hence, for this update

rate, as in Section IV, the DQ-MEKF and the QV-AEKF perform slightly better than

the SQV-AEKF. However, since the DQ-MEKF and the QV-AEKF require more states to

propagate the state covariance matrix, the SQV-AEKF might be a reasonable choice for a

measurement update rate of 10 Hz.

As in Section IV, to compare the filters in a more demanding scenario, the Monte-Carlo

simulations were repeated but now with pose measurements at 0.5 Hz. All other parameters

were kept the same. As in Figure 16, the RMS attitude and angular velocity estimation

errors obtained with the three filters are the same. However, now the SQV-AEKF clearly

exhibits the highest RMS position and linear velocity estimation errors. Moreover, as in

the experimental results presented in Section IV, for this case, the RMS position and linear

velocity estimation errors obtained with the DQ-MEKF are smaller than the ones obtained

with the QV-AEKF in every Monte-Carlo run.
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Figure 13. Case 2: pose estimation error.

VI. Conclusion

This paper proposes a Dual Quaternion Multiplicative Extended Kalman Filter (DQ-

MEKF) for pose estimation that is an extension of the well-known and widely used Quater-

nion Multiplicative Extended Kalman Filter (Q-MEKF) for spacecraft attitude estimation.

By using the dual quaternion multiplication and the concept of error unit dual quaternion,

the two algebraic constraints of unit dual quaternions are automatically satisfied during the

measurement update of the DQ-MEKF and the number of states is reduced from eight to six.

Three different forms of the DQ-MEKF are presented, each with a different application in

mind. Experimental results show that the DQ-MEKF does not encounter singularities and

is accurate, precise, and fast enough for operational use. Moreover, when compared with two

other EKF formulations, experimental results and Monte-Carlo simulations suggest that the

DQ-MEKF might be the best formulation if the measurements are expressed in a different

reference frame than the variable to be estimated. This is the case, for example, when one

needs the inertial position of a satellite expressed in the body frame, e.g., to implement a

control law, but the measurements are expressed in the inertial frame, like the inertial po-

sition measurements produced by a GPS. Finally, it should be mentioned that whereas the

derivations presented in this paper do not rely on a model of the system dynamics, as they

may be hard to model accurately enough, it is relatively straightforward to do so, if desired.
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Figure 14. Case 2: angular and linear velocity estimation errors.

Appendix A - Derivation of the QV-AEKF

Instead of representing the pose of a body with respect to the I-frame with a unit dual

quaternion (expressed neither in the body frame nor in the I-frame), the attitude and position

of a body can be represented separately with a unit quaternion and a translation vector

(expressed either in the body frame or in the I-frame). This is the approach taken in

Refs. [11–13]. Hereby, an additive EKF based on this representation of the pose is derived

for comparison with the DQ-MEKF with no linear and angular velocity measurements. This

formulation is referred to as the Quaternion Vector Additive EKF (QV-AEKF).

The linear and angular velocity measurement model is still given by Eq. (25) by separating

the real part from the dual part, i.e., ωB
B/I,m = ωB

B/I + bω +ηω and vB
B/I,m = vB

B/I + bv +ηv, where

E {ηω} = 03×1, E {ηv} = 03×1, E {ηω(t)ηT
ω(τ)} = Qω(t)δ(t− τ), E {ηv(t)ηT

v(τ)} = Qv(t)δ(t−
τ), ḃω = ηbω , ḃv = ηbv , E

{
ηbω
}

= 03×1, E
{
ηbv
}

= 03×1, E
{
ηbω(t)ηT

bω
(τ)
}

= Qbω(t)δ(t − τ),

and E
{
ηbv(t)ηT

bv
(τ)
}

= Qbv(t)δ(t− τ).

The state and process noise of the QV-AEKF are initially selected as

x16=
[
[δqB/I]

T [rBB/I]
T [bω]T [bv]

T

]T
∈ R16 and w16=

[
[ηω]T [ηv]

T [ηbω ]T [ηbv ]T
]T
∈ R16.

The time derivative of δqB/I is given by the real part of Eq. (37), i.e., d
dt

(δqB/I) ≈ −1
2
ω̂B

B/IδqB/I+
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Figure 15. Estimated and true pose for one Monte-Carlo run (pose measurements at 10 Hz).

1
2
δqB/Iω̂

B
B/I + 1

2
δqB/Ib̂ω − 1

2
δqB/Ibω − 1

2
δqB/Iηω, whereas the time derivative of rBB/I is given by

d

dt
(rBB/I) = vB

B/I − ωB

B/I × rBB/I = (v̂B

B/I + b̂v − bv − ηv)− (ω̂B

B/I + b̂ω − bω − ηω)× rBB/I. (72)

At this point, reduced state and process noise vectors are selected, namely

x12 =
[
δqB/I

T
(rBB/I)

T b
T

ω b
T

v

]T
∈ R12 and w12 =

[
ηT
ω ηT

v ηT
bω

ηT
bv

]T
∈ R12.

The state equations of the QV-AEKF are then given by

f12(x12(t), t) =


−1

2
ω̂B

B/IδqB/I + 1
2
δqB/Iω̂B

B/I + 1
2
δqB/Ib̂ω − 1

2
δqB/Ibω

(v̂B
B/I + b̂v − bv)− (ω̂B

B/I + b̂ω − bω)× rBB/I

03×1

03×1

 , (73)

g16×16(x16(t), t) =


−1

2
[δ̃qB/I] 03×3 03×3 03×3

−rBB/I

× −I3×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

 . (74)
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Figure 16. State estimation Root-Mean-Square Errors (RMSE) after 20 sec obtained in every Monte-Carlo
simulation (pose measurements at 10 Hz).

By replacing δqB/I,0 through Eq. (17) in Eqs. (73) and (74) and using Eq. (5), F12×12(t)

and G12×12(t) can be determined to be, respectively,
−ω̂B

B/I

×
03×3 −1

2
I3×3 03×3

03×3 −ω̂B
B/I

× −r̂BB/I

× −I3×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

 ,

−1

2
I3×3 03×3 03×3 03×3

−r̂BB/I

× −I3×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

 . (75)

VI..1. Time Update

For the time update of the QV-AEKF, q̂B/I, r̂
B
B/I, ω̂

B
B/I, v̂

B
B/I, b̂ω, and b̂v are propagated using the

real part of Eq. (31), i.e., d
dt

(q̂B/I) ≈ 1
2
q̂B/Iω̂

B
B/I,

d
dt

(r̂BB/I) ≈ v̂B
B/I − ω̂B

B/I × r̂BB/I, ω̂
B
B/I = ωB

B/I,m − b̂ω,

v̂B
B/I = vB

B/I,m − b̂v, d
dt

(b̂ω) = 0, and d
dt

(b̂v) = 0, respectively, given q̂B/I(t0), r̂
B
B/I(t0), b̂ω(t0), and

b̂v(t0).

Numerical errors in the propagation of q̂B/I may result in q̂B/I violating the unit norm

constraint. Hence, after each integration step, this algebraic constraint is enforced by using

Eq. (42).
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Figure 17. State estimation Root-Mean-Square Errors (RMSE) after 20 sec obtained in every Monte-Carlo
simulation (pose measurements at 0.5 Hz).

As for the covariance matrix of x12,

P12×12(t) , E






δqB/I(t)

rBB/I(t)

bω(t)

bv(t)

−


03×1

r̂
B

B/I(t)

b̂ω(t)

b̂v(t)








δqB/I(t)

rBB/I(t)

bω(t)

bv(t)

−


03×1

r̂
B

B/I(t)

b̂ω(t)

b̂v(t)




T

, (76)

it is propagated according to Eq. (4) given P12×12(t0) and where

Q12×12(t) =


Qω(t) 03×3 03×3 03×3

03×3 Qv(t) 03×3 03×3

03×3 03×3 Qbω(t) 03×3

03×3 03×3 03×3 Qbv(t)

 . (77)

VI..2. Measurement Update

For direct comparison with the DQ-MEKF with output equation given by Eq. (51), it is

assumed that the QV-AEKF is fed measurements of qB/I and rIB/I. The output equation of
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the QV-AEKF is defined as(q̂−B/I(tk))∗qB/I,m(tk)

rIB/I,m(tk)

=

 δqB/I(tk)

q̂B/I(tk)δqB/I(tk)rBB/I(tk)δq
∗
B/I(tk)q̂

∗
B/I(tk)

+v6(tk). (78)

Hence, using Eq. (11) to calculate the measurement sensitivity matrix yields

H6×12(tk) =

 I3×3 03×3 03×3 03×3

−2R
(
(q̂−B/I)

∗) r̂B,−B/I

×
R
(
(q̂−B/I)

∗) 03×3 03×3.

 . (79)

In summary, for the measurement update of the QV-AEKF, the Kalman gain is calculated

from Eq. (10), whereas the optimal Kalman state update is calculated from Eq. (8) as

∆?x̂12(tk) ,


∆?δq̂B/I(tk)

∆?r̂
B

B/I(tk)

∆?b̂ω(tk)

∆?b̂v(tk)

 = K12×6(tk)

(q̂−B/I(tk))∗qB/I,m(tk)

rIB/I,m(tk)

−
 03×3

r̂I,−B/I(tk)

 .

The estimate of the state at time tk after the measurement is then calculated from q̂+B/I(tk) =

q̂−B/I(tk)∆
?δq̂B/I(tk), b̂

+

ω (tk) = b̂
−

ω (tk) + ∆?b̂ω(tk), b̂
+

v (tk) = b̂
−

v (tk) + ∆?b̂v(tk), and

r̂
B,+

B/I (tk) = r̂
B,−
B/I (tk) + ∆?r̂

B

B/I, (80)

where ∆?δq̂B/I is defined as the unit quaternion

(√
1−‖∆?δq̂B/I‖2,∆?δq̂B/I

)
, or

 1√
1+‖∆?δq̂B/I‖2

,
∆?δq̂B/I√

1+‖∆?δq̂B/I‖2

 (81)

if the norm of ∆?δq̂B/I is larger than one. Note that whereas the optimal Kalman state

update is added in Eq. (80), it is multiplied in Eq. (48). Finally, the covariance matrix of

the state immediately after the measurement at tk is computed from Eq. (13).

As before, when position and attitude measurements are available, but linear and angular

velocity measurements are not, estimates of ωB
B/I and vB

B/I can be determined by setting ωB
B/I,m,

vB
B/I,m, Qω, and Qv to zero, and by increasing Qbω and Qbv if necessary.
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Appendix B - Derivation of the SQV-AEKF

Whereas the states of the DQ-MEKF and of the QV-AEKF include both the attitude and

position of the body, the traditional approach to estimating the pose consists of developing

separate estimators for the attitude and for the position.10 To compare this traditional

approach to the DQ-MEKF and to the QV-AEKF, the QV-AEKF is split here into two

additive EKFs, one for the attitude and another one for the position. This alternative

formulation is referred to as the Split Quaternion Vector Additive EKF (SQV-AEKF).

VI.A. Attitude Estimation with the SQV-AEKF

As in the QV-AEKF, the angular velocity measurement model is given by ωB
B/I,m = ωB

B/I +

bω + ηω, where E {ηω} = 03×1, E {ηω(t)ηT
ω(τ)} = Qω(t)δ(t − τ), ḃω = ηbω , E

{
ηbω
}

= 03×1,

and E
{
ηbω(t)ηT

bω
(τ)
}

= Qbω(t)δ(t− τ).

The state and process noise of the attitude part of the SQV-AEKF are initially selected

as

x8=[[δqB/I]
T [bω]T]T ∈ R8 and w8=[[ηω]T [ηbω ]T]T ∈ R8.

As in the QV-AEKF, the time derivative of δqB/I is given by d
dt

(δqB/I) ≈ −1
2
ω̂B

B/IδqB/I +
1
2
δqB/Iω̂

B
B/I + 1

2
δqB/Ib̂ω − 1

2
δqB/Ibω − 1

2
δqB/Iηω.

At this point, reduced state and process noise vectors are selected, namely

x6 = [δqB/I

T
b
T

ω]T ∈ R6 and w6 = [ηT

ω η
T

bω ]T ∈ R6.

The state equations of the attitude part of the SQV-AEKF are then defined by f6(x6(t), t)

and g6×6(x6(t), t), which are given by, respectively,−1
2
ω̂B

B/IδqB/I + 1
2
δqB/Iω̂B

B/I + 1
2
δqB/Ib̂ω − 1

2
δqB/Ibω

03×1

 ,
−1

2
[δ̃qB/I] 03×3

03×3 I3×3

 . (82)

By replacing δqB/I,0 through Eq. (17) in f6(x6(t), t) and g6×6(x6(t), t) and using Eq. (5),

F6×6(t) and G6×6(t) can be determined to be

F6×6(t) =

−ω̂B
B/I

× −1
2
I3×3

03×3 03×3

 , G6×6(t) =

−1
2
I3×3 03×3

03×3 I3×3

 . (83)

VI.A.1. Time Update

For the time update of the attitude part of the SQV-AEKF, q̂B/I, ω̂
B
B/I, and b̂ω are propagated

using d
dt

(q̂B/I) ≈ 1
2
q̂B/Iω̂

B
B/I, ω̂

B
B/I = ωB

B/I,m − b̂ω, and d
dt

(b̂ω) = 0, respectively, given q̂B/I(t0) and
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b̂ω(t0). After each integration step, the unit norm constraint for q̂B/I is enforced using Eq. (42).

As for the covariance matrix of x6,

P6×6(t) , E


δqB/I(t)

bω(t)

−
03×1

b̂ω(t)

δqB/I(t)

bω(t)

−
03×1

b̂ω(t)

T
 , (84)

it is propagated according to Eq. (4) given P6×6(t0) and where

Q6×6(t) =

Qω(t) 03×3

03×3 Qbω(t)

 . (85)

VI.A.2. Measurement Update

It is assumed that the attitude part of the SQV-AEKF is fed measurements of qB/I (whereas

the position part of the SQV-AEKF is fed measurements of rIB/I). Hence, the output equation

of the attitude part of the SQV-AEKF is given by

(q̂−B/I(tk))∗qB/I,m(tk) = δqB/I(tk)+v3(tk). (86)

Hence, using Eq. (11) to calculate the measurement sensitivity matrix yields

H3×6(tk) = [I3×3 03×3] . (87)

In summary, for the measurement update of the attitude part of the SQV-AEKF, the Kal-

man gain is calculated from Eq. (10), whereas the optimal Kalman state update is calculated

from Eq. (8) as

∆?x̂6(tk) ,

∆?δq̂B/I(tk)

∆?b̂ω(tk)

 = K6×3(tk)((q̂
−
B/I(tk))∗qB/I,m(tk)− 03×3). (88)

The estimate of the state at time tk after the measurement is then calculated from q̂+B/I(tk) =

q̂−B/I(tk)∆
?δq̂B/I(tk) and b̂

+

ω (tk) = b̂
−

ω (tk) + ∆?b̂ω(tk), where ∆?δq̂B/I is the unit quaternion

defined in Eq. (81). Finally, the covariance matrix of the state immediately after the mea-

surement at tk is computed from Eq. (13).

As before, when attitude measurements are available, but angular velocity measurements

are not, estimates of ωB
B/I can be determined by setting ωB

B/I,m and Qω to zero, and by

increasing Qbω if necessary.
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VI.B. Position Estimation with the SQV-AEKF

As in the QV-AEKF, the linear velocity measurement model is given by vB
B/I,m = vB

B/I+bv+ηv,

where E {ηv} = 03×1, E {ηv(t)ηT
v(τ)} = Qv(t)δ(t − τ), ḃv = ηbv , E

{
ηbv
}

= 03×1, and

E
{
ηbv(t)ηT

bv
(τ)
}

= Qbv(t)δ(t− τ).

The state and process noise of the position part of the SQV-AEKF are selected as

x6 = [(rBB/I)
T b

T

v]
T ∈ R6 and w6 = [ηT

v η
T

bv ]T ∈ R6.

The time derivative of rBB/I is given by Eq. (72). Hence, the state equations of the position

part of the SQV-AEKF are defined by f6(x6(t), t) and g6×6(x6(t), t), which are given by,

respectively, (v̂B
B/I + b̂v − bv)− (ω̂B

B/I + b̂ω − bω)× rBB/I

03×1

 ,
−I3×3 03×3

03×3 I3×3

 . (89)

Using Eq. (5), F6×6(t) and G6×6(t) can be determined to be

F6×6(t) =

−ω̂B
B/I

× −I3×3

03×3 03×3

 , G6×6(t) =

−I3×3 03×3

03×3 I3×3

 . (90)

Note that F6×6(t) is a function of ω̂B
B/I, which is an output of the attitude part of the SQV-

AEKF.

VI.B.1. Time Update

For the time update of the position part of the SQV-AEKF, r̂BB/I, v̂
B
B/I, and b̂v are propagated

using d
dt

(r̂BB/I) ≈ v̂B
B/I− ω̂B

B/I× r̂BB/I, v̂
B
B/I = vB

B/I,m− b̂v, and d
dt

(b̂v) = 0, respectively, given r̂BB/I(t0)

and b̂v(t0). Note that d
dt

(r̂BB/I) is a function of ω̂B
B/I, which is an output of the attitude part of

the SQV-AEKF.

As for the covariance matrix of x6,

P6×6(t) , E


rBB/I(t)

bv(t)

−
r̂BB/I(t)

b̂v(t)

rBB/I(t)

bv(t)

−
r̂BB/I(t)

b̂v(t)

T
 , (91)

it is propagated according to Eq. (4) given P12×12(t0) and where

Q12×12(t) =

Qv(t) 03×3

03×3 Qbv(t)

 . (92)
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VI.B.2. Measurement Update

It is assumed that the position part of the SQV-AEKF is fed measurements of rIB/I (whereas

the attitude part of the SQV-AEKF is fed measurements of qB/I). Hence, the output equation

of the position part of the SQV-AEKF is given by

rIB/I,m(tk) = q̂B/I(tk)δqB/I(tk)rBB/I(tk)δq
∗
B/I(tk)q̂

∗
B/I(tk) + v3(tk). (93)

Calculating the measurement sensitivity matrix using Eq. (11) yields

H3×6(tk) =
[
R
(
(q̂−B/I)

∗) 03×3

]
, (94)

where q̂B/I is an output of the attitude part of the SQV-AEKF.

In summary, for the measurement update of the position part of the SQV-AEKF, the Kal-

man gain is calculated from Eq. (10), whereas the optimal Kalman state update is calculated

from Eq. (8) as

∆?x̂6(tk) ,

 ∆?r̂
B

B/I

∆?b̂v(tk)

 = K6×3(tk)(rIB/I,m(tk)− r̂I,−B/I(tk)). (95)

The estimate of the state at time tk after the measurement is then calculated from

b̂
+

v (tk) = b̂
−

v (tk) + ∆?b̂v(tk) and r̂
B,+

B/I (tk) = r̂
B,−
B/I (tk) + ∆?r̂

B

B/I. Finally, the covariance matrix

of the state immediately after the measurement at tk is computed from Eq. (13).

As before, when position measurements are available, but linear velocity measurements

are not, estimates of vB
B/I can be determined by setting vB

B/I,m and Qv to zero, and by increasing

Qbv if necessary.
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