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This paper presents a method for the energy-optimal operation of a fixed-wing aircraft tracking a prescribed

landing path in the three-dimensional space with a fixed time of arrival. The problem is converted to an optimal

control problem with one state variable, which is subject to state and control input constraints along the path. It is

shown that the solution to this energy-optimal tracking problem provides a good approximation to theminimum-fuel

problem. The switching structure of the optimal solution is analyzed, and a semi-analytical method is proposed for

computing the optimal solution. Compared to standard numerical optimization methods the proposed method is

guaranteed to converge to the optimal solution, and it is computationally much more efficient. Numerical examples

are presented to demonstrate the validity of the proposed approach. As verified by these numerical results the

proposed energy-optimal solution can help improve aircraft fuel efficiency during the landing phase.

Nomenclature

CD = drag coefficient
CD0

= zero lift drag coefficient
CL = lift coefficient
CLmax

= maximum lift coefficient
CLmin

= minimum lift coefficient
C�L = optimal lift coefficient
D = specific drag force, N∕kg
~D = specific drag force along singular arc, N∕kg
E = kinetic energy per unit mass, J∕kg
E� = optimal specific kinetic energy, J∕kg
E�L = maximum-time specific kinetic energy, J∕kg
E�Lr = maximum-time specific kinetic energy of the

relaxed problem, J∕kg
E�r = energy-optimal solution of the relaxed problem, J∕kg
E�U = minimum-time specific kinetic energy, J∕kg
E�Ur = minimum-time specific kinetic energy of the

relaxed problem, J∕kg
~E = singular specific kinetic energy arc, J∕kg
g = gravity acceleration, m∕s2
gΓL

= kinetic energy lower bound relaxed on the set ΓL, J∕kg
�gΓU = kinetic energy upper bound relaxed on the set ΓU, J∕kg
g
w

= lower bound of kinetic energy, J∕kg
�gw = upper bound of kinetic energy, J∕kg
K = induced drag coefficient
Ma = Mach number
m = mass, kg
S = wing surface area, m2

s = path coordinate, m
sf = path length, m
T = thrust, N
Tmax = maximum thrust, N
Tmin = minimum thrust, N
�Tw = thrust for maximum speed travel, N

Tw = thrust for minimum speed travel, N
T� = optimal thrust, N
~T = singular thrust control, N
t = time, s
tf = final time, s
x, y, z = position, m
γ = path angle, rad
λE = costate variable associated with E
λt = costate variable associated with t
λ�tr = optimal t-costate of the relaxed problem
v = speed, m∕s
ρ = air density, kg∕m3

ϕ = bank angle, rad
ϕmax = maximum bank angle, rad
ϕmin = minimum bank angle, rad
ϕ� = optimal bank angle, rad
ψ = heading angle, rad

I. Introduction

W ITH rising fuel costs it is desirable to improve the fuel
efficiency of current aircraft operations subject to aircraft

performance and scheduling constraints. Such a problem can be
naturally cast as an optimal motion planning problem, which is a
common problem encountered in many industrial and transportation
systems, including robotic arms [1–4], ground vehicles [5–8], and
aircraft [9,10]. Although optimal motion planning problems can be
solved directly using numerical optimization techniques [11–17] the
number of the required computations may grow to impractical levels,
especially for real-time applications. Hence, a hybrid approach is
commonly adopted in practice, according to which the motion
planning task is decomposed into multiple levels [18,19]. At the
higher level only the geometric aspects of the path are considered,
whereas the lower (path-tracking) level deals with the system
dynamics and the state and control constraints, and it generates the
time parameterization of the path provided by the higher (geometric)
level planner. This paper focuses on the aircraft path-tracking
problem at the lower level. Therefore, throughout the paper, it is
assumed that the path to be followed is given by the geometric level
path planner. The assumption that the path is given (and its
calculation is not part of the optimization process) and is not as
unusual or atypical as one may initially think. Commercial airliners
during the terminal landing phase are required to follow strict air
traffic control (ATC) rules, which guide the airplanes with “virtual”
three-dimensional corridors all the way to the landing strip.
Furthermore, because our approach leads to very fast computation of
feasible trajectories, one can use the approach over new, locally
modified paths repeatedly until a satisfactory path is found. Zhao and
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Tsiotras [20] discuss a computationally efficient approach to modify
the original path such that certain constraints are met. Finally, if
necessary, the computed trajectories by the proposed approach can be
used as an initial guess for a higher fidelity optimal trajectory
generation solver [21]. Hence, from now on it will be assumed that
the path is given. Note, however, that this does not mean that the
trajectory to be followed is given. A trajectory requires a time-
parameterized path, and it is, indeed, the main goal of this paper to
provide such a time parameterization so as to meet certain optimality
specifications.
Given a path the minimum-time path-tracking problem for robotic

manipulators, ground vehicles, and aircraft has been studied in [1–
3,8,22]. The optimal solution to these problems can help improve
plant productivity [1–3], racing car performance [8], or achieve faster
aircraft landing in case of an emergency [22]. These solutions
maximize, pointwise, the speed along the path and do not contain any
singular arcs.When tracking time is not of primary concern it is often
desirable to minimize the energy or the fuel consumption of the
system. Along this direction the minimum-work operation problem
has been studied in [5–7]. Unlike the solution to the minimum-time
problem, minimum-work, or minimum-energy solutions usually
contain singular control arcs, in addition to the bang–bang control
arcs. As it is typically the case for problems with singular arcs, it is
difficult to determine the optimal sequence in which these singular
arcs appear, in combination with the bang–bang arcs, in the optimal
solution and the corresponding optimal switching times. Numerical
techniques are usually required for solving optimal control problems
involving both bang–bang and singular arcs. When the travel time is
free the explicit expression of a singular arc can be solved
analytically. In the case of fixed travel time, which is most important
for scheduled or terminal ATC operations, the singular arc(s) cannot
be computed directly, and a numerical procedure must be used to
compute the singular arc(s) such that the desired travel time and
boundary conditions are satisfied.
When using numerical methods to solve optimal singular control

problems, initially, a control switching structure is guessed based on
the analytic expression of the singular control. Subsequently, the
guessed switching structure is applied to solve the singular control
problem [23]. These numerical methods are time consuming and
require extensive knowledge and experience from the part of the user
to obtain the actual optimal solution. On the other hand, an analytical
optimal control approach [5–7], although less general than purely
numerical methods, can providemore accurate information about the
singular arcs and switching times in the optimal solution, and, thus, it
is more reliable and efficient.
This paper considers the problem of minimum-energy path-

tracking for fixed-wing aircraft with fixed time of arrival (TOA). As
in [22], a scalar functional optimization problem is formulated and
solved semi-analytically using optimal control theory. Because fuel
consumption is closely related to the engine’s mechanical work
counteracting the effects of air drag the issue of fuel efficiency can
also be addressed (at least approximately) by solving this minimum-
energy problem. Compared to the somewhat similar minimum-work
problem for train operations [5–7] in which the initial and final speed
are both zero and only the upper speed limit can be active in the
middle of the optimal solution, in the aircraft path-tracking problem
considered in this paper both the initial and final values of the speed
are nonzero, and both upper and lower nonzero speed bounds exist
and can be active along the path. Hence, the aircraft minimum-energy
solution exhibits amore complicated switching structure than the one
illustrated in [5–7].
The main contributions of this paper include: 1) a new result

regarding the admissible switching structure in the optimal solution
of the minimum-energy aircraft path-tracking problem with fixed
TOA, 2) a partial relaxation technique for identifying the subintervals
on which the speed constraint is active, 3) the characterization of the
relation between optimal solutions of minimum-time, maximum-
time, and minimum-energy path-tracking problems, and finally,
4) the development of an efficient and reliable algorithm for
computing the overall minimum-energy solution. The current paper
should be viewed as a companion paper to [24] (see also [22]), where

some of the basic results used in this paper were first derived. To
avoid unnecessary repetition the reader will often be referred to [24]
for some of the missing details.
The rest of this paper is organized as follows: the aircraft dynamics

is introduced in Sec. II. The aircraft minimum-energy fixed TOA
path-tracking problem is formulated as an optimal control problem in
Sec. III. In Sec. IV, the optimal solution of the minimum-energy
problem is characterized. The optimal switching structure is also
determined for the case when the state constraints are not active. The
solution of the complete problem, that is, when constrained arcs are
part of the optimal solution, is given in Sec. VI. The answer hinges on
the solution of a relaxed problem, which is formulated in Sec. V.
Based on the results of Sec. VI a minimum-energy path-tracking
algorithm is proposed in Sec.VII. Finally, thevalidity of the proposed
methodology is tested using numerical experiments, and the results
are presented at the end of the paper.

II. Aircraft Dynamics

A point-mass model of a fixed-wing aircraft is given by the
following equations of motion [25]:

_x � v cos γ cos ψ (1)

_y � v cos γ sin ψ (2)

_z � v sin γ (3)

_v � 1

m
�T − FD�CL; v; z� −mg sin γ� (4)

_γ � 1

mv
�FL�CL; v; z� cos ϕ −mg cos γ� (5)

_ψ � −
FL�CL; v; z� sin ϕ

mv cos γ
(6)

where x and y denote the position of the aircraft in the horizontal
plane, z is the altitude, v is the aircraft speed, γ is the flight path angle,
ψ is the heading angle, andϕ is the aircraft bank angle. In the previous
simplified model the effect of the wind is not included.
The aerodynamic lift force FL�CL; v; z� and the drag force

FD�CL; v; z� are given by

FL�CL; v; z� �
1

2
ρ�z�v2SCL (7)

FD�CL; v; z� �
1

2
ρ�z�v2SCD �

1

2
ρ�z�v2S�CD0

� KC2
L� (8)

where ρ�z� is the air density given as a function of z, CD0
and K are

parameters describing the aerodynamic properties of the aircraft, and
S is the main wing surface area. The drag coefficients CD0

and K
depend continuously on theMach number and, hence, are continuous
functions of the airspeed and the path length s. The control inputs in
this model are the lift coefficient CL, the bank angle ϕ, and the
thrust T. It is required that the aircraft speed satisfies the bounds
v�s� ∈ �vmin�z�; vmax�z��, where vmin�z� and vmax�z� are altitude-
dependent minimum and maximum speeds, respectively, and

CL ∈ �CLmin
; CLmax

�; ϕ ∈ �ϕmin;ϕmax�; T ∈ �Tmin; Tmax�
(9)

where CLmin
, CLmax

, ϕmin, ϕmax, Tmin, and Tmax are (possibly
path-dependent) bounds on the associated control inputs. It is
assumed that CLmin

≤ 0 ≤ CLmax
, −π∕2 < ϕmin < 0 < ϕmax < π∕2,

0 ≤ Tmin < Tmax, and γ ∈ �−π∕2; π∕2�. These conditions are generic
for a civil fixed-wing aircraft in normal/maneuverable flight.
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Let now �x�s�; y�s�; z�s�� denote a three-dimensional geometric
path, which is parameterized by its natural path length coordinate
s ∈ �s0; sf � ⊂ R�. The main objective of this paper is to find a time
parameterization of the path, or equivalently, a function s�t� with
s�0� � s0 and s�tf� � sf, where t ∈ �0; tf �, and tf is the desired
TOA such that the corresponding time-parameterized trajectory
�x�s�t��; y�s�t��; z�s�t��� minimizes the total energy or mechanical
work, while flying along the path and without violating any state or
control constraints. The path coordinate s is related to the speed v as
follows

s�t� �
Z
t

t0

v�τ� dτ

The key step for solving this problem is the optimization of the speed
profile v�s� along the path. Because the given path is naturally
parameterized using the path coordinate s instead of time the
equations of motion can be rewritten with respect to s as follows
(where prime denotes differentiation with respect to s [24]):

x 0 � cos γ cos ψ (10)

y 0 � cos γ sin ψ (11)

z 0 � sin γ (12)

v 0 � 1

mv
�T − FD�CL; v; ρ� −mg sin γ� (13)

γ 0 � 1

mv2
�FL�CL; v; ρ� cos ϕ −mg cos γ� (14)

ψ 0 � −
FL�CL; v; ρ� sin ϕ

mv2 cos γ
(15)

For convenience of notation let E ≜ v2∕2 denote the specific kinetic
energy per unit mass of the aircraft. It has been shown in [22] that the
lift coefficient, bank angle, and speed constraints can be reduced to
lower and upper bounds on the specific kinetic energy E as follows:

E�s� − �gw�s� ≤ 0 (16)

g
w
�s� − E�s� ≤ 0 (17)

for all s ∈ �s0; sf �, where �gw�s� andgw�s� are path-dependent bounds
on the specific kinetic energy, which are determined from the path
geometry, and the constraints on the speed, bank angle, and lift
coefficient. The derivative of E satisfies the following ordinary
differential equation [22]:

E 0�s� � T�s�
m

−D�E�s�; s� − g sin γ (18)

where the prime denotes the derivative with respect to s, and

D�E; s� � c1�E�s�; s�E�s� �
c2�E�s�; s�
E�s� � c3�E�s�; s� (19)

with

c1�E; s� ≜
CD0
�E; s�ρ�s�S
m

� 4K�E; s�m
ρ�s�S �γ 02�s� � cos2 γ�s�ψ 02�s�� (20)

c2�E; s� ≜
K�E; s�mg2 cos2 γ�s�

ρ�s�S (21)

c3�E; s� ≜
4K�E; s�mγ 0�s�g cos γ�s�

ρ�s�S (22)

It will be assumed that the path is chosen such that D�E; s� and
∂D∕∂E are continuous with respect to s. Once the optimal specific
kinetic energy E��s� is obtained the optimal thrust profile T��s�
along the path can be determined using Eq. (18). Subsequently, the
other optimal control inputs can also be computed using inverse
dynamics as follows [21,22]:

ϕ��s� � − arctan

�
cos γ�s�ψ 0�s�

γ 0�s� � g cos γ�s�∕v�2�s�

�
(23)

C�L�s� �
2m

ρ�s�S cos ϕ��s�

�
γ 0�s� � g cos γ�s�

v�2�s�

�
(24)

The following proposition, taken from [22], is important for
characterizing the minimum-time optimal solution, which is used to
construct the minimum-energy optimal solution later in this paper.
Proposition II.1: Consider the minimum-time path-tracking

problem along a given path �x�s�; y�s�; z�s��, where �x�s0�;
y�s0�; z�s0�� and �x�sf�; y�sf�; z�sf�� are given. Let T� be the
optimal control, and let �sa; sb� ⊆ �s0; sf �. If neither the upper nor the
lower speed limit constraint is active for any s ∈ �sa; sb� then T� is
bang–bang and contains at most one switch, which is from Tmax to
Tmin.

III. Problem Formulation

In this section, the energy-optimal aircraft path-tracking problem
with fixed TOA is formulated as an optimal control problem, which
provides an approximate solution to the minimum-fuel problem.
Most modern civil airliners are powered by high-bypass turbofan
engines for better fuel economy. The fuel consumption rate for this
type of engine is given by [26]

_f � −ηT (25)

where f is the fuel weight, η is the installed thrust specific fuel

consumption, which varies with airspeed, altitude, type of engine,
and throttle conditions, and it is given by

η � �a� bMa�
������������������������������
η0∕�1� cM2

a�
q

(26)

whereMa is theMach number and a, b, c are constants depending on
the engine type. In Eq. (26), η0 � η0�z;Ma� varies with altitude and
Mach number and can be determined from lookup data tables [26].
The fuel consumptionmodels for other types of jet engines are similar
to Eqs. (25) and (26) but with different parameters.
With the above model the fuel consumption during the landing

phase can be estimated by

Jf �
Z
tf

t0

− _f�t� dt �
Z
tf

t0

η�t�T�t� dt (27)

From Eq. (27) it is clear that the minimum-fuel problem is equivalent
to the minimization of the weighted thrust history, where the weight
η�t� is given in Eq. (26). The solution to this problem requires the use
of purely numerical techniques. To avoid this difficulty this paper
seeks to minimize, instead, the total energy (mechanical work)
required to fly along the path, which is given by

Jw �
Z
tf

t0

v�t�T�t� dt �
Z
sf

s0

T�s� ds (28)
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As demonstrated in [27] the optimal speed profile of the minimum-
fuel optimization problem contains singular arcs on which most of
the fuel savings is achieved. It was observed in our numerical
studies that the airspeed changes slowly along these singular arcs,
in which case the singular arcs of the fuel-optimal problem can be
approximated by those of the energy-optimal problem. As a result,
the minimization of the energy cost function (28) is expected to
provide a reasonably good approximation to the fuel optimization
problem (27). This is verified by the numerical results in Sec. VIII.
Henceforth, this paper focuses on minimizing Eq. (28).
During the landing process the change of mass due to fuel

consumption is usually negligiblewhen compared to the totalmass of
the aircraft. Hence, the effect of mass change on the specific kinetic
energy dynamics in Eq. (18) can be neglected, and it is assumed that
m is constant during the landing phase. The validity of such an
assumption is justified in [27], which reported that the mass change
has little influence on the fuel-optimal trajectory during the climb and
descent phases. It needs to be noted, however, that this assumption
would be invalid during the long cruise phase [28].
To account for the fixed final time the flight time t is treated as a

state variable in an augmented system with the additional differential
equation

t 0�s� � 1������������
2E�s�

p
With the above assumptions the minimum-energy aircraft path-
tracking problem with fixed TOA can be formulated as an optimal
control problem involving two differential equations, two algebraic
constraints, four boundary conditions, and two control constraints, as
follows.
Problem 1 (Minimum energy path-tracking problem with fixed

TOA) Consider the following optimal control problem in Lagrange
form:

min
T

Z
sf

s0

T�s� ds (29)

subject to E 0�s� � T�s�
m

−D�E�s�; s� − g sin γ�s� (30)

t 0�s� � 1������������
2E�s�

p (31)

E�s� − �gw�s� ≤ 0 (32)

g
w
�s� − E�s� ≤ 0 (33)

E�s0� � v20∕2 (34)

E�sf� � v2f∕2 (35)

Tmin�s� ≤ T�s� ≤ Tmax�s� (36)

t�s0� � 0 (37)

t�sf� � tf (38)

Throughout this work it is assumed that the optimal solution to
Problem 1 exists. In the rest of this paper, it will be shown that there

exists a unique feasible solution, which satisfies all optimality
conditions and constraints, hence this solution must be optimal.

IV. Optimality Conditions

This section focuses on the simple case of Problem1when the state
constraints are not active. For this case, the optimal control, as well as
the switching structure, is derived based on the optimality conditions.
Because the optimal control may contain singular arcs the
generalized Legendre–Clebsch condition [29,30] is also checked to
verify the optimality of the singular arcs.

A. Optimal Control Formulation

Consider first the case when the state constraints (32) and (33) are
inactive. The Hamiltonian for Problem 1 is given by

H�E; t; λE; λt; T; s� � T � λE

�
T

m
−D�E; s� − g sin γ�s�

�
� λt������

2E
p

�
�
1� λE

m

�
T − λE�D�E; s� � g sin γ�s�� � λt������

2E
p

where λE and λt are the costates corresponding to the dynamics for E
and t, respectively. The costate dynamics are given by

λ 0E � −
∂H
∂E
� λE

∂D
∂E
� 1

2
���
2
p E−3∕2λt (39)

λ 0t � −
∂H
∂t
� 0 (40)

Therefore, the costate λt is constant. The switching function is given
by

∂H
∂T
� 1� λE

m
(41)

By Pontryagin’s maximum principal (PMP) the extremal control is
given by

T �

8<
:
Tmax; 1� λE∕m < 0;
~T; 1� λE∕m � 0;

Tmin; 1� λE∕m > 0

(42)

where ~T is the singular control.
Suppose that the optimal specific kinetic energy E� contains a

singular arc represented by ~E, for example, E��s� � ~E�s� on some
subinterval of �s0; sf �. For notational convenience, let us denote

∂k ~D
∂Ek
� ∂kD

∂Ek

����
� ~E�s�;s�

; k � 1; 2

and let λ�t be the optimal costate value, then the switching function
(41) is identically zero along the singular arc. Hence, the derivative of
the switching functionmust also vanish on singular arcs,which yields

d

ds

�
∂H
∂T

�
� 1

m

�
λE

∂ ~D

∂E
� 1

2
���
2
p ~E−3∕2λt

�

� −
∂ ~D

∂E
� 1

2
���
2
p
m

~E−3∕2λt ≡ 0 (43)

from which the singular specific kinetic energy profile can be
computed. For notational convenience, Eq. (43) is rewritten as

P� ~E�s�; s� � λ�t (44)

where
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P�E; s� � 2
���
2
p
mE3∕2 ∂D

∂E

����
�E;s�

(45)

for any E > 0.
Proposition IV.1: Let E��s� be the optimal specific kinetic energy

profile for Problem 1 with corresponding optimal costate value λ�t .
Let the function ~E∶ �s0; sf � → R� be defined via the equation
P� ~E�s�; s� � λ�t for all s ∈ �s0; sf �. Suppose that the following is true
for all E ∈ �v2min∕2; v2max∕2� and s ∈ �s0; sf �:

∂2D�E; s�
∂E2

� 3

2E

∂D�E; s�
∂E

> 0 (46)

Then, for all s ∈ �s0; sf �, P�E��s�; s� > λ�t if and only if
E��s� > ~E�s�, and P�E��s�; s� < λ�t if and only if E��s� < ~E�s�.
Proof: Note that

∂
∂E

�
E3∕2 ∂D�E; s�

∂E

�
� E3∕2 ∂

2D�E; s�
∂E2

� 3

2
E1∕2 ∂D�E; s�

∂E

� E3∕2
�
∂2D�E; s�

∂E2
� 3

2E

∂D�E; s�
∂E

�
> 0

Therefore,E3∕2∂D�E; s�∕∂E increasesmonotonically with respect to
E for any fixed s ∈ �s0; sf �. The following expression holds by the
definition of P and λ�t :

P�E��s�; s� − λ�t � 2
���
2
p
m

�
E�3∕2�s� ∂D

∂E

����
�E��s�;s�

− ~E3∕2�s� ∂
~D

∂E

�

and the claim of this proposition can be easily verified using the
monotonicity of the function E3∕2∂D�E; s�∕∂E with respect to E.
With E��s�, λ�t , and ~E�s� as in Proposition IV.1, the singular

control ~T can be obtained by

~T�s� � m� ~E 0�s� �D� ~E�s�; s� � g sin γ�s�� (47)

It is clear that if E��s� contains a singular arc on �sa; sb� ⊆ �s0; sf �,
then the function ~E�s� defined in Proposition IV.1 satisfies ~E�s� �
E��s� for all s ∈ �sa; sb�.
Suppose now that there exists �sa; sb� ⊆ �s0; sf � such that

E��s� � ~E�s�, but ~T�s� > Tmax or ~T�s� < Tmin. It follows that the
corresponding optimal thrust profile cannot contain any singular
thrust subarc. Therefore, in the sequel it is assumed that ~T�s� ∈
�Tmin; Tmax� for all s ∈ �sa; sb�. This assumption is valid as long as
the aircraft is in a normal flight condition, and the path is smooth
enough, in the sense that the path angle and the heading angle change
slowly along the path.
According to the PMP when the state constraints (32) and (33)

are not active the optimal control is composed of extremals
corresponding to Tmax, Tmin, and ~T. The singular specific kinetic
energy ~E and the corresponding thrust profile ~T are not readily
known, because they depend on the unknown parameter λ�t , which
further depends on the final time tf. Furthermore, although there is a
finite number of extremal controls, the possible combinations of the
resulting extremals can be large. Hence, it is necessary to identify
the switching structure for the different extremals along with the
associated switching times in order to obtain the optimal solution.

B. Optimality of the Singular Arcs

An admissible singular control ~T�s�, in addition to the constraint
Tmin ≤ ~T�s� ≤ Tmax, must satisfy the generalized Legendre–Clebsch
condition [30]

∂
∂T

�
d2

ds2

�
∂H
∂T

��
≤ 0 (48)

if it is to be part of the optimal trajectory. Differentiating the
Hamiltonian with respect to s one obtains

d2

ds2

�
∂H
∂T

�
� λ 0E�s�

m

∂ ~D

∂E
�
�
λE�s�
m

∂2 ~D

∂E2
−

3

4
���
2
p
m

~E−5∕2λ�t

�
~E 0�s�

Using Eq. (30) and the fact that λE�s� � −m along the singular arc it
follows that

∂
∂T

�
d2

ds2

�
∂H
∂T

��
� −

1

m

�
∂2 ~D

∂E2
� 3

4
���
2
p
m

~E−5∕2λ�t

�
(49)

Since ~E�s� satisfies Eq. (44) it follows that

λ�t � 2
���
2
p
m ~E3∕2 ∂ ~D

∂E
(50)

By eliminating λ�t fromEq. (49) and by usingEq. (44), Eq. (49) can be
written as

∂
∂T

�
d2

ds2

�
∂H
∂T

��
� −

∂2 ~D

∂E2
−

3

2 ~E

∂ ~D

∂E
(51)

which is negative as long as Eq. (46) holds. Hence, along the singular
arcs, the generalized Legendre–Clebsch condition is satisfied when
Eq. (46) is valid, in which case these arcs can be part of the optimal
trajectory.
Remark 1: Before applying the energy-optimal algorithm

proposed later in this paper it is necessary to first verify condition
(46), because this condition is essential for Proposition VI.1 and the
optimality of the singular arc, which form the basis for the subsequent
analysis. In particular, when the airspeed of the aircraft is low
(typically, <0.6 Mach), the aerodynamic parameters CD0

and K are
approximately constant. In such a case, it can be verified analytically
that Eq. (46) holds. When the Mach number of the aircraft is close
to 1 the Mach number dependence of CD0

and K usually cannot
be neglected, and Eq. (46) can only be verified numerically, in
general.

C. Optimal Switching Structure Involving Singular Arcs

When solving an optimal control problem with singular arcs, and
because the optimal switching structure is not known in advance, it is
a common practice to assume initially a certain fixed switching
structure according to which the switching times are computed.
This approach, although straightforward, may lead to a suboptimal
solution. As shown in the subsequent analysis the switching structure
of the optimal solution to Problem 1 can be uniquely determined
owing to the special properties of this problem. The following
theorem is key regarding the switching structure of the solution to
Problem 1.
Theorem IV.1: Let E��s� be the optimal specific kinetic energy

profile for Problem 1, let the optimal costate valueλ�t , and let
~E∶ �s0; sf� → R� be the function defined by P� ~E�s�; s� � λ�t .
Consider a subinterval �sa; sb� ⊂ �s0; sf � such that g

w
�s� < E��s� <

�gw�s� for all s ∈ �sa; sb�. If E��s� < ~E�s�, (respectively,
E��s� > ~E�s�) for all s ∈ �sa; sb� ⊂ �s0; sf �, then the corresponding
optimal control T��s� does not contain any switching from Tmin to
Tmax, (respectively, Tmax to Tmin) on �sa; sb�.
Proof: Assume that E��s� < ~E�s� for all s ∈ �sa; sb�, and assume

T��s� � Tmin on �sa; τ� and T��s� � Tmax on �τ; sb�, where τ ∈
�sa; sb� is the switching point from Tmin to Tmax. Because the state
constraints are not saturated on �sa; sb� the optimal costate λ�E
is continuous on �sa; sb�. Because T��s� � Tmin on �sa; τ�, and
T��s� � Tmax on �τ; sb�, it follows that 1� λ�E�s�∕m > 0 on �sa; τ�,
and 1� λ�E�s�∕m < 0 on �τ; sb� according to Eq. (42), and λ�E�τ� �
−m by the continuity of λ�E.
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According to Eq. (39) the derivative of the costate at τ is given by

λ�E
0�τ� � λ�E�τ�

∂D�E�; τ�
∂E

� 1

2
���
2
p E�−3∕2�τ�λ�t

� −m
∂D�E�; τ�

∂E
� 1

2
���
2
p E�−3∕2�τ�λ�t

� −
1

2
���
2
p �E��−3∕2�τ��P�E��τ�; τ� − λ�t �

where Eqs. (44) and (45) are used for the derivation. Following
Proposition IV.1, λ�E

0�τ� > 0 because the above expression is positive
when E��τ� < ~E�τ�. Because ∂D∕∂E is continuous with respect to s,
λ�E
0�s� is also continuous with respect to s. Hence, λ�E 0�s� > 0 is in a

neighborhood of τ. However, this implies that given 1� λ�E�s�∕m >
0 on �sa; τ�, there exists ε > 0 such that 1� λ�E�s�∕m > 0 for all
s ∈ �τ; ε� ⊆ �τ; sb�, which is a contradiction to the fact that 1�
λ�E�s�∕m < 0 on �τ; sb�. Therefore, if E��s� < ~E�s� on �sa; sb�, the
optimal thrust contains no switch from Tmin to Tmax on �sa; sb�. The
proof for the case E��s� > ~E�s� is similar, and hence it is omitted.
Theorem IV.1 narrows down the possible switching combinations

of the optimal control T� for Problem 1. The valid switching
structures above and below ~E are illustrated in Fig. 1. In contrast, the
switching structures in Fig. 2 are not optimal.
Given the optimal costate value λ�t , ~E�s� can be computed from the

expression P� ~E�s�; s� � λ�t for all s ∈ �s0; sf �. If the optimal specific
kinetic energy E� contains a singular arc on a subinterval then
E� � ~E on this subinterval. The optimal specific kinetic energy E�

can be obtained by first identifying the segments of ~E and then
choosing the optimal structure and the corresponding switching times.

V. State Constraints and the Relaxed Problem

If the state constraints (32) and (33) in Problem 1 are not active
along the optimal solution the optimal control input can be easily
determined based on the results in Sec. IV. However, in general, the
optimal solution to Problem 1 contains active state constraints.
Specifically, when either the state constraint (32) or the constraint
(33) is active along a certain part of the optimal specific kinetic energy
solution E� this part of E� is called a state constrained arc. The
corresponding control is referred to as a state constrained control.
Hence, when the optimal solution contains state constrained arcs, it is

necessary to identify the intervals on which state constraints (32) and
(33) are active, which is usually not a straightforward task.
In this section, a relaxed version of Problem 1 is formulated

by partially relaxing the state constraints (32) and (33) on certain
intervals. The optimal solution to this relaxed problem can be
determined in an semi-analytic way and will function as a key step in
our proof regarding the optimal solution to the original Problem 1 in
Sec. VI. B.
Before introducing the relaxed problem some additional notation

needs to be presented as below. For any subset ΓU ⊆ �s0; sf � define

�gΓU �s� �
�
�gw�s�; s ∈ ΓU;
M; s ∈ �s0; sf � \ ΓU

whereM > 0 is a number large enough such thatE�s� < M is always
satisfied on �s0; sf� by any feasible specific kinetic energy profile
E�s�. By choosing a subset ΓU of interest and enforcing the state
constraint E�s� ≤ �gΓU �s� for all s ∈ �s0; sf � it can be ensured that the
optimal solution E� satisfies E��s� ≤ gw�s� on ΓU while remaining
unconstrained on �s0; sf � \ ΓU. Similarly, also define

gΓL
�s� �

�
g
w
�s�; s ∈ ΓL;
0; s ∈ �s0; sf � \ ΓL

By enforcing the constraint E�s� ≥ gΓL�s� instead of the constraint
E�s� ≥ g

w
�s�, the later constraint is relaxed on �s0; sf � \ ΓL. Next, a

modified version for Problem 1 is introduced by relaxing the original
state constraints (32) and (33) on certain subintervals.
Problem 2 (Minimum-energy path-tracking problem with fixed

TOA) Let ΓU, ΓL ⊆ �s0; sf�. Minimize the energy cost (29) subject to
constraints (30), (31), (34), and (35)–(38), and the state bounds

E�s� − �gΓU �s� ≤ 0 (52)

gΓL
�s� − E�s� ≤ 0 (53)

for all s ∈ �s0; sf�.
Similarly, one can also form the relaxed minimum-time and the

relaxedmaximum-time path-tracking problemswith state constraints
(52) and (53) instead of (32) and (33). For the sake of brevity the
formal definitions for these problems are not introduced here,
because they are self-evident from the definition of Problem 2. Note
that when ΓU � ΓL � �s0; sf � then Problem 2 is identical to
Problem 1, and the same is true for theminimum-time andmaximum-
time problems as well.
Because the unconstrained solution to an optimal control problem

has the same or better optimality characteristics than a constrained
one a constraint is, in general, not active unless it is violated by the
optimal solution of the unconstrained problem.‡ This property is
stated formally by the next lemma.

LemmaV.1:Consider the following two optimal control problems:

Problem A Problem B
min
u
J�x; u�

s:t: _x�t� � f�x�t�; u�t��;
g1�x�t�; u�t�� ≤ 0;
g2�x�t�; u�t�� ≤ 0;
t ∈ �t0; tf �;
x�t0� � x0; x�tf� � xf

min
u
J�x; u�

s:t: _x�t� � f�x�t�; u�t��;
g1�x�t�; u�t�� ≤ 0;
t ∈ �t0; tf�
x�t0� � x0; x�tf� � xf

Let x�A be the optimal solution and u�A be the corresponding optimal
control to Problem A and let x�B and u�B be the optimal solution and
corresponding optimal control to Problem B. Then the following
statements are true:

Fig. 1 Optimal switching structures.

Fig. 2 Nonoptimal switching structures.

‡The only exception is the trivial case when along the unconstrained
optimal solution certain constraints are active but not violated.
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1) If g2�x�B�t�; u�B�t�� ≤ 0 for all t ∈ �t0; tf � then J�x�B; u�B� �
J�x�A; u�A�. Furthermore, if either Problem A or Problem B has a
unique solution then x�A � x�B and u�A � u�B.
2) If ProblemB has a unique solution and g2�x�B�t�; u�B�t�� > 0 for

some t ∈ �t0; tf � then J�x�A; u�A� > J�x�B; u�B�.
Proof of Lemma V.1: Consider the first statement. Because
�x�A; u�A� is the optimal solution to Problem A and �x�B; u�B� is a
feasible solution to Problem A, it follows that J�x�A; u�A� ≤ J�x�B; u�B�
by the optimality of �x�A; u�A�. On the other hand �x�A; u�A� satisfies all
constraints in ProblemB, so �x�A; u�A� is a feasible solution to Problem
B.Consequently, J�x�A; u�A� ≥ J�x�B; u�B� by the optimality of �x�B; u�B�
for Problem B. Therefore, J�x�B; u�B� � J�x�A; u�A�. It follows that
x�A � x�B and u�A � u�B, otherwise both Problem A and Problem B
have nonunique solutions.
Now proceed to the second statement. As in the preceding proof,

because �x�A; u�A� is a feasible solution to Problem B, it follows that
J�x�A; u�A� ≥ J�x�B; u�B� by the optimality of �x�B; u�B� for Problem B.
Because g2�x�B�t�; u�B�t�� > 0 for some t ∈ �t0; tf �, and g2�x�A�t�;
u�A�t�� ≤ 0 for all t ∈ �t0; tf �, it follows that �x�B; u�B� and �x�A; u�A� are
not identical. By the uniqueness of �x�B; u�B� it follows that
J�x�A; u�A� > J�x�B; u�B�.
According to Lemma V.1 if the optimal solution to the relaxed

Problem2does not violate the state constraints (32) and (33), then it is
also the optimal solution to Problem 1. This argument is used in
Sec. VI.B below to show the main result of this paper.

VI. Optimal Switching Structure Involving
State-Constrained Arcs

A. Solution to the Relaxed Problem

The analysis in Sec. IV is valid when the state constraints (32) and
(33) are inactive. This section considers the case when the state
constraint (32) or (33) is active on part of the optimal trajectory. If the
upper state constraint is saturated then T� � �Tw, which is the thrust
required to maintain E� � �gw. Similarly, if the lower state constraint
is saturated then T� � Tw, which is the thrust required to maintain
E� � g

w
. Clearly, for feasibility, it is required that Tw, �Tw ∈

�Tmin; Tmax� on the corresponding domain for feasibility. For an
arbitrary geometric path the optimal control T� for the minimum-
energy path-following problem is composed of bang–bang control
Tmin and Tmax, singular control ~T, and state constrained control �Tw
and Tw arcs.
The minimum-time path-following problem has been solved in

[22]. This method can be modified to provide the maximum flight
time along a givengeometric path. The details are omitted for the sake
of brevity. The maximum flight time scheme corresponds to the
pointwise minimization of the specific kinetic energy along the path.
This is the opposite of the minimum-time problem, which seeks to
maximize pointwise the specific kinetic energy along the path. Note
that, for any given path, an upper bound of the flight time exists,
because the speed of a fixed-wing aircraft must be higher than a
certain value to avoid stall.
Lemma VI.1: Let E�U�s� be the minimum-time path-following

specific kinetic energy profile with flight time tmin, and let E
�
L�s� be

the maximum-time path-following specific kinetic energy profile
with flight time tmax subject to the same boundary conditions and
state constraints as in Eqs. (30)–(36). Let E��s� be the optimal
specific kinetic energy profile for the minimum-energy path-
following problem with fixed flight time tf. Then the following
inequalities hold

tmin ≤ tf ≤ tmax (54)

E�L�s� ≤ E��s� ≤ E�U�s�; s ∈ �s0; sf � (55)

Proof: The inequalities in Eq. (54) involving tmin and tmax are
obvious. To show the inequalities in Eq. (55), suppose, without loss
of generality, that E��sa� > E�U�sa� for some sa ∈ �s0; sf �. Because
both E� and E�U are feasible specific kinetic energy profiles �E �
maxfE�; E�Ug is also a feasible specific kinetic energy profile, for

example, �E�s� satisfies the boundary conditions and state constraints
and can be trackedwith the available control inputs. Then �E ≥ E�U on
�s0; sf � and �E�s� > E�U�s� on at least one interval containing sa,
following the continuity of E�. Hence, for �E the total flight time
would be smaller than tmin, which is a contradiction, because tmin is
the minimum-time solution. The inequality E�L�s� ≤ E��s� can be
proved in a similar manner.
According to Lemma VI.1 the fixed-time energy-optimal specific

kinetic energy E� is bounded by the minimum-time solution E�U and
the maximum-time solution E�L. Furthermore, based on Theo-
rem IV.1, it can be shown that E��s� � E�U�s� or E��s� � E�L�s� on
certain subintervals. This property of E� is characterized by the
following lemma.
Lemma VI.2: Let E��s� be the optimal specific kinetic energy

solution to Problem 1, and let ~E be defined on �s0; sf� by
P� ~E�s�; s� � λ�t , where λ�t is the corresponding optimal costate
value. Let E�U�s� and E�L�s� be the optimal specific kinetic energy
solutions to the minimum-time and maximum-time path-tracking
problems, respectively. Furthermore, let

ΓU � fsjE�U�s� < ~E�s�; s ∈ �s0; sf �g (56)

ΓL � fsjE�L�s� > ~E�s�; s ∈ �s0; sf �g (57)

Suppose that E��s� > g
w
�s� for all s ∈ �s0; sf � \ ΓL, and E��s� <

�gw�s� for all s ∈ �s0; sf� \ ΓU, then E��s� � E�U�s� for all s ∈ ΓU,
and E��s� � E�L�s� for all s ∈ ΓL.
Proof: See the Appendix.
Lemma VI.2, along with Lemma V.1, is used to characterize the

state constrained arcs in the optimal specific kinetic energy profile
E��s�. Specifically, given the state constraints, first compute the
optimal solution of a certain relaxed problem to identify the
state constrained arcs. Subsequently, the solution of the relaxed
(nonconstrained) problem can be used to construct the solution of the
original problem with state constraints.
In general, the minimum-time andmaximum-time solutions of the

relaxed problems are different from the corresponding solutions of
the original (nonrelaxed) problem. However, as shown by the
following proposition, by choosing carefully where the constraints
are relaxed, the minimum-time and maximum-time solutions do not
change on certain subintervals.
Proposition VI.1: Let ~E be defined on �s0; sf � by P� ~E�s�; s� � λt

for a certain costate value λt such that ~T ∈ �Tmin; Tmax�, where ~T is
given by Eq. (47). Let ΓU and ΓL as in Eqs. (56) and (57), where
E�U�s� and E�L�s� are the specific kinetic energy solutions to the
minimum-time and maximum-time path-tracking problems, respec-
tively, with constraints (32) and (33). Let E�Ur �s� and E

�
Lr
�s� be the

specific kinetic energy solutions to the relaxed minimum-time and
maximum-time path-tracking problems, respectively, with con-
straints E�s� ≤ �gΓU �s� and E�s� ≥ gΓL �s� instead of Eqs. (32) and
(33). Then E�U�s� � E�Ur�s� for all s ∈ ΓU, and E�L�s� � E�Lr�s� for
all s ∈ ΓL.
Proof: See the Appendix.

B. Optimal Specific Kinetic Energy Solution

In this section, the main result of the paper is provided. Specif-
ically, the optimal solution to Problem 1 is given by Theorem VI.1
below.Asmentioned earlier, the proof of the theorem takes advantage
of the optimal solution of the relaxed Problem 2 given in the
preceding section. First, the optimal solution to the relaxedProblem 2
is characterized with the state constraints relaxed on some carefully
selected subintervals. Then it is shown that this solution satisfies
the state constraints in the original Problem 1, hence it is also the
optimal solution to Problem 1. It is interesting to note that although
the switching structure of the optimal solution to Problem 1 is
complicated the expression of the optimal specific kinetic energy E�

can be written in a very succinct form in Eq. (58) as a combination
of the minimum-time solution, the maximum-time solution, and
energy-saving singular arcs. The precise proof is rather involved and,
for the benefit of the interested reader, is given in the Appendix.
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Theorem VI.1: Suppose there exists a real number λt, and a
function ~E given by P� ~E�s�; s� � λt for all s ∈ �s0; sf � such that the
specific kinetic energy E� given by

E��s� �

8<
:
E�L�s�; s ∈ ΓL;
~E�s�; s ∈ �s0; sf � \ �ΓU ∪ ΓL�;
E�U�s�; s ∈ ΓU

(58)

satisfies the desired TOA, where ΓU � fsjE�U�s� < ~E�s�;
s ∈ �s0; sf �g, and ΓL � fsjE�L�s� > ~E�s�; s ∈ �s0; sf�g. Then E� is
the optimal solution to Problem 1.
Proof: See the Appendix.

VII. Energy-Optimal Path-Tracking Algorithm

Theorem VI.1 characterizes the switching structure of the optimal
solution to the aircraft energy-optimal path-tracking problem.
Although E�U can be computed using the algorithm proposed in [22],
and E�L can be computed in a similar manner, the optimal costate
value λ�t is unknown. As a result, one is not readily able to choose the
correct value of ~E�s� for each s ∈ �s0; sf� to construct the optimal
specific kinetic energy according to Eq. (58). In this section a
numerical algorithm is presented for solving Problem 1 by
identifying the optimal costate value λ�t . This allows the computation
of the associated function ~E�s� from Eq. (44) and, subsequently, the
optimal solutionE��s� from Eq. (58). To identify the constant λ�t and
the associated singular arcs for a specific TOA it is necessary to
search among a family of extremals associated with the prescribed
geometric path for the correct value of λ�t .
The algorithm for identifying the minimum-energy path-tracking

control is described in the Main Algorithm.
Remark 2: If the first derivative of the optimal specific kinetic

energy E� as given by the Main Algorithm does not exist at some
point s ∈ �s0; sf� then the value of the optimal thrust T� is not well
defined at s from Eq. (18). These are exactly the points where the
derivative of E� is discontinuous. The optimal thrust profile T� is,
therefore, discontinuous at those points. The limiting left/right values
at these points of discontinuity of the thrust can be computed by the
corresponding left/right limits of E� 0, which exist because E� is a
piecewise smooth function.
Step 4 of the Main Algorithm requires the computation of the

optimal speed solution and the TOA for a specific extremal with
costate value λ. This can be achieved using Algorithm 1.
According to the structure of the optimal specific energy profile in

Eq. (58) it can be easily proved that the travel time τf of the energy-
optimal solution decreasesmonotonicallywith increasing λt, because
~E�s� increases monotonically with respect to λt for all s ∈ �s0; sf �
according to the definition of ~E as in Eq. (44). In the Newton–
Raphson algorithm with adjusted bounds used in step 4 of the Main
Algorithm a bisection step is taken whenever the Newton–Raphson
algorithm would take the solution outside the prescribed bounds.
Because a bisection method is guaranteed to converge given the
monotonicity property of the problem such a hybrid method is also
guaranteed to converge, and theNewton–Raphson steps can speed up
the convergence.

VIII. Numerical Examples

Next, the proposed energy-optimal tracking algorithm is validated
using a three-dimensional landing trajectory, as shown in Fig. 3. The
initial position of the aircraft is �−135;−92; 6� km and the final
position is �0; 0; 0� km. The initial speed is v0 � 220 m∕s, and the
final speed is vf � 95 m∕s. Both the initial and final path angles are
0 deg. The initial heading angle is 0 deg, and the final heading angle is
−20 deg. The horizontal projection of the trajectory contains two
turning maneuvers, as shown in Fig. 4.
The speed and control bounds considered during the time

parameterization process are Ma ≤ 0.8, where Ma is the Mach
number, CLmin

� −0.47, CLmax
� 1.73, ϕmin � −15 deg, ϕmax �

15 deg, Tmin � 0. The wing surface area S � 510.97 m2, the mass
m � 288; 938 kg. These data correspond approximately to a Boeing

747 aircraft. The aerodynamic parameters K and CD0
are taken from

[32] and stored in lookup tables. It has been verified numerically that
Eq. (46) hold for any subsonic flight along the path. The dependence
of the maximum thrust Tmax�N� on the altitude z and Mach number
Ma is taken into account by the following formula

Tmax�Ma; z� � �−0.007236z� 146.1968�
× �e−1.97967Ma�8.23 � 2133�N

which fits approximately to the JT9D-7F engine maximum thrust
data for a total of four engines.
The path is processed using the algorithm introduced in the

preceding section with different TOA requirements. Figures 5 and 6
show the optimal speed profiles for theminimum-energy aircraft path
tracking for several TOAvalues. It can be seen from these figures that
with different TOAvalues tf different parts of theminimum-time and/
or the maximum-time speed profile can be involved in the minimum-
energy solution together with the corresponding singular arcs.
Figures 7 and 8 are the minimum-energy control histories for tf �
1300 s and tf � 1600 s, respectively. In these figures, the throttle is
the ratio of the actual thrust to the maximum thrust Tmax. It is clear
that all solutions satisfy the speed and control constraints along the
path.
To evaluate the fuel economyof the energy-optimal solution a fuel-

optimal control problem was solved using a numerical optimal
control approach with the fuel consumption model (27) as the cost
function. The constraints of the fuel-optimal control problem are

−100

−50

0
−100

−50

0

0

1

2

3

4

5

6

Fig. 3 Three-dimensional geometric trajectory.
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Fig. 4 X-y plane projection of the geometric trajectory.
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identical to those of Problem1.The fuel-optimal control problemwas
converted into a nonlinear programming problem via direct
transcription [11] and solved using the sparse nonlinear optimization
software SNOPT [33]. The DENsity function-based Mesh
Refinement Algorithm (DENMRA) in [34] was used to generate a

mesh such that the state bounds (32) and (33) can be approximated
more accurately with a limited number of grid points. The parameters
for the computation of η0 in Eq. (26) were stored in a lookup table and
were provided to the nonlinear optimization solver.
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Fig. 5 Energy-optimal speed profiles with different TOA, path

coordinate domain.
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Fig. 6 Energy-optimal speed profiles with different TOA, time domain.

0 200 400 600 800 1000 1200
0

0.5

1

1.5

0 200 400 600 800 1000 1200

−10

0

10

0 200 400 600 800 1000 1200
0

0.5

1

Fig. 7 Energy-optimal control histories with tf � 1300 s.
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Fig. 8 Energy-optimal control histories with tf � 1600 s.
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Fig. 9 Comparison of fuel-optimal and energy-optimal speed profiles,

tf � 1300 s and tf � 1400 s.
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Fig. 10 Comparison of fuel-optimal and energy-optimal speed profiles,

tf � 1500 s and tf � 1600 s.
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The same four cases shown in Fig. 5 (tf � 1300 s, 1400 s, 1500 s,
1600 s) were solved using the numerical optimal control approach
for the minimum-fuel path-tracking problem, and the results were
compared to those given by the energy-optimal path-tracking
algorithm. The comparison of speed profiles are shown in Figs. 9 and
10. It is clear from these figures that the energy-optimal solutions are
very close to the minimum-fuel solutions. Note that the singular arcs
in the minimum-fuel problem cause numerical issues (oscillations
along the singular arcs in Figs. 9 and 10). This is a well-known
phenomenon when computing singular arcs using direct trajectory
optimization methods.
To evaluate the effectiveness of the proposed energy-optimal

operation method in terms of actual fuel-saving the fuel consump-
tions of the energy-optimal results are simulated using the same fuel
consumptionmodel (27) as used by the numerical approach. The fuel
consumption simulation results are compared with the fuel-optimal
numerical optimization results in Table 1. As shown in the table the
simulated fuel consumption of the proposed method matches very
well with the numerical optimization results.
The most appealing property of the proposed algorithm is its

numerical efficiency. The computation time when using the standard
numerical optimization approach is much longer than the one
required by the proposed energy-optimal path-tracking algorithm: a
MATLAB implementation of the energy-optimal path-tracking
control algorithm finds the optimal solution in 3–6 s, while the
nonlinear programming solver takes at least 5 min (and for some
cases more than 20 min) to find a convergent fuel-optimal solution.
The numerical efficiency of the algorithm allows the use of the
proposed approach for computing good initial guesses for more
accurate optimal trajectory generation solvers. In such a scenario, the
semi-analytic solution provided by our approach can be further
refined using more realistic, higher-fidelity aircraft models
incorporating all effects (such as winds) neglected here, if needed.
Previous results have shown a great increase in terms of numerical
robustness and convergence of such trajectory generation solvers
using this approach [21,24].

IX. Conclusions

The method presented in this paper computes the speed profile for
an aircraft to follow a given three-dimensional geometric path with
fixed time-of-arrival (TOA) while minimizing the energy along this
path. It is shown that this problem accurately captures the fuel-
optimal solution along a given path with fixed TOA. Such fuel-
optimal solutions are useful for air traffic control (ATC) problems
during the terminal (landing) phase. To generate the optimal solution
the optimal switching structure of the problem is analyzed using the
necessary conditions of optimality. The switching structure varies
depending on the given TOA. However, for a given path and a fixed
TOA, the structure is uniquely determined. It is proved that the
energy-optimal solution is a combination of the minimum-time
solution, the maximum-time solution, and energy-saving singular
arcs. As verified by the numerical optimization results this method is
computationally efficient and can be applied in real time for
improving the fuel efficiency of airline scheduling and terminal ATC
phase operations.
The major limitations of the proposed approach mainly hinge on

simplifying modeling assumptions imposed on the problem to yield
an analytically tractable solution. In particular, the effect ofwinds can
have a significant impact on the solution and is not accounted for in

the current formulation. A much more realistic model that accounts
for both crosswinds and tail/headwinds can only be dealt with via
purely numerical methods, using the no-wind solution as an initial
guess. If, on the other hand, the effect of crosswinds can be neglected,
the proposed approach can be adjusted to account for the effect of tail/
headwinds whose main effect is the change of the estimated TOA.
For instance, it can be shown that headwind or tailwind can be taken
into consideration as long as lower and upper bounds �gw and g

w
can

be computed and that the condition (46) is satisfied. Although �gw
can be easily obtained analytically g

w
can only be computed

numerically (alternatively, a conservative estimate of g
w
is possible

analytically). After these bounds have been computed the minimum-
time and maximum-time solutions can be obtained, and, hence the
energy-optimal solution can be constructed. A more comprehensive
study of thewind effects, however, requires a separate thorough study
and, thus, is left for future investigation.

Appendix: Proofs of Key Results

Proof of LemmaVI.2. First, it will be shown that E��s� � E�U�s�
for all s ∈ ΓU. LetT�U andT� be the thrust control associatedwithE�U
and E�, respectively. From Lemma VI.1 it follows that E��s� ≤
E�U�s� for all s ∈ �s0; sf�. Assume, ad absurdum, that there exists
τ ∈ ΓU such that E��τ� < E�U�τ�. Then, by the definition of ΓU,
E��τ� < ~E�τ�. Let q � inffsjE��s� � E�U�s�; s ∈ �τ; sf �g, because
E��sf� � E�U�sf� q is well defined. Similarly, let p � supfsjE��s�
� E�U�s�; s ∈ �s0; τ�g, and because E��s0� � E�U�s0� p is also well
defined. Note that E��s� < E�U�s� for all s ∈ �p; q� by the fact
E��τ� < E�U�τ�, the definitions of p, q, and the continuity of E� and
E�U (see Fig. A1). Because E��s� < E�U�s� ≤ �gw�s� for all s ∈ �p; q�
the state constraint (32) is inactive along E� for s ∈ �p; q�. Hence,
T��s� can only take thevalues ofTmax,Tmin, ~T�s�, orTw�s� on �p; q�.
Because E��τ� < ~E�τ� it is true that T��τ� ≠ ~T�τ�. Also, because
E��τ� < ~E�τ� it follows that τ ∈= ΓL, and, therefore, E��τ� > gw�τ�,
and it follows that either T��τ� � Tmax or T

��τ� � Tmin. Next, it will
be shown that neither of these two options is possible.
First, consider the case T��τ� � Tmin. It is claimed that E��s� <

~E�s� for all s ∈ �τ; q�. To see this, assume thatE��s� ≥ ~E�s� for some
s ∈ �τ; q�. It then follows from the fact E��τ� < ~E�τ� and the
continuity of E� and ~E that the equation E��γ� � ~E�γ� has at least
one solution on �τ; q� (see Fig. A1). Let γ � inffsjE��s� �
~E�s�; s ∈ �τ; q�g. It follows that E��γ� � ~E�γ� and E��s� < ~E�s� for
all s ∈ �τ; γ�. Therefore, �τ; γ� ⊆ �s0; sf � \ ΓL, and it is true that
E��s� > g

w
�s� for all s ∈ �τ; γ�. It follows that on �τ; γ� T��s� can

only take the values of Tmin and Tmax. Because E
��s� < ~E�s� for all

s ∈ �τ; γ� T��s� cannot switch from Tmin to Tmax according to
Theorem IV.1, and T��s� � Tmin for all s ∈ �τ; γ�. The trajectories
E��s� and E��s� on �τ; γ� can be computed starting from E��γ� �
~E�γ� at s � γ by integrating backward Eq. (30) with T��s� � Tmin

and ~T, respectively. Because Tmin ≤ ~T�s�, a straightforward
application of the Comparison Lemma yields that E��τ� ≥
~E�τ�, leading to a contradiction. Hence, E��s� < ~E�s� for all
s ∈ �τ; q�, and, thus, Tmin ≤ ~T�s� for all s ∈ �τ; q� according to
Theorem IV.1. The last statement implies, however, that one can
computeE��τ� andE�U�τ� on the interval �τ; q� starting at s � qwith
initial conditions E��q� � E�U�q� and integrating backward Eq. (30)

Table 1 Fuel consumption comparison

Fuel consumption, kg

tf (s) Numerical optimization Proposed method

1300 1809.2 1816.3
1400 1628.6 1632.9
1500 1612.0 1618.7
1600 1702.2 1704.8

Fig. A1 Illustration for the Proof of Lemma VI.2.
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using T��s� � Tmin and T�U�s�, respectively, for all s ∈ �τ; q�.
Because T�U�s� ≥ Tmin � T��s� an application of the Comparison
Lemma as before yields that E��τ� ≥ E�U�τ�, which contradicts the
assumption E��τ� < E�U�τ�.
Similarly, if T��τ� � Tmax, one can prove in a similar manner that

E��τ� < E�U�τ� is also impossible. Hence, there does not exist τ ∈ ΓU
such that E��τ� < E�U�τ�, and, thus, it must be true that E��s� �
E�U�s� on ΓU.
The proof for the other statement,E��s� � E�L�s� for all s ∈ ΓL, is

similar, hence, is omitted.
Proof of PropositionVI.1.Noting thatE�U�s� is a feasible solution

to the relaxedminimum-time problemone hasE�U�s� ≤ E�Ur�s� for all
s ∈ �s0; sf � by the time optimality of E�Ur . Similarly, E�L�s� ≥ E�Lr�s�
for all s ∈ �s0; sf �. Define

E�s� �
�
minfmaxfE�Ur�s�; E

�
U�s�g; ~E�s�g; s ∈ ΓU;

E�U�s�; s ∈ �s0; sf � \ ΓU
(A1)

By the definition of E�s� and ΓU, E�s� ≥ E�U�s� on �s0; sf �, and E�s�
is continuous. Furthermore, E�s0� � E�U�s0� � E0, E�sf� �
E�U�sf� � Ef, and gw�s� ≤ E�s� ≤ �gw�s� for all s ∈ �s0; sf �. Hence,
E�s� is a feasible solution to the minimum-time path-tracking
problem with constraints (32) and (33).
If there exist τ ∈ ΓU such that E�Ur�τ� > E

�
U�τ� then by the

definition of E�s�, E�τ� > E�U�τ�, and it follows from the continuity
of E and E�U that E�s� > E�U�s� in a neighborhood of τ. Hence,

Z
sf

s0

1������������
2E�s�

p ds <

Z
sf

s0

1���������������
2E�U�s�

p ds

which means that E�s� has a shorter final time thanE�U�s�, which is a
contradiction because E�U is the minimum-time solution. Therefore,
E�U�s� � E�Ur�s� for all s ∈ ΓU. Similarly, one can prove that
E�L�s� � E�Lr�s� for all s ∈ ΓL. The proof is omitted for the sake of
brevity.
Proof of Theorem VI.1. It can be easily verified that E�, as

defined by Eq. (58), satisfies the initial and final conditions, namely,
E��s0� � E0 and E��sf� � Ef. Consider now the relaxed energy-
optimal Problem 2 with state constraints E�s� ≤ �gΓU �s� and
E�s� ≥ gΓL �s�, for example, the state constraints (32) and (33) of the
original energy-optimal problem are relaxed on �s0; sf � \ ΓU and
�s0; sf � \ ΓL, respectively. Let the optimal specific kinetic energy
solution for this relaxed energy-optimal problem be E�r , let λ

�
tr be the

associated optimal costate value, and let ~Er be defined on �s0; sf � by
P� ~Er�s�; s� � λ�tr . Finally, let T�r �s� denote the optimal control
associated with E�r �s�, and let T��s� denote the control associated
with E��s�. By the definition of E� Tmin ≤ T��s� ≤ Tmax for all
s ∈ �s0; sf�.
In the following, it will be shown that E�r �s� � E��s� for all

s ∈ �s0; sf�. Note that, because E�r and E� have the same final time,
this is equivalent to the nonexistence of a point τ ∈ �s0; sf� such that
E��τ� < E�r �τ� or of a point γ ∈ �s0; sf� such that E��γ� > E�r �γ�.
The proof will be given in terms of contradiction. There are three
cases to consider. In each case, it will be shown that either E��τ� <
E�r �τ� is not possible for all τ ∈ �s0; sf� or E��γ� > E�r �γ� is not
possible for all γ ∈ �s0; sf� (or both).
First, consider the case when λ�tr < λt. It will be shown that, in this

case, E��τ� < E�r �τ� is not possible for all τ ∈ �s0; sf �. By the

definition of P in Eq. (44), ~Er�s� < ~E�s� for all s ∈ �s0; sf �. Let E�Ur
and E�Lr be the minimum-time and maximum-time solutions to the
relaxed problems with relaxed state constraints E�s� ≤ �gΓU �s�
and E�s� ≥ gΓL �s�. Following Proposition VI.1, it is true that

E�Ur�s� � E
�
U�s� for s ∈ ΓU, and E�Lr�s� � E

�
L�s� for s ∈ ΓL. Define

ΓLr � fsjE�Lr�s� > ~Er�s�; s ∈ �s0; sf �g. Then from the fact that

E�Lr �s� � E
�
L�s� > ~E�s� > ~Er�s� on ΓL, it follows that ΓL ⊆ ΓLr .

Following LemmaVI.2, it is true thatE�r �s� � E�Lr�s� for all s ∈ ΓLr .
Hence, E�r �s� � E�Lr �s� � E

�
L�s� � E��s� for all s ∈ ΓL. Similarly,

for s ∈ ΓU, it can be shown that E�r �s� ≤ E�Ur�s� � E
�
U�s� � E��s�.

Thus, it has been shown that E�r �s� ≤ E��s� for all s ∈ K, where
K � ΓU ∪ ΓL, and, hence if there exists τ ∈ �s0; sf � such that
E�r �τ� > E��τ�, necessarily it must be an element of the complement
of K in �s0; sf �, namely, τ ∈ �s0; sf� \ K. But this leads to a
contradiction. To see this, letp � supfsjE��s� � E�r �s�; s ∈ �s0; τ�g.
Note that p is well defined, because E��s0� � E�r �s0� � E0.
Similarly, let q � inffsjE��s� � E�r �s�; s ∈ �τ; sf �g, also well
defined, because E��sf� � E�r �sf� � Ef. Then E�r �s� > E��s� for
all s ∈ �p; q�,E��p� � E�r �p� andE��q� � E�r �q� by the continuity
of E� and E�r . Furthermore, it can be easily shown that
�p; q� ⊆ �s0; sf � \ K. Hence, E�r �s� > E��s� � ~E�s� > ~Er�s� for all
s ∈ �p; q�. On the other hand, because the state constraints are
relaxed on �s0; sf � \ K in the relaxed energy-optimal problem and
�p; q� ⊆ �s0; sf � \ K,E�r does not contain any active state constrained
arc on �p; q�. Therefore, either T�r �s� � Tmax or T�r �s� � Tmin for
s ∈ �p; q�. In particular, either T�r �τ� � Tmin or T�r �τ� � Tmax. If
T�r �τ� � Tmin, it must be true that T�r �τ� � Tmin for all s ∈ �p; τ�,

Main Algorithm Main steps for energy-optimal flight path racking.

Compute the optimal solution for aircraft minimum-energy path-tracking operation with fixed TOA.
1) Compute the state bounds �gw�s�, gw�s� and the functions c1�s�, c2�s�, c3�s� in Problem 1 as in [22].
2) Compute and store the values of P�E�s�; s� from Eq. (44) on a selected, adequately fine, meshM over the domain �s0; sf � × �Emin; Emax�, where �Emin; Emax�
covers the possible range of the specific kinetic energy.
3) Compute the minimum-time solution E�U�s� and the maximum-time solution E�L�s� using the algorithm in [22]. Let the corresponding minimum and maximum
TOA be tmin and tmax, respectively. Proceed to the next step if tmin < tf < tmax. Otherwise, quit the algorithm because the desired TOA is not possible, and the given
problem does not have a solution.
4) Apply a Newton–Raphson algorithm with adjusted bounds of the solution [31] to find the optimal costate value λ�t such that τf � tf , where τf is given by
Algorithm 1 belowwith λ � λ�t . Then the corresponding specific kinetic energyE

��s� associated with the costate value λ�t , which is returned by Algorithm 1, is the
optimal solution with TOA equal to tf .
5) Compute the optimal thrust T��s�, bank angle ϕ��s�, and lift coefficient C�L�s� histories using Eqs. (18), (23), and (24), respectively.

Algorithm 1 Optimal specific energy for given time costate value.

Compute the TOA τf and the corresponding optimal specific kinetic energy profile E��s� for a given λ value.
1) Solve P� ~Eλ�s�; s� � λ for the function ~Eλ�s� by interpolating the precomputed and stored data of P�E�s�; s� for the given path on the meshM.
2) Compute the optimal specific kinetic energyE��s� for the given λ using formula (58) along with the computedmaximum-time specific kinetic energyE�L�s� and
minimum-time specific kinetic energy E�U�s�.
3) Compute the TOA τf for E

��s� using τf � ∫ sfs0 1�����������
2E��s�
p ds.

4) Return τf and E
��s�.

ZHAO AND TSIOTRAS 843

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

A
ug

us
t 1

6,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.5
77

79
 



because by Theorem IV.1T�r �s� cannot switch fromTmax toTminwith
E�r �s� > ~Er�s�. Integrating forward (30) with initial conditions
E�r �p� � E��p� and noting that T�r �s� � Tmin ≤ T��s� a direct
application of the Comparison Lemma as in the Proof of LemmaVI.2
leads to E�r �τ� ≤ E��τ�, which is a contradiction. Similarly, it can be
shown that T�r �τ� � Tmax also leads to the same contradiction by
integrating backward on �τ; q�. Hence,E�r �τ� > E��τ� is not possible
when λ�tr < λt, which necessarily implies that E�r �s� � E��s� for all
s ∈ �s0; sf � if λ�tr < λt.
Consider now the case λ�tr > λt. Using similar arguments as before,

it can be shown that there does not exist γ ∈ �s0; sf� such that
E��γ� > E�r �γ�, for example, E�r �s� � E��s� for all s ∈ �s0; sf � if
λ�tr > λt.
For the case when λ�tr � λt, ~Er�s� � ~E�s� for all ∈ �s0; sf �. It

follows from Lemma VI.2 that E�r �s� � E��s� � E�U�s� � E�Ur�s�
on ΓU and E�r �s� � E��s� � E�L�s� � E�Lr�s� on ΓL, yielding
τ; γ ∈ �s0; sf� \ K. The application of the same argument as in the
proof for the case λ�tr < λt (or the case λ�tr > λt) also leads to a
contradiction.
Hence, it has been shown thatE��s� � E�r �s� for all s ∈ �s0; sf �, in

other words, E� is the optimal solution to the relaxed Problem 2 with
state constraints E�s� ≤ �gΓU �s�, and E�s� ≥ gΓL �s�. Because
E��s� � E�U�s� ≤ �gw�s� for s ∈ ΓU, E��s� � E�L�s� ≥ gw�s� for
s ∈ ΓL, and g

w
�s� ≤ E�L�s� < E��s� � ~E�s� < E�U�s� ≤ �gw�s� for

s ∈ �s0; sf � \ K it is clear that g
w
�s� ≤ E��s� ≤ �gw�s� for all

s ∈ �s0; sf �. Hence,E��s� is a feasible solution to Problem 1.Because
E� is the optimal solution to the relaxed Problem 2, and it is a feasible
solution for Problem 1, E� is also the optimal solution to Problem 1
by Lemma V.1, and the proof is complete.
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