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In this paper, a method is proposed for the minimum-time travel of a fixed-wing aircraft along a prescribed

geometric path. The method checks the feasibility of the path, namely, whether it is possible for the aircraft to travel

along the pathwithout violating the state or control constraints. If the path is feasible, themethod subsequently finds a

semi-analytical solution of the speed profile thatminimizes the travel time along the path. The optimal speed profile is

then used to time parameterize the path and generate the state trajectory along with the control histories via inverse

dynamics. Twoalgorithms for the time-optimal parameterization are proposed. Numerical examples are presented to

demonstrate the validity, numerical accuracy, and optimality of the proposed method.

Nomenclature

CD = drag coefficient
CD0

= zero lift drag coefficient
CL = lift coefficient
C�L = optimal lift coefficient
CLmax

= maximum lift coefficient
CLmin

= minimum lift coefficient
E = kinetic energy per unit mass, J∕Kg
E� = optimal specific kinetic energy, J∕Kg
g = gravity acceleration, m∕s2
�gw = upper bound of kinetic energy, J∕Kg
g
w

= lower bound of kinetic energy, J∕Kg
K = induced drag coefficient
K = intervals with active speed constraint
KL = intervals with active minimum speed constraint
KU = intervals with active maximum speed constraint
m = mass, kg
S = wing surface area, m2

S�j = forward specific kinetic energy integrals, J∕kg
S−
j = backward specific kinetic energy integrals, J∕kg
s = path coordinate, m
sf = path length, m
T = thrust, N
T� = optimal thrust, N
Tmax = maximum thrust, N
Tmin = minimum thrust, N
�Tw = thrust for maximum speed travel, N
Tw = thrust for minimum speed travel, N
t = time, tf final time, s
W = admissible velocity set
x, y, z = position, m
γ = path angle, rad
Δr = relative position error
λ = costate variable
v = speed, m∕s
ρ = air density, kg∕m3 ϕ bank angle, rad

ϕ� = optimal bank angle, rad
ϕmax = maximum bank angle, rad
ϕmin = minimum bank angle, rad ψ heading angle, rad

I. Introduction

O PTIMAL control techniques allow the computation of optimal
(and hence feasible) aircraft trajectories using realistic

dynamics, subject to state and control constraints [1–4]. Such
approaches are based necessarily on the numerical solution of the
optimal control problem. Although such purely numerical solutions
can deal with high-fidelity aircraft models, they are typically plagued
by convergence issues, and they are thus not amenable to onboard
and real-time implementation. The convergence of the solution
depends heavily on the quality of the initial guess of the time histories
of both the state and control variables. A good initial guess can
help the solution convergemuch faster. A bad initial guesswill hinder
convergence or even lead to divergence of the overall numerical
scheme. In general, it is not easy to obtain a set of state and control
histories that are consistent with the aircraft dynamics and that
satisfy the given constraints and boundary conditions. In addition,
optimal control solutions based completely on numerics do not
offer any useful insights about the problem itself. Such insights
are possible only through a detailed analysis of the optimality
conditions, which can reveal the optimal switching structure of the
problem.
In this paper, an alternative approach is proposed to compute

minimum-time suboptimal aircraft trajectories. Borrowing ideas
from themotion-planning literature, the optimal trajectory generation
problem is divided into two separate, albeit closely related, layers. At
the first layer, an obstacle-free, geometric path to be followed by the
aircraft is computed. In the second layer, the optimal velocity profile
is found for the aircraft to follow the givenpath inminimum time such
that the state and control constraints are satisfied. This problem
decomposition bypasses the solution of the complete time-optimal
control problem and is numerically very efficient. Because both the
optimal path generation problem and the time-parameterization
problem can be computed very efficiently, replanning can be used to
search for the actual optimal trajectory by locally modifying the
original path [5,6]. Because there is a plethora of algorithms to
construct obstacle-free geometric paths in the configuration space [7–
10], in this paper, we will deal exclusively with the optimal velocity
profile generation layer. The resulting reduction in the problem
dimensionality allows one to analyze in great detail the necessary
optimality conditions and hence characterize the optimal switching
structure for this problem.
Apart from its utility as a stand-alone approach to generate feasible

minimum-time suboptimal paths in a numerically efficient manner,
the proposed method can also be used to construct good initial
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guesses for a complete trajectory optimization solver, thus helping
improve their convergence rate [11].
The hierarchical decomposition of the feasible trajectory gener-

ation problem to a geometric and kino-dynamic layer is well known
in the motion-planning literature, where several methods, including
concatenations of Dubins’s path primitives, potential field methods,
etc., have been used to construct obstacle-free geometric paths in
the configuration space [7–10]. These approaches typically do not
provide the control histories required for maneuvering the vehicle to
follow the given path. Instead, the actual implementation (i.e., path
following) is left to a trajectory tracking controller (or human pilot),
which generates the required control commands to follow the path
after a suitable time parameterization along the geometric path is
imposed. However, becausemost of these path-planningmethods are
at the kinematic level, they do not account for the dynamics of the
aircraft, and hence the feasibility of the resulting trajectory is not
guaranteed a priori. In other words, it is possible that no control exists
that allows the aircraft to follow the proposed path without violating
the control or state constraints. The methodology proposed in this
paper remedies this inconsistency by checking the feasibility of the
given path, based on the given state and control constraints. Hence, it
can be used equally well as a postprocessing tool for pure geometric/
kinematic planners for checking the feasibility of the generated path.
Specifically, the approachmaybe used as a bridge between geometric
path-planning methods and numerical optimal control methods to
improve convergence of a nonlinear programming (NLP) solver.
The geometric path given by the geometric planner can be optimally
time parameterized to obtain the corresponding state and control
histories, which can then be passed to the NLP solver as an initial
guess. Compared with other feasible initial guess generation
methods, however, such as [12], the method introduced in this paper
seeks not only feasibility but also optimality of the time-
parameterized path.
It should be pointed out that the problem of the time

parameterization along a given geometric path has been extensively
analyzed in robotics literature. For the case of robotic manipulators,
for instance, it has been shown that the control is bang–bang when
the speed limit is not active [13]. In this paper, it will be shown
that a similar result holds for the optimal thrust input of a fixed-
wing aircraft following an a priori given path in minimum time.
Although the bang–bang form of the control for robotic manipulators
has been proved in [13], the switching structure between the upper
and lower control bounds has not been studied, despite the fact that
the appropriate structure has been used implicitly in the algorithms
proposed in [13–17]. References [14–17] take advantage of the
Lagrangian form of the dynamics of a fully actuated robotic
manipulator to compute the required speed profile for the
manipulator to move along a specified path in minimum time. In
this paper, the switching structure of the optimal thrust profile is
completely characterized using the necessary conditions for
optimality resulting from the application of Pontryagin’s maximum
principle.
The contributions of the paper can be summarized as follows:

First, it is shown that the problem of the optimal time
parameterization of a geometric path for a fixed-wing aircraft can
be converted to a constrained scalar functional optimization problem
by decoupling the controls. Analytical expressions of the aircraft
allowable velocity region are provided. This feasibility region is
characterized by the imposed constraints, such as the bank angle and
lift coefficient constraints. Second, a semi-analytic solution to this
scalar optimal control problem is obtained by applying Pontryagin’s
maximum principle. Specifically, the optimal switching structure is
characterized. Third, two algorithms are presented for generating the
optimal speed profile, and hence also the profile of the optimal thrust,
in a numerically efficientmanner. Finally, it is shownusing numerical
examples that the developed theory can be used to construct the
optimal solution. By comparing the results against the optimal
solution obtained by a standard NLP solver, it is shown that the
proposed methodology indeed predicts the optimal switching
structure.

II. Aircraft Model

Let a path in the three-dimensional space, parameterized by the
path coordinate s, be given as follows: x � x�s�, y � y�s�, z � z�s�,
where s ∈ �s0; sf�. The main objective of this paper is to find a time
parameterization along the path, that is, a function s�t�, where
t ∈ �0; tf � such that the corresponding time-parameterized trajectory
�x�s�t��; y�s�t��; z�s�t��� minimizes the flight time tf. It is assumed
that x�s�, y�s�, and z�s� are continuously differentiable and piecewise
analytic.‡

Consider the following equations of motion for a point-mass
model of a fixed-wing aircraft [19]:

_x � v cos γ cos ψ (1)

_y � v cos γ sin ψ (2)

_z � v sin γ (3)

_v � 1

m
�T − FD�CL; v; ρ� −mg sin γ� (4)

_γ � 1

mv
�FL�CL; v; ρ� cos ϕ −mg cos γ� (5)

_ψ � −
FL�CL; v; ρ� sin ϕ

mv cos γ
(6)

where x, y, z are the coordinates defining the position of the aircraft, v
is the speed, ρ is the air density (varying with altitude), γ is the flight-
path angle, ψ is the heading angle, and ϕ is the bank angle. In this
model, the lift coefficient CL, the bank angle ϕ, and the thrust T are
the control inputs. The aerodynamic lift force FL�CL; v; ρ� and drag
force FD�CL; v; ρ� are given by

FL�CL; v; ρ� �
1

2
ρv2SCL

FD�CL; v; ρ� �
1

2
ρv2SCD �

1

2
ρv2S�CD0

� KC2
L�

where CD0
and K are parameters describing the aerodynamics of the

aircraft, and S is the main wing surface area. In general, CD0
and K

depend continuously on the Mach number. Henceforth, it will be
assumed thatCD0

andK are continuous functions of the airspeed and
the path length s.
Because the given path is naturally parameterized using the path

coordinate s instead of time, the equations of motion can be rewritten
with respect to s as follows (where the prime denotes differentiation
with respect to s):

x 0 � cos γ cos ψ (7)

y 0 � cos γ sin ψ (8)

z 0 � sin γ (9)

v 0 � 1

mv
�T − FD�CL; v; ρ� −mg sin γ� (10)

γ 0 � 1

mv2
�FL�CL; v; ρ� cos ϕ −mg cos γ� (11)

ψ 0 � −
FL�CL; v; ρ� sin ϕ

mv2 cos γ
(12)

where the following relations have been used for deriving Eqs. (7–12):

‡A function is piecewise analytic if it is defined on a collection of
subintervals, such that its restriction on the closure of each subinterval
(possibly after continuation) is analytic [18]. This is a ratherweak assumption.
Concatenations of piecewise polynomials or spline functions, for example,
satisfy these conditions. Note that this definition allows for a piecewise
analytic function to be discontinuous at the boundaries of the subintervals; at
these points, however, the limits from the left and the right of the function and
its higher order derivatives exist.
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dt � ds

v
(13)

ds �
����������������������������������
d2x� d2y� d2z

q
(14)

ψ � arctan
dy

dx
� arctan

y 0

x 0
(15)

γ � arctan
dz���������������������

dx2 � dy2
p � arctan

z 0�������������������
x 02 � y 02

p (16)

ψ 0 � 1

1� �y 0∕x 0�2
y 0 0x 0 − y 0x 0 0

x 02
� x 02

x 02 � y 02
y 0 0x 0 − y 0x 0 0

x 02

� y
0 0x 0 − y 0x 0 0

x 02 � y 02 (17)

γ 0 � z
0 0x 02 � z 0 0y 02 − z 0x 0 0x 0 − z 0y 0 0y 0��������������������

x 02 � y 02
p (18)

Note that the flight-path angle γ and the heading angle ψ are purely
geometric variables. Therefore, once a three-dimensional path
�x�s�; y�s�; z�s�� is given, these variables and their derivatives with
respect to the path coordinate canbe computed fromEqs. (17) and (18).
It is clear from the previous expressions that the continuous
differentiability of x, y, z implies the continuity of x 0, y 0, and z 0. It is
also assumed that the fixed-wing aircraft flight-path angle is always
between −π∕2 and π∕2, a reasonable assumption for civil fixed-wing
aircraft, which are the main focus of this paper. Note that x 0 0, y 0 0, z 0 0,
γ 0, ψ 0, and v 0 are allowed to be discontinuous.
To time parameterize an arbitrary path, it is sufficient to obtain the

history of the speed v�s� with respect to the path coordinate s. After
the optimal speed profile v��s� is obtained, the corresponding
optimal time-parameterized trajectory can be calculated by
integrating Eq. (13). Specifically, let t�∶ �s0; sf� → �0; tf � be the
bijectivemapping between the path coordinate and the corresponding
time coordinate along the optimal solution. Then t��s� denotes the
time at which the aircraft arrives at the position corresponding to the
path coordinate s. Since dt� � ds∕v��s�, it follows that the optimal
time profile along the path is given by

t��s� �
Z
s

s0

dt� �
Z
s

s0

1∕v��s� ds; s0 ≤ s ≤ sf

The optimal time parameterization of the geometric trajectory
�x�s�; y�s�; z�s�� is then given by

�x��t�; y��t�; z��t�� � �x�t�−1�t��; y�t�−1�t��; z�t�−1�t���

It will be shown in Sec. V that the optimal thrust profile T��s� along
the path can be determined once v��s� is known. Subsequently, the
other controls can be recovered through inverse dynamics as follows:

ϕ��s� � − arctan

�
cos γ�s�ψ 0�s�

γ 0�s� � g cos γ�s�∕v�2�s�

�

C�L�s� �
2m

ρ�s�S cos ϕ��s�

�
γ 0�s� � g cos γ�s�

v�2�s�

�

Obviously, the key to the optimal time-parameterization along a
geometric path is the optimization of the speed profile along the given
path. Next, it will be shown how the state and control constraints of
the problem can be mapped to a set of admissible velocity profiles in
the s − v2∕2 plane. Later on, the optimal speed profile is found by
solving a scalar functional optimization problem. The solution of the
latter problem will provide the optimal time parameterization along
the given path.

III. Admissible Kinetic Energy Set

It is required that the lift coefficient CL, the bank angle ϕ, and the
thrust T must stay within certain ranges during the whole flight,
namely,

CL�s� ∈ �CLmin
�s�; CLmax

�s��;
ϕ�s� ∈ �ϕmin�s�;ϕmax�s��; T�s� ∈ �Tmin�s�; Tmax�s��;
∀ s ∈ �s0; sf�

(19)

whereCLmin
,CLmax

, ϕmin, ϕmax, Tmin, and Tmax are piecewise analytic
functions of s. These constraints account for limitations on the
control inputs, which may vary along the path. It is also required that
the aircraft speed satisfies the bounds v�s� ∈ �vmin�s�; vmax�s��,
where vmin and vmax are piecewise analytic functions with vmin�s� >
0 for all s ∈ �s0; sf�. It is further assumed that CLmin

�s� ≤ 0
≤ CLmax

�s�, −π∕2 < ϕmin�s� < 0 < ϕmax�s� < π∕2, and 0 ≤ Tmin�s�
< Tmax�s�, for all s ∈ �s0; sf �, and that the flight-path angle satisfies
γ�s� ∈ �−π∕2; π∕2� for all s ∈ �s0; sf �. These are generic conditions
for a civil fixed-wing aircraft in normal flight conditions and will
help simplify notation and subsequent analysis. More general
formulations of the bounds are possible. For example, the maximum
thrust can be chosen as a function of both the airspeed and altitude
[i.e., Tmax � Tmax�v; s�] without affecting the validity of the
approach in this paper (see the numerical example in Sec. VI.A at the
end of the paper). Such a constraint can be handled without changing
the conclusions. For simplicity, however, the analysis in the next
section assumes constant maximum thrust.
Let E ≜ v2∕2 be the kinetic energy per unit mass of the aircraft.

Also, let Emax�s� � v2max�s�∕2 and Emin�s� � v2min�s�∕2. In the
sequel, the specific kinetic energyEwill be used in lieu of the aircraft
speed v to simplify the ensuing analysis. The constraint on the speed
of the aircraft requires that Emin�s� ≤ E�s� ≤ Emax�s� for all
s ∈ �s0; sf�.

A. Lift Coefficient Constraint

From Eqs. (11) and (12), one obtains

γ 0 � 1

2m
ρSCL cos ϕ −

g cos γ

v2
(20)

ψ 0 � −
ρv2SCL sin ϕ

2mv2 cos γ
� −

ρSCL sin ϕ

2m cos γ
(21)

which can be rewritten as

CL cos ϕ � 2m

ρS

�
γ 0 � g cos γ

v2

�
(22)

CL sin ϕ � −
2mψ 0 cos γ

ρS
(23)

Eliminating ϕ from Eqs. (22) and (23), and replacing v2 with 2E, one
obtains

E � g1�CL; γ; γ 0;ψ 0�

≜
mg cos γ

ρS

0
@

���������������������������������������������
C2
L −

�
2mψ 0 cos γ

ρS

�
2

s
−
2mγ 0

ρS

1
A−1

(24)

The other solution is omitted because it is always negative. Note that
the constraint 0 < Emin�s� ≤ E�s� ≤ Emax�s� < ∞ for all s ∈ �s0; sf�
implies that there exists CL�s� ∈ �CLmin

�s�; CLmax
�s�� such that
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0 <

��������������������������������������������������������������
C2
L�s� −

�
2mψ 0�s� cos γ�s�

ρ�s�S

�
2

s
−
2mγ 0�s�
ρ�s�S < ∞ (25)

for all s ∈ �s0; sf �. This is equivalent to the condition

�CL�s� > ~CL�s�; ∀ s ∈ �s0; sf � (26)

where

�CL�s� � maxf−CLmin
�s�; CLmax

�s�g (27)

and

~CL�s� �

8>><
>>:

2m

ρ�s�S jψ
0�s�j cos γ�s�; if γ 0�s� < 0

2m

ρ�s�S

��������������������������������������������������
γ 02�s� � ψ 02�s�cos2 γ�s�

q
; if γ 0�s� ≥ 0

(28)

The given path �x�s�; y�s�; z�s�� is infeasible if Eq. (26) is not
satisfied, owing to insufficient lift. When Eq. (26) holds, and because
the right-hand side of Eq. (24) is amonotonically decreasing function
with respect to C2

L, the limits on the lift coefficient impose a lower
bound on the kinetic energy E as follows:

E�s� ≥ g
w1
�s� ≜ maxfEmin�s�; g1� �CL�s�; γ�s�; γ 0�s�;ψ 0�s��g

(29)

In other words, if the problem is feasible, Eq. (29) provides a lower
bound on the allowable speed, whereas the bounds CLmin

�s� ≤
CL�s� ≤ CLmax

�s� on the lift coefficient do not impose any constraint
on the maximum value of E�s�. Finally, note from Eq. (29) that, if
g
w1
�s� is unbounded, then the path is not feasible. Feasibility implies,

in particular, that g
w1

in Eq. (29) is a (possibly discontinuous)
piecewise analytic function of s.

B. Bank Angle Constraint

To consider the effect of the bank angle constraint on the specific
kinetic energy E, the lift coefficient CL should be eliminated from
Eqs. (22) and (23) to form an algebraic equation involving ϕ and E.
However, two special cases need to be considered before proceeding
with such an elimination: the case when CL�s� � 0, and the case
when 2γ 0�s� � g cos γ�s�∕E�s� � 0, for some s ∈ �s0; sf �.
IfCL�s� � 0 for some s ∈ �s0; sf �, then the lift is zero and the bank

angle ϕ is indeterminate. In this case, the bounds ϕmin�s� ≤ ϕ�s� ≤
ϕmax�s� on the bank angle ϕ do not constrain the specific kinetic
energy at s. Similarly, note that 2γ 0�s� � g cos γ�s�∕E�s� � 0 may
hold only if γ 0�s� < 0. If 2γ 0�s� � g cos γ�s�∕E�s� � 0, thenE�s� is
uniquely determined, regardless of the value of the bank angle at s
(i.e., the bank angle has no effect onE). Therefore, only the caseswith
CL�s� ≠ 0 and 2γ 0�s� � g cos γ�s�∕E�s� ≠ 0 for some s ∈ �s0; sf �
need to be considered, leading to the following equation:

tan ϕ � −
2ψ 0 cos γ

2γ 0 � g cos γ∕E
(30)

Solving for E from Eq. (30) yields

E � g2�ϕ; γ; γ 0;ψ 0� ≜ −
1

2

g cos γ tan ϕ

γ 0 tan ϕ� ψ 0 cos γ
(31)

The positivity of E�s� requires that g2�ϕ�s�; γ�s�; γ 0�s�;ψ 0�s�� > 0
for all s ∈ �s0; sf�, otherwise the path is infeasible. If
g2�ϕ; γ; γ 0;ψ 0� > 0 along the given path, the constraints on E due
to the bank angle bounds can be determined as follows:
1) When ψ 0�s� � 0, Eq. (30) implies that ϕ�s� � 0, and the

bounds of ϕ impose no constraints on E�s�.
2) When ψ 0�s� ≠ 0, two cases need to be considered:

2a) If γ 0�s� � 0, and since γ ∈ �−π∕2; π∕2�, it follows that
cos γ ≠ 0, and

E�s� � g2�ϕ�s�; γ�s�; γ 0�s�;ψ 0�s�� � −
g tan ϕ�s�
2ψ 0�s�

The condition g2�ϕ�s�; γ�s�; γ 0�s�;ψ 0�s�� > 0 requires that
ϕ�s�ψ 0�s� < 0. The constraint on ϕ then leads to the following
upper bound on the specific kinetic energy E:

E�s� ≤ μ0�s� ≜ max

�
g tan ϕmin�s�

2ψ 0�s� ;
g tan ϕmax�s�

2ψ 0�s�

�
(32)

2b) If γ 0�s� ≠ 0, rewrite Eq. (31) as follows:

γ 0�s� tan ϕ�s� � ψ 0�s� cos γ�s� � −
g cos γ�s�
2E�s� tan ϕ�s� (33)

The bank angle constraint ϕ�s� ∈ �ϕmin�s�;ϕmax�s�� limits the
admissible value of E�s� via Eq. (33). A necessary and sufficient
condition for the satisfaction of this constraint is

g cos γ�s�
2E�s� ≤ μ1�s� (34)

where μ1�s� ≜ minfh�s;ϕmin; γ; γ
0;ψ 0�; h�s;ϕmax; γ; γ

0;ψ 0�g or

g cos γ�s�
2E�s� ≥ μ2�s� (35)

where
μ2�s� ≜ maxf−h�s;ϕmin; γ; γ

0;ψ 0�;−h�s;ϕmax; γ; γ
0;ψ 0�g, and

where

h�s;ϕ; γ; γ 0;ψ 0� ≜ γ 0�s� � ψ 0�s� cos γ�s�∕ tan ϕ�s� (36)

To characterize the constraint on E induced by the bank angle,
three subcases are analyzed and the results are given next:

2b.1) If μ1�s� ≤ 0 and μ2�s� ≤ 0, then Eq. (35) always holds
as long as E�s� > 0.
2b.2) If μ1�s� ≤ 0 and μ2�s� > 0, then Eq. (34) does not

hold, and Eq. (35) must be satisfied, which is equivalent to the
following constraint on E�s�:

E�s� ≤ 1

2
g cos γ�s�∕μ2�s� (37)

2b.3) Finally, if μ1�s� > 0, then it is required that either
Eq. (37) holds, or the following inequality holds:

E�s� ≥ 1

2
g cos γ�s�∕μ1�s� (38)

Equations (32), (37), and (38) define the admissible values of
E�s� limited by the bank angle.

C. Summary of Algebraic Constraints

In the previous two sections it has been shown that the lift
coefficient and the bank angle constraints can be reduced to a series of
algebraic constraints on the value of the specific kinetic energy E
along the path. Summarizing these results, for feasibility, the specific
kinetic energy profile E must satisfy either one, or both, of the
following two constraints. The first constraint is defined according to
the inequalities

g
w1
�s� ≤ E�s� ≤ �gw1�s�; s ∈ �s0; sf � (39)

where g
w1
�s� from Eq. (29) and �gw1�s� from
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�gw1�s� ≜

8<
:
minfEmax�s�; μ0�s�g; s ∈ Γ1;
minfEmax�s�; g cos γ�s�∕2μ2�s�g; s ∈ Γ2 ∪ Γ3;
Emax�s�; otherwise

where

Γ1 � fsjψ 0�s� ≠ 0; γ 0�s� � 0; s ∈ �s0; sf�g
Γ2 � fsjψ 0�s� ≠ 0; γ 0�s� ≠ 0; μ1�s� ≤ 0; μ2�s� > 0; s ∈ �s0; sf�g
Γ3 � fsjψ 0�s� ≠ 0; γ 0�s� ≠ 0; μ1�s� > 0; s ∈ �s0; sf �g

The second constraint is defined according to the inequalities

g
w2
�s� ≜ maxfg

w1
�s�; g

w3
�s�g ≤ E�s� ≤ �gw2�s�; s ∈ �s0; sf�

(40)

where,

g
w3
�s� ≜

�
maxfEmin�s�; g cos γ�s�∕2μ1�s�g; s ∈ Γ3;
Emin�s�; s ∈ �s0; sf �∕Γ3

(41)

and

�gw2�s� ≜
�
Emax�s�; s ∈ Γ3;
�gw1�s�; s ∈ �s0; sf �∕Γ3

(42)

and where μ0�s�, μ1�s�, and μ2�s� are given in Eqs. (32), (34), and
(35), respectively.
The collection of points �s; E�s�� satisfying either Eqs. (39) or (40)

correspond to the setW �W1 ∪ W2 in the s-Eplane,whereW1 and
W2 are given by

Wi � f�s; E�jgwi�s� ≤ E ≤ �gwi�s�; s ∈ �s0; sf �g; i � 1; 2

(43)

Consequently, the given geometric path is feasible only if there exists
a continuous function E, whose graph lies entirely in W, while
connecting the initial and final boundary conditions. It is always
assumed that �s0; E�s0�� ∈ W and �sf; E�sf�� ∈ W, otherwise the
problem is clearly infeasible.
It should be noted that, although only control and speed constraints

are considered in this paper for the sake of brevity, addressing
additional constraints is possible as long as these constraints can be
converted into algebraic constraints on E. For example, it can be
shown that an upper bound on the load factor L∕mg ≤ nmax is
equivalent to an upper bound on E as follows:

E�s� ≤ g− cos γ�s�γ 0�s� �
����������������������������������������������������������������������������������������������������������������������������������
�cos γ�s�γ 0�s��2 � �γ 02�s� � ψ 02�s�cos2 γ�s���n2max − cos2 γ�s��

p
2�γ 02�s� � ψ 02�s�cos2 γ�s�� (44)

The details are left to the interested reader.

D. Topological Properties of the Admissible Velocity Set

Before proceeding with the determination of the optimal velocity
profile inside the admissible velocity set W, some observations
regarding the topological properties of W and its boundary are in
order.

1) If W is not connected, then the given path is not feasible.
2) Even if the admissible velocity setW is connected, it may not be

simply connected. If W is simply connected, then there exist two
piecewise analytic functions g

w
and �gw such that

W � f�s; E�jg
w
�s� ≤ E�s� ≤ �gw�s�; s ∈ �s0; sf �g (45)

For instance, one can simply take g
w
� minfg

w1
; g

w2
g and

�gw � maxf �gw1; �gw2g.
3) In case W is not simply connected, then it cannot be

characterized by inequalities involving only two piecewise analytic
functions as in Eq. (45). Such a situation will occur if there exist
points s ∈ �s0; sf � such that g

w1
�s� > �gw2�s� or gw2�s� > �gw1�s�,

for instance. Nonetheless, owing to the piecewise analyticity of
the functions involved in Eq. (43), which represent the boundaries
of W1 and W2 between s0 and sf, respectively, these functions
may intersect at only at a finite number of points in �s0; sf �
[20]. Consequently, there can only be a finite number of “holes” in
W.
4) SupposeW is not simply connected, but it rather hasm holes. In

this (rather rare) case, W can be decomposed as the union of 2m

simply connected subsets, as illustrated in Fig. 1 for the case when
m � 1. After such a decomposition, each subset is searched for an
optimal kinetic energy profile candidate using the approach
described later on in the paper. Once all possible (at most 2m)
candidates have been obtained, they are compared to identify the
unique optimal kinetic energy profile for the original setW.
This paper focuses on the simple (and most common) case when

W is simply connected and hence W is defined by algebraic
constraints of the form g

w
�s� ≤ E�s� ≤ �gw�s�, s ∈ �s0; sf �, where gw

and �gw are appropriately defined piecewise analytic functions.

E. Thrust Constraint

From Eqs. (10), (22), and (23), the following equation is obtained:

T � mvv 0 �
�
1

2
CD0
�v; s�ρS� 2K�v; s�m2γ 02

ρS

� 2K�v; s�m2cos2 γψ 02

ρS

�
v2 � 2K�v; s�m2g2cos2 γ

ρS

1

v2

� 4K�v; s�m2γ 0g cos γ

ρS
�mg sin γ (46)

Note that

vv 0 � v dv
ds
� d

ds

�
v2

2

�
� E 0

With a minor abuse of notation, the preceding equation can be
rewritten as a constraint on the derivative of E as follows

Fig. 1 Decomposition of W when it is not simply connected.
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E 0�s� � T�s�
m
� c1�E; s�E�s� �

c2�E; s�
E�s� � c3�E; s� (47)

where

c1�E; s� ≜ −
CD0
�E; s�ρ�s�S
m

−
4K�E; s�mγ 02�s�

ρ�s�S

−
4K�E; s�m cos2 γ�s�ψ 02�s�

ρ�s�S (48)

c2�E; s� ≜ −
K�E; s�mg2 cos2 γ�s�

ρ�s�S (49)

c3�E; s� ≜ −
4K�E; s�mγ 0�s�g cos γ�s�

ρ�s�S − g sin γ�s� (50)

It is assumed thatK andCD0
(hence, c1, c2, and c3) are continuously

differentiable with respect to E.

IV. Optimal Control Formulation

The extensive analysis of the previous section reveals that
instead of working with the original dynamical system described by
Eqs. (7–12), it would suffice to solve an optimal control problemwith
just one state variableE and one single control inputT. In this section,
it is proved that the thrust control switching structure is unique when
the speed constraint is not active.
The optimal thrust profile T��s� and the corresponding optimal

speed v��s� �
���������������
2E��s�

p
for the minimum-time travel of a fixed-

wing aircraft are given by the solution to the following optimal
control problem:
Problem 4.1 (Time Path-Tracking Problem): Consider the

following optimal control problem in Lagrange form:

min
T
J�s0; sf; E�s0�; E�sf�; T� � tf �

Z
sf

s0

ds������������
2E�s�

p (51a)

subject to E 0�s� � T�s�
m
� c1�E; s�E�s� �

c2�E; s�
E�s� � c3�E; s�

(51b)

g
w
�s� ≤ E�s� ≤ �gw�s� (51c)

E�s0� � v20∕2 (51d)

E�sf� � v2f∕2 (51e)

Tmin ≤ T�s� ≤ Tmax (51f)

where v0 and vf are the required initial and final speed at s0 and sf,
respectively, and �gw and g

w
are piecewise analytic functions,

computed in Sec. III.
Note that the value of �gw and g

w
can always be redefined at their

(necessarily finite) points of discontinuities to make them either left
or right continuous. In particular, and without loss of generality, in
this paper, it is assumed that, at the point of discontinuity, the value of
�gw is defined so that it is lower semicontinuous, and the value of g

w
is

defined so that it is upper semicontinuous.§ The reasons for such an

assumption will be explained in Sec. V. The functions c1, c2, and c3
are also piecewise analytic, and are given in Eqs. (48–50). They can
be readily computed once the path is given.
Consider the case when the state constraint (51c) is not active. The

Hamiltonian of the optimal control problem is

H�E; λ; T; s� � 1������
2E
p � λ

�
T

m
� c1�E; s�E�

c2�E; s�
E

� c3�E; s�
�

The costate dynamics is

λ 0 � −
∂H�E; λ; T; s�

∂E
� 1

2
���
2
p E−3∕2

− λ

�
c1�E; s� − c2�E; s�E−2 � ∂c1�E; s�

∂E
E� ∂c2�E; s�

∂E
1

E

� ∂c3�E; s�
∂E

�
(52)

The optimal control consists of constrained [i.e., E�s� � g
w
�s� or

E�s� � �gw�s�] and unconstrained [i.e., g
w
�s� < E�s�

< �gw�s�] arcs. Furthermore, the control T enters linearly into the
Hamiltonian, and so a singular control may exist. The switching
function is

∂H
∂T
� λ

m
(53)

According to Pontryagin’s maximum principle, depending on the
sign of the switching function, the optimal control may switch
between the two bounds Tmin,Tmax and the singular control when the
state constraints are not active. Correspondingly, in general, the
optimal control T� of Problem 4.1 may contain bang–bang control,
singular control, and control arcs associated with active state
constraints, as described by the following expression:

T��s� �

8>>>>>><
>>>>>>:

Tmin; for λ > 0; s ∈ �s0; sf � \ K;
singular control for λ � 0; s ∈ �s0; sf � \ K;
Tmax; for λ < 0; s ∈ �s0; sf � \ K;
�Tw�s�; for s ∈ KU;
Tw�s�; for s ∈ KL

(54)

where KU � fsjE��s� � �gw�s�; s ∈ �s0; sf �g, KL � fsjE��s� �
g
w
�s�; s ∈ �s0; sf �g, and K � KU ∪ KL. At the points where the

function �gw (respectively, g
w
) is differentiable, the value of the thrust

�Tw�s� (respectively, Tw) is computed by

�Tw�s� � m� �g 0w�s� − c1� �gw�s�; s� �gw�s� − c3� �gw�s�; s�
− c2� �gw�s�; s�∕ �gw�s�� (55)

And, respectively,

Tw�s� � m�g 0w�s� − c1�gw�s�; s�gw�s� − c3�gw�s�; s�
− c2�gw�s�; s�∕gw�s�� (56)

At the points where �gw (respectively, g
w
) is discontinuous and/or

nondifferentiable, the thrust is discontinuous and can be computed by

�Tw�s�� � m� �g 0w�s�� − c1� �gw�s��; s� �gw�s�� − c3� �gw�s��; s�
− c2� �gw�s��; s�∕ �gw�s��� (57)

and

§It is reminded that the function f∶ �t0; tf � ↦ R is upper semi-continuous
(respectively, lower semi-continuous) at t ∈ �t0; tf � if lim sup

τ→t
f�τ� ≤ f�t�

(resp. lim inf
τ→t

f�τ� ≥ f�t�), and, in addition, lim sup
τ↓t0

f�τ� ≤ f�t0� (resp.

lim inf
τ↓t0

f�τ� ≥ f�t0�) and lim sup
τ↑tf

f�τ� ≤ f�tf� (resp. lim inf
τ↑tf

f�τ� ≥ f�tf�).
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Tw�s�� � m�g 0w�s
�� − c1�gw�s

��; s�g
w
�s�� − c3�gw�s

��; s�
− c2�gw�s

��; s�∕g
w
�s��� (58)

for the two cases. Note that, owing to the piecewise continuous
differentiability of �gw andgw, the limits �g 0w�s��, �gw�s�� andg 0w�s

��,
g
w
�s�� exist for all s ∈ �s0; sf �. Furthermore, the number of points at

which �g 0w�s�� ≠ �g 0w�s−�, or g 0w�s
�� ≠ g 0

w
�s−�, or �gw�s�� ≠ �gw�s−�,

or g
w
�s�� ≠ g

w
�s−� is finite.

Proposition 4.1: The optimal control solution of Problem 4.1 does
not contain any singular control.
Proof: It is sufficient to show that there does not exist any

subinterval �sa; sb� ⊆ �s0; sf � on which λ�s� ≡ 0 and g
w
�s� < E�s� <

�gw�s� (strict inequalities) for all s ∈ �sa; sb�. Suppose, ad absurdum,
that λ�s� ≡ λ 0�s� ≡ 0 for all s ∈ �sa; sb�, and the state constraints are
not active on �sa; sb�. It follows that, on �sa; sb�, Eq. (52) becomes

0 � 1

2
���
2
p E−3∕2 > 0

which is impossible. Hence, λ cannot remain constantly zero on any
nontrivial interval, and the proof is complete. □

Proposition 4.2:The optimal control T��s� is bang–bang and does
not contain any switch from Tmin to Tmax on �s0; sf� \ K.
Proof: Because it has been shown that a singular control does not

exist, the control history must be bang–bang on �s0; sf� \ K. It is
sufficient to prove that, when the constraint (51c) is inactive, there
does not exist a switching from Tmin to Tmax in the optimal control
history.
To this end, suppose, on the contrary, that T� contains a switching

from Tmin to Tmax at some sm ∈ �sa; sb� ⊂ ��s0; sf � \ K�, such that

T� �
�
Tmin; sa < s ≤ sm;
Tmax; sm < s ≤ sb

For simplicity, and without loss of generality, it is assumed that the
functions c1, c2, and c3 are continuous at sm.
Let η be a small positive scalar, and let E−

m�s; η� and E�m�s; η�
denote the trajectories passing through (sm, E��sm� � η), with
control Tmin and Tmax, respectively. From the definitions of E−

m�s; η�
and E�m�s; η�, the following expression holds:

E− 0
m �s; η� − E� 0m �s; 0� � �Tmin − Tmax�∕m
� c1�E−

m�s; η�; s�E−
m�s; η� − c1�E�m�s; 0�; s�E�m�s; 0�

� c2�E
−
m�s; η�; s�E�m�s; 0� − c2�E�m�s; 0�; s�E−

m�s; η�
E−
m�s; η�E�m�s; 0�

� c3�E−
m�s; η�; s� − c3�E�m�s; 0�; s� (59)

In the right-hand-side of Eq. (59), the absolute value of terms
containing c1 is

jc1�E−
m�s; η�; s�E−

m�s; η� − c1�E�m�s; 0�; s�E�m�s; 0�j
� jc1�E−

m�s; η�; s��E−
m�s; η� − E�m�s; 0��

� �c1�E−
m�s; η�; s� − c1�E−

m�s; 0�; s��E�m�s; 0�
� �c1�E−

m�s; 0�; s� − c1�E�m�s; 0�; s��E�m�s; 0�j
� jc1�E−

m�s; η�; s��E−
m�s; η� − E�m�s; 0��

� �c1�E−
m�s; η�; s� − c1�E−

m�s; 0�; s��E�m�s; 0�j
≤ jc1�E−

m�s; η�; s�jj�E−
m�s; η� − E�m�s; 0��j

� j�c1�E−
m�s; η�; s� − c1�E−

m�s; 0�; s��jjE�m�s; 0�j (60)

where the fact that E−
m�s; 0� � E�m�s; 0� is used. Note that

E�m�sm; η� � E−
m�sm; η� � E��sm� � η. Thus,

jE−
m�s; η� − E�m�s; 0�j � jE−

m�s; η� − E−
m�sm; η� � E�m�sm; η�

− E�m�sm; 0� � E�m�sm; 0� − E�m�s; 0�j
≤ jE−

m�s; η� − E−
m�sm; η�j � jE�m�sm; η� − E�m�sm; 0�j

� jE�m�sm; 0� − E�m�s; 0�j

Because E−
m�s; η� and E�m�s; 0� are continuous with respect to s,

and E�m�sm; η� is continuous with respect to η, jE−
m�s; η� − E�m�s; 0�j

can be arbitrarily small by decreasing η and js − smj. Therefore,
jc1�E−

m�s; η�; s�E−
m�s; η� − c1�E�m�s; 0�; s�E�m�s; 0�j in Eq. (60)

can be made arbitrarily small, following the continuity of c1 and
the boundedness of c1 and E�m�s; 0�. Likewise, the terms
jc1�E−

m�s; η�; s� − c1�E−
m�s; 0�; s�j, jc3�E−

m�s; η�; s� − c3�E�m�s; 0�;
s�j, and jc2�E−

m�s; η�; s�E�m�s; 0� − c2�E�m�s; 0�; s�E−
m�s; η�j in

Eq. (59) can also be made arbitrarily small following the continuity
ofc1,c2, andc3.Hence, for any δ > 0, there existsηa > 0, ϵa > 0 such
that E− 0

m �s; η� − E� 0m �s; 0� < �Tmin − Tmax�∕m� δ for all η < ηa and
sm − ϵa < s < sm � ϵa. Without loss of generality, let δ � �Tmax−
Tmin�∕2m, then the preceding inequality is simplified to

E− 0
m �s; η� − E� 0m �s; 0� < �Tmin − Tmax�∕2m (61)

By the same token, there exists ηb > 0, ϵb > 0, such that

E− 0
m �s; 0� − E�0m �s; η� < �Tmin − Tmax�∕2m (62)

for η < ηb and sm − ϵb < s < sm � ϵb. Let ε � minfϵa; ϵbg and η0 �
minfηa; ηbg such that, for all η < η0 and all s ∈ �sm − ϵ; sm � ϵ�, both
Eqs. (61) and (62) are satisfied and, in particular, E− 0

m �s; η� −
E� 0m �s; 0� < �Tmin − Tmax�∕2m < 0 and E− 0

m �s; 0� − E� 0m �s; η� <
�Tmin − Tmax�∕2m < 0 for all s ∈ �sm − ϵ; sm � ϵ� and 0 < η < η0.
Notice that, in the interval �sm − ϵ; sm � ϵ�, the optimal specific

kinetic energy profile can be written equivalently as

E��s� �
�
E−
m�s; 0�; sm − ϵ < s < sm;
E�m�s; 0�; sm < s < sm � ϵ

Consider now the part of E�m�s; η� with s < sm and the part of
E−
m�s; η� with s > sm. Since E��sm� < lim infs→sm �gw�s�, and

because �gw�s� is lower semicontinuous, there exists a small positive
real number η1 such that, for all η < η1, E�m�s; η� < �gw�s� for all
sm − ϵ < s ≤ sm, and E−

m�s; η� < �gw�s� for all sm < s ≤ sm � ϵ, that
is, a sufficiently small change of the initial condition at sm will not
lead to the violation of the constraint �gw�s�.
Let η2 � −ϵ�Tmin − Tmax�∕2m > 0, and let 0 < η <

minfη0; η1; η2g. At the point sm, E−
m�sm; η� − E��sm� � E−

m�sm; η�−
E−
m�sm; 0� � E−

m�sm; η� − E�m�sm; 0� � η > 0. Since E− 0
m �s; η�−

E� 0m �s; 0� < �Tmin − Tmax�∕2m for all s ∈ �sm; sm � ϵ�, forward
integration of E− 0

m �s; η� − E� 0m �s; 0� from sm results in E−
m�s; η� −

E�m�s; 0� < η� �Tmin − Tmax��s − sm�∕2m for all s ∈ �sm; sm � ϵ�,
andE−

m�s� ϵ; η� − E�m�s� ϵ; 0� < 0. Therefore, by the continuity of
E−
m�s; η� − E�m�s; 0�, there exists s�m ∈ �sm; sm � ϵ� such that
E−
m�s�m ; η� � E�m�s�m ; 0� � E��s�m�.
A similar argument shows that there exists s−m ∈ �sm − ϵ; sm� such

that E�m�s−m; η� � E��s−m�. See Fig. 2.
Now consider the variation of T� (see Fig. 3) given by

δT �

8<
:
Tmax − Tmin; s−m < s ≤ sm;
Tmin − Tmax; sm < s ≤ s�m;
0; otherwise

Then with the new control ~T � T� � δT, the new speed profile ~E is
composed of segments of E�, E�m�s; η� and E−

m�s; η�, which is given
next
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~E�s� �

8>><
>>:
E��s�; sa < s ≤ s−m;
E�m�s; η�; s−m < s ≤ sm;
E−
m�s; η�; sm < s ≤ s�m;
E��s�; s�m < s ≤ sb

The variation of the speed is shown in Fig. 2. By construction of s−m
and s�m , E��s� < ~E�s� < �gw�s� for s ∈ �s−m; s�m�. Hence, J�sa; sb;
E�sa�; E�sb�; T�� > J�sb; sb; E�sa�; E�sb�; ~T�, which means that T�

cannot be optimal. □

The next proposition shows that the lower bound g
w
is generically

not part of the optimal specific kinetic energy profile on a nontrivial
interval.
Proposition 4.3: Assume �gw�s� ≠ gw�s� and T

��s� � Tw�s� <
Tmax�s� for all s ∈ �s0; sf �. Let E��s� be the optimal kinetic energy
solution to Problem 4.1. Then the set KL does not contain any
nontrivial interval.
Proof: (Sketch) Assume, on the contrary, that there exists
�sa; sb� ∈ KL such that E��s� � g

w
�s� for all s ∈ �sa; sb�, where

sa ≠ sb. Then, since �gw�s� ≠ gw�s� andTw�s� < Tmax�s� on �sa; sb�,
one can construct a variation of the thrust T in the interval �sa; sb�
similar to the proof of Proposition 4.2 that does not violate the thrust
constraint, and which results in better time optimality, hence leading
to a contradiction. The details of the proof are left to the interested
reader. □

Corollary 4.1:The time-optimal controlT� for Problem 4.1 can be
constructed as a combination of Tmax, Tmin, and �Tw.
Proof: Note that T��s� is equal to Tmax, or Tmin, or �Tw�s� on
�s0; sf � \ KL. It would suffice to consider the value of T��s� onKL. If
�gw�s� � gw�s� on some nontrivial interval �sa; sb�, then clearly
T��s� � Tw�s� � �Tw�s� for all s ∈ �sa; sb�, and the corollary holds
on �sa; sb�. If Tw�s� � Tmin�s� for some s ∈ �s0; sf �, then the
corollary trivially holds for such points. If �gw�s� � gw�s� only at
isolated points, or if �gw�s� ≠ gw�s� and Tw�s� < Tmax�s� for all
s ∈ �s0; sf �, then KL has an empty interior according to
Proposition 4.3. □

V. Two Numerical Algorithms for Finding
the Optimal Control

Recall that the admissible kinetic energy set W is determined by
the geometry of the given path. Once the path is given, it is possible to
find a semi-analytical solution of the optimal control problem (51a)
using the necessary conditions introduced in the previous section.
Assuming that the given path is feasible, then, according to Propo-
sition 4.3, the lower bound g

w
cannot be part of the optimal kinetic

energy profile, except for the trivial case when g
w
�s� � �gw�s� over

some part of �s0; sf �. The optimal kinetic energy profile is thus
composed of three types of segments corresponding to maximum
acceleration with T� � Tmax, maximum deceleration with
T� � Tmin, and T� � �Tw, the latter corresponding to the saturation
of the upper state constraint E�s� � �gw�s�. The most critical step of
the optimal synthesis problem is to characterizewhich parts of �gw can
possibly be saturated.
If �gw is continuous at sd ∈ �s0; sf � and E��sd� � �gw�sd�, because

E��s� cannot violate the constraint �gw [i.e., E��s� ≤ �gw�s�], there
exists a control T��s� ∈ �Tmin; Tmax� such that E��s� satisfies the
following inequality:

E��sd � h� − E��sd�
h

≤
�gw�sd � h� − �gw�sd�

h
(63)

where h is a small positive real number. By taking the limits of both
sides of inequality (63) with h → 0, the last expression leads to the
existence of T��s� ∈ �Tmin; Tmax�, such that

E� 0�s�d � ≤ �g 0w�s�d � (64)

On the other hand,

E� 0�s�d � ∈
�
Tmin

m
� c1�E��sd�; s�d �E��sd� �

c2�E��sd�; s�d �
E��sd�

� c3�E��sd�; s�d �;
Tmax

m
� c1�E��sd�; s�d �E��sd�

� c2�E
��sd�; s�d �
E��sd�

� c3�E��sd�; s�d �
�

Therefore, inequality (64) implies

�g 0w�s�d � ≥
Tmin

m
� c1�E��sd�; s�d �E��sd� �

c2�E��sd�; s�d �
E��sd�

� c3�E��sd�; s�d � �
Tmin

m
� c1� �gw�sd�; s�d � �gw�sd�

� c2� �gw�sd�; s
�
d �

�gw�sd�
� c3� �gw�sd�; s�d � (65)

Similarly, the constraint E��s� ≤ �gw�s� for s ∈ �sd − ϵ; sd� implies

�g 0w�s−d � ≤
Tmax

m
� c1�E��sd�; s−d �E��sd� �

c2�E��sd�; s−d �
E��sd�

� c3�E��sd�; s−d � �
Tmax

m
� c1� �gw�sd�; s−d � �gw�sd�

� c2� �gw�sd�; s
−
d �

�gw�sd�
� c3� �gw�sd�; s−d � (66)

Therefore,E��sd� � �gw�sd� is possible only if both inequalities (65)
and (66) are satisfied. In particular, when �gw is continuously
differentiable at sd, then �g 0w�s−d � � �g 0w�s�d � � �g 0w�sd� and, hence, the
inequalities (65) and (66) are reduced to

Fig. 2 Speed variation for the proof of Proposition 4.2.

Fig. 3 Thrust variation for proof of Proposition 4.2.
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Tmin

m
� c1� �gw�sd�; s�d � �gw�sd� �

c2� �gw�sd�; s�d �
�gw�sd�

� c3� �gw�sd�; s�d �

≤ �g 0w�sd� ≤
Tmax

m
� c1� �gw�sd�; s−d � �gw�sd�

� c2� �gw�sd�; s
−
d �

�gw�sd�
� c3� �gw�sd�; s−d � (67)

If �gw is discontinuous at sd, then either �gw�sd� � �gw�s�d � or
�gw�sd� � �gw�s−d �. In this case, the conditions E��sd� � �gw�sd� and
E��s� ≤ �gw�s� in a neighborhood of sd can be satisfied only if �gw�s�
is lower semicontinuous (which is assumed) and, in addition,
inequality (65) holds if �gw�s�d � < �gw�s−d �, and inequality (66) holds if
�gw�s�d � > �gw�s−d �.
Let ~W be the graph of all points in the interval �s0; sf � such that �gw

is continuous, and, in addition, inequalities (65) and (66) hold, that is,

~W ≜ f�sd; �gw�sd��j �65� and �66� hold; sd ∈ �s0; sf�g

These are the points on the graph of �gw�s�, which could possibly be
part of the optimal kinetic energy profile E��s�. Furthermore, let ~Wd

be the points on the graph of �gw where �gw is discontinuous (but
necessarily lower semicontinuous), and either inequality (65) or (66)
holds. The points in ~Wd are the points of discontinuity of �gw which
could be part of the optimal E��s� profile.
Let �W � ~W

S
~Wd and let �Wc � f�s; �gw�s��; s ∈ �s0; sf �g \ �W.

Generally, �W is disconnected. Depending on the path, �W may consist
of multiple arcs and single points, as shown in Fig. 4. By the
piecewise analyticity assumption of the given path, all functions
involved in inequalities (65) and (66) are piecewise analytic, and it
follows that the equality in (65) and (66) can only hold for a finite
number of points on �s0; sf �. Hence, �W is composed of only a finite
union of disjoint components. That is, �W �

S
N−1
j�1 �Wj for some

positive integerN, where �Wj are connected, andwith �Wi ⋂ �Wj � ∅
for i ≠ j. Let �s−j ; E−

j � and �s�j ; E�j � denote the left- and right-end
points of �Wj for each j � 1; : : : ; N − 1, where E−

j � �gw�s−j � and
E�j � �gw�s�j � correspond to the “trajectory sink” and the “trajectory
source” in [16]. Also, define two points �W0 � �s0; E0� and
�WN � �sf; Ef�. Note that, in general, �W0 ≠ �W1 and �WN ≠ �WN−1. It
is obvious that �W0 and �WN must be part of the graph of the optimal
kinetic energy profile.
For each j � 1; : : : ; N − 1, let S�j denote the trajectory obtained

by forward integration with maximum thrust, starting from s�j with
the initial value S�j �s�j � ≜ E�j , and, similarly, let S−

j be the trajectory
obtained by backward integration using minimum thrust, starting
from s−j with the initial valueS

−
j �s−j � ≜ E−

j . Forward integration with
Tmax and backward integration with Tmin are also computed from the
boundary points s0 and sf with initial conditions E0 and Ef,
respectively, and the resulting trajectories are denoted with S�0 and
S−
N .
All current algorithms, including those in [13–16], use a “search,

integrate, and check” procedure, which gradually extend the optimal
speed profile from the initial point to the final point. Following the
same procedure, it is possible that, during the search process, part of

the already constructed trajectory has to be discarded because it
cannot intersect �W later on for any allowable thrust value.
To avoid such unnecessary computations, and to also improve the

overall computational efficiency of the numerical scheme, it is
necessary to characterize the elements in �W that are part of E�.
Assuming feasibility of the problem, when the boundary conditions
cannot be satisfied by a bang–bang control with no more than one
switch from Tmax to Tmin, some elements in �W corresponding to the
smaller values of �gw�s�must be active (at least at a single point) in the
optimal solution because these correspond to the most stringent/
binding part of the constraint. Following this observation, two new
algorithms are introduced with improved numerical efficiency for
searching the optimal speed profile. The first algorithm is designed
for parallel computation, whereas the second algorithm reduces the
amount of computations devoted to the search, integrate, and check
process.

A. Algorithm 1

Step 1) Compute �gw, gw as in Sec. III.C and check the feasibility of
the geometric path. Stop if the path is not feasible, otherwise
proceed to the next step.

Step 2) Compute the feasible segments �Wj on the graph of �gw
following the procedure outlined in the previous section.

Step 3) Calculate S�j for j � 0; 1; 2; : : : ; N − 1, with the
integration terminated when �gw�s� � S�j �s�, or s � sf. Let
I�j denote the interval of integration associated with S�j . Also
calculate S−

j for j � 1; 2; : : : ; N, with the integration
terminated when �gw�s� � S−

j �s�, or s � s0 and denote by I−j
the corresponding intervals of integration of S−

j .
Step 4) Let

S��s� �
�
S��s�; s ∈ I�j ;
�gw�s�; s ∈ �s0; sf � \ I�j

(68)

for all j � 0; 1; : : : ; N, and let

E�s� ≜ minfS�0 �s�; S�1 �s�; : : : ; S�N−1�s�; S−1 �s�;
S−2 �s�; : : : ; S−N�s�g (69)

If E�0� � E0, E�sf� � Ef, and E�s� ≥ g
w
�s� for all

s ∈ �s0; sf �, then the optimal speed profile is given by
Eq. (69). Otherwise the given path is not feasible.

The optimal speed profile is given by v��s� �
���������������
2E��s�

p
, and the

corresponding optimal thrust profile T��s� can be computed by
Eq. (46). By construction, the optimal thrust profile T��s� satisfies
the necessary conditions given by Proposition 4.2 and Corollary 4.1.
The control T� is indeed optimal because it maximizes pointwise the
speed, and any further increase in speed results in the violation of the
speed constraint.
Note that the search, integrate, and check process is avoided in this

algorithm. This algorithm can be implemented in parallel owing to
the following reasons: 1) Steps 1 and 4 can be performed pointwise
for different s ∈ �s0; sf �; 2) in steps 2 and 3, the computations of S−

j

and S�j are independent, hence they can be computed in parallel for
different j at the same time.
The following algorithm still preserves the search, integrate, and

check process, but the repetition of the process is reduced to a
minimum.

B. Algorithm 2

Step 1) Compute �gw, gw, and check the feasibility of the geometric
path. Stop if the path is not feasible, otherwise proceed to the
next step.

Step 2) Compute S�0 �s� and S−
N�s� with stopping criteria S�0 �s� �

�gw�s� and S−
N�s� � �gw�s�, or s � s0, or s � sf. Update

�gw�s�←S�0 �s� and �gw�s�←S−
N�s� on the corresponding

domain of integration.
Step 3) Compute �W and its segments �Wj on the graph of �gw

following the procedure outlined previously. If �gw is continuousFig. 4 Elements for the optimal E.
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and �Wc is empty, or if �gw�s0� ≠ E�s0�, or if �gw�sf� ≠ E�sf�,
then go to step 5. Otherwise, go to the next step.

Step 4) Among those �Wj for which no integration has been
performed at s�j and s−j , select the one whose distance to the s
axis is the smallest. Let its index be k. ComputeS−

k �s� andS�k �s�
with the stopping criteria S−

k �s� � �gw�s� and S�k �s� � �gw�s�,
or s � 0, or s � sf. Update �gw�s�←S−

k �s� and �gw�s�←S�k �s�
on the corresponding domain of integration, and go to step 3.

Step 5) If �gw�s0� ≠ E�s0� or �gw�sf� ≠ E�sf�, then the given path is
infeasible. Otherwise, the optimal speed profile is given by
E� � �gw.

The difference between Algorithm 1 and Algorithm 2 (as well as
the other time-optimal control algorithms in [13–16]) is illustrated in
Fig. 5. Although Algorithm 2 computes only the integrations that are
involved in the construction of the optimal speed profile, the
algorithms in [13–16] integrate the trajectory along arcs that may be
discarded later on when extending the optimal speed profile to the
final point. Hence, they are in general less efficient when compared
with Algorithm 2.

VI. Numerical Examples

In this section, two examples are used to test the feasibility and
optimality of the proposed approach. Both examples implement
Algorithm 1, for simplicity. The first example focuses on checking
the feasibility of the algorithm (i.e., whether the controls given by the
optimal parameterization method satisfy the prescribed bounds) and
whether the aircraft can follow the given path when using these
control inputs. In the second example, the given path is a minimum-
time pathwith known time-parameterization, and it is used to confirm
the optimality of the proposed method.

A. Landing Path with Two Turns

A three-dimensional path is used to test the feasibility of the
trajectories obtained using the proposed time-parameterization
method. The trajectory is shown in Figs. 6 and 7. The initial position
of the aircraft is (0,0,6) km, the aircraft flies with ν0 � 220 m∕s at

γ�0� � 0 deg path angle and ψ�0� � 0 deg heading. The final
position is (161.8,64.2,0) km, with final speed v�sf� � 110 m∕s,
path angle γ�sf� � 0 deg and heading ψ�sf� � −20 deg. The
horizontal projection of the trajectory contains two constant-rate
turning maneuvers. The atmospheric density data are taken from
[21].
The control bounds are given as follows: the lift coefficient

CL ∈ �−0.067; 1.9�, the bank angle ϕ ∈ �−25; 25� deg. The
maximum speed limit is 0.85 Mach, whereas the minimum speed
limit is vmin � 60 m∕s (134.2 mph). The wing surface area is S �
510.97 m2 and the mass ism � 288; 938 kg. These data correspond
approximately to a Boeing 747 aircraft. The aerodynamic parameters
K and CD0

are taken from [22]. These Mach-dependent parameters
are stored in look-up tables for computation. The dependence of the
maximum thrust Tmax (N) on the altitude z and Mach number M is
taken into account by the following formula:

Tmax�M; z� � �−0.007236z� 146.1968�
× �e−1.97967M�8.23 � 2133� N

which fits approximately to the JT9D-7F engine maximum thrust
data for a total of four engines.Using the optimal time-
parameterization method, the minimum-time speed profile v��s�
was computed following the approach developed in this paper and is
shown in Fig. 8. The same profile in terms of time is shown in Fig. 9.
To arrive at the final position inminimum time, the aircraft should fly
as fast as possible, however, due to the limited acceleration and
deceleration capability, the optimal velocity profile cannot stay at
vmax all the time. Within 0 ≤ s ≤ 37 km, the upper limit of the speed
is higher than 260 m∕s, but the aircraft cannot travel at thismaximum
speed because it would not be able to decelerate sufficiently fast, thus

Fig. 5 Algorithm comparison.
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Fig. 6 Three-dimensional geometric trajectory.
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Fig. 7 X-Y plane projection of the geometric trajectory.
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Fig. 8 Optimal speed profile under path coordinate.
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violating the speed upper limit within the interval 37 ≤ s ≤ 46 km,
which is induced by the first left turning maneuver. Similar scenarios
exist before the second turningmaneuver and the final point. The total
length of the path is 202.2 km, and the aircraft finishes in 1021.9 s
using the optimal thrust with an average speed of 197.9 m∕s.
The state and control histories recovered from the optimally time-

parameterized trajectory are shown in Figs. 10 and 11. As shown in
the figures, the thrust and bank angle saturate during some phases of
the flight. The saturations of the bank angle are caused by the turning
maneuvers. The saturation of the thrust leads to maximum
acceleration, which improves optimality.
To check the validity of this result, inverse dynamics are used to

recover the state and control histories from the optimal time-
parameterized trajectory �x��t�; y��t�; z��t��. For the purpose of
validation, after the control histories are calculated from inverse
dynamics, they are used as control inputs to numerically simulate the
trajectory from the given initial conditions. The new simulated
trajectory �x̂; ŷ; ẑ� is compared with �x�; y�; z�� in Fig. 12.
The discrepancy between the simulated trajectory and the original

input trajectory is estimated using the following relative error
index:

Δr � max
t

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������
x̂�t� − x��t�

max
t
x��t� −min

t
x��t�

�
2

�
�

ŷ�t� − y��t�
max
t
y��t� −min

t
y��t�

�
2

�
�

ẑ�t� − z��t�
max
t
z��t� −min

t
z��t�

�
2

vuut

For this example, Δr � 7.1 × 10−4, which is quite acceptable.

B. Time-Optimal Path

To validate the optimality of the time-parameterized trajectory, an
alreadyminimum-time landing path for a large civil aircraft was used
to test the proposed method. The path is generated using DENMRA,
which is a numerical algorithm solving optimal control problems
with an automatic multiresolutionmesh refinement scheme [23]. The
accuracy and robustness of theDENMRAhave been demonstrated in
the same reference.
The aircraft starts at an initial position of (0,0,10) km and lands at an

airport with position �130;−65; 0� km. The initial conditions are
speed v�0� � 200 m∕s, heading angle ψ�0� � 0 deg, and path angle
γ�0� � 0 deg; the final conditions are speed v�sf� � 110 m∕s,
heading angle ψ�sf� � 80 deg, and path angle γ�sf� � −30 deg.
The aircraft considered in this example is a Boeing-747. During
the whole flight, the following constraints need to be sat-
isfied: v ≤ 250 m∕s, ϕ ∈ �−25; 25� deg, CL ∈ �−0.31; 1.52�, and
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Fig. 9 Time history of optimal speed.
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Fig. 10 Optimal thrust.
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Fig. 12 Comparison of the original geometric path (dots) and the path
generated using time parameterization and inverse dynamics (line).
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Fig. 11 States and control histories of the time-parameterized
trajectory.
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T ∈ �0; 1126.3� kN. Constant aerodynamic parameters CD0
�

0.0197 and K � 0.04589 are used for this example to compute the
optimal trajectory using DENMRA.
Because the state and control histories obtained from DENMRA

are already time optimal, it is expected that the application of the
time-parameterization method to the path corresponding to the
DENMRA solution should yield the same optimal solution as that of
DENMRA. The optimal parameterization method gives a total travel
time of 548.0 s, which matches the final time of 546.9 s given by
the DENMRA. The small discrepancy observed is attributed to the
interpolation of the discrete path generated by the DENMRA and the
numerical differentiation process required by the proposed method.

As shown in Figs. 13–16, the numerical optimization result agrees
very well with that of the time-parameterization method. This
agreement validates the optimality of the time-parameterization
method and, to some extent, that of DENMRA as well.

VII. Conclusions

This paper studies the problem of minimum-time travel of a fixed-
wing aircraft along a specified path. It has been proven that, within an
interval in which the speed constraint is not active, there exists at most
one switching, which is from maximum thrust to minimum thrust,
hence the switching structure for the time-optimal control problem is
unique. Constrained arcs riding on the upper bound of the admissible
velocity can also be part of the optimal trajectory. The admissible
specific kinetic energy set is used to characterize the domain within
which the optimal specific kinetic energy profile is searched. The
admissible specific kinetic energy set is generated by considering the
constraints involving the aircraft speed and the remaining two controls,
namely, the lift coefficient and the bank angle. Hence, a search within
the admissible specific kinetic energy set naturally satisfies all state and
control constraints. The optimal thrust history is then immediately
determined from the optimal specific kinetic energy profile.
Two algorithms are proposed to solve for the thrust switching

structure. The first algorithm can be implemented in parallel, which is
difficult for other algorithms involving a sequential search, integrate,
and check pattern. The second algorithm is based on the search,
integrate, and check pattern, but improves its numerical efficiency by
eliminating unnecessary integrations. Both algorithms are very
efficient and are thus amenable to real-time implementation. These
algorithms offer a computationally attractive alternative to the
solution of the complete optimal control problem.
Tractability of the theoretical investigation of the optimal

switching structure necessitates some simplifying assumptions on
the aircraft dynamics, including small angle of attack and constant
mass. Furthermore, the effects of speed brakes and the wind are not
considered. In practical applications, the impact of these simplified
assumptions needs to be evaluated.
Apart from a stand-alone approach for suboptimal minimum-time

trajectory generation, the proposed method can also be used to
construct good initial guesses for a generic trajectory optimization
solver. Specifically, a geometric path can be optimally time
parameterized to generate a feasible initial guess of the state and
control histories, which can then be passed to the nonlinear
programming solver as an initial guess for further improvement of the
original path.
Finally, it is worth emphasizing that the proposed theoretical

analysis is not intended as a substitute of purely numerical trajectory
optimization approaches. The latter are unavoidable for high-fidelity
trajectory generation. Rather, it is expected that the proposed
theoretical analysis of a problem should be used hand-in-hand with
solid and accurate numerical solutions to generate optimal trajec-
tories in real time and with a high degree of confidence.
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