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This paper presents several classes of control laws for steering an agent, that is, an aerial or marine vehicle, in the
presence of a both temporally and spatially varying drift field induced by local winds/currents. The navigation
problem is addressed assuming various information patterns about the drift field in the vicinity of the agent. In
particular, three cases are considered: namely, when the agent has complete information about the local drift, when
the drift field is partially known, and when the drift field is completely unknown. By first establishing a duality
between the navigation problem and a special class of problems of pursuit of a maneuvering target, several
navigation schemes are presented, which are appropriately tailored to the fidelity of the information about the local
drift available to the agent. The proposed navigation laws are dual to well-known pursuit strategies, such as pure
pursuit, parallel guidance/navigation, line-of-sight guidance, motion camouflage, and pursuit with neutralization.
Simulation results are presented to illustrate the theoretical developments.

Nomenclature
C' = setof continuously differentiable functions
el = unit vector parallel to the line of sight
e2 = unit vector perpendicular to the line of sight
LC = setof Lipschitz continuous functions
{i s = ray defined by the line of sight
R? = setof two-dimensional real vectors
T, = arrivaltime,s
u = forward velocity vector of the agent, m/s
u = maximum forward speed of the agent, m/s
up = velocity vector of the pursuer, m/s
w = known component of the drift field, m/s
w = upper bound on the norm of w, m/s
X = position vector of the agent, m
Xp = position vector of the pursuer, m
X7 = position vector of the maneuvering target, m
Aw = unknown component of the drift field, m/s
Aw = upper bound on the norm of Aw, m/s
& = tolerance of miss-target error, m
A = angle of the line of sight measured with respect to a

fixed reference axis, rad

L

his paper deals with the problem of characterizing navigation

laws for steering an agent in the presence of a both spatially and
temporally varying drift field induced by local winds or currents. The
problem is a variation of the classical Zermelo navigation problem
(ZNP) [1], which seeks a navigation law to steer an agent with single
integrator kinematics to a prescribed destination in the presence of
drift in minimum time. In contrast to the solution of the classical ZNP,
which yields noncausal/anticipative controllers that require, in
general, global and perfect knowledge of the drift field, the objective
of this work is to characterize instead causal/nonanticipative steering
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laws that require only partial and local knowledge of the drift field;
consequently, these navigation laws are robust to uncertainties
arising from incomplete information about the local drift field
dynamics.

Semi-analytical and numerical solutions to the ZNP have been
recently reported in [2-8]. In all these references, it is assumed that
the agent has a priori, perfect and global information about the drift
field. In this work, the navigation problem is addressed in the more
realistic case when the information about the drift available to the
agent is limited, and possibly uncertain. In particular, three cases are
considered: 1) the agent has perfect and reliable knowledge of the
local drift, 2) the knowledge of the local drift field is imperfect, and
3) the local drift field is completely unknown. With the proposed
navigation schemes, useful insights can be gleaned for a large
spectrum of applications, ranging from path planning, vehicle
routing, to motion coordination for, say, environmental monitoring
or surveillance and reconnaissance missions in the presence of drift,
thus extending the available results in the literature, which typically
deal with cases when the drift is either a priori known or completely
ignored [3,5,8-13].

The main contribution of this work is the characterization of
feedback navigation laws that are tailored to the fidelity of the
information about the local drift available to the agent. The design of
these feedback navigation laws is based on the duality between the
navigation problem and a special class of pursuit problems of a
maneuvering target. This duality was originally demonstrated for
special cases of the drift vector field, namely, when the drift is
constant, when it varies uniformly with time, and when it is a time-
varying affine field [6,14—17], and it is established for general, both
temporally and spatially varying, drift fields in this work. After
having elucidated the connection between the navigation and the
pursuit problems, several navigation laws that are dual to some well-
known pursuit strategies are presented. First, two classes of
navigation laws that require perfect, but only local, information about
the drift field are introduced. The navigation laws of the first class
constraint the agent to move along the line of sight, that is, the
direction defined from the agent’s position to its destination (line-of-
sight navigation), whereas the second navigation law is the dual to a
well-known pursuit strategy, namely, line of sight or three-point
guidance [18]. Feedback navigation laws that are robust to model
uncertainties induced by the incomplete information about the drift
field in the vicinity of the agent are subsequently presented. Finally,
the navigation problem in the presence of a completely unknown
drift field is addressed by employing a feedback navigation law that
steers the agent’s forward velocity so that it always points toward
its destination. This navigation law is the dual to the well-known
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pure-pursuit strategy, also known as hound-hare pursuit [18] or
direct-bearing pursuit [19]. For each of the proposed navigation
laws, a set of sufficient conditions for the convergence of the agent to
its destination in finite time are presented. These conditions highlight
an important distinction between the problems of pursuit and
navigation, namely, that the navigation problem may be feasible for
cases when its equivalent pursuit problem is not feasible. This
situation occurs as a result of the different underlying assumptions in
the formulation of the two problems. In particular, in the navigation
problem, the notional opponent of the agent, whose evading strategy
is induced by the local drift field, does not necessarily act as an
adversarial, noncooperative opponent, as is the case in the classical
pursuit problem. In addition, the optimality (or near optimality) of the
proposed navigation schemes is highlighted by elucidating their
interpretation as gradient descent control laws derived from
heuristics of the time-to-come function taking into account the
information about the local drift available to the agent. Besides the
novel contribution of this work regarding the characterization of
causal/nonanticipative feedback navigation laws in the presence of
an uncertain drift field, this paper also has a pedagogical value
stemming from useful insights gained by reinterpreting and
reevaluating known pursuit strategies from an information-centric
perspective.

The rest of the paper is organized as follows. Section II discusses
the formulation of the navigation problem in the presence of a both
time and spatially varying drift field. Section II introduces
navigation laws that require perfect knowledge of the local drift. The
problem of navigation with imperfect or complete lack of
information about the local drift is discussed and analyzed in
Sections IV and V, respectively. Section VI highlights the inter-
pretation of the presented navigation laws as gradient descent laws in
terms of appropriate performance indices. Simulation results are
presented in Sec. VII. Finally, Sec. VIII concludes the paper with a
summary of remarks.

II. Formulation of the Navigation Problem
Consider an agent whose kinematics are described by

X=u+ w(x) + Aw(t, X), x(0) =X, (1)
where x :=[x, y]T € R? and X, :=[xy, y,]" € R? denote the
position vector of the agent at time 7 and ¢ = 0, respectively, and u is
the control input (velocity vector) of the agent. It is assumed that
u € U, where U consists of all piecewise continuous functions taking
values in the set U = {u € R?: |u| < i}, where i is a positive
constant (maximum allowable forward speed), and | - | denotes the
standard Euclidean vector norm. Furthermore, w(X) + Aw(t, X) is
the drift induced by the winds/currents in the vicinity of the agent. In
particular, w(X) denotes the component of the local drift that is
perfectly known to the agent, and which is assumed to be at least C'
in the domain of interest. The term Aw(¢, X) denotes the unknown
component of the drift and is assumed to be a piecewise continuous
function of time ¢, and C' with respect to the agent’s position X.
Furthermore, it is assumed that there exist w > 0 and Aw > 0, such
that

[Aw(t,X)| < Aw, forallt>0 and x e R?
®)

lwXx)| = w,

A. Formulation of the Minimum-Time Navigation Problem

First, the classical ZNP [1] is revisited. The ZNP deals with the
characterization of a navigation law to steer an agent, whose
kinematics are described by Eq. (1), to a prescribed destination in
minimum time, in the special case when the drift is perfectly known,
that is, when Aw(z, X) = 0 (deterministic minimum-time problem).

Problem 1 (ZNP) Let the system described by Eq. (1) with
Aw(t,X) = 0. Determine a control input u, € U, such that

1) The trajectory X,: [0, Tf]|—>R2 generated by the control u,
satisfies the boundary conditions

X *(0) = Xo, X*(Tf) =0 (3)
2) The control u#, minimizes, along the trajectory X,, the cost
functional J(u) := Tf, where 0 < Tf < 00 is the free final time.
It can be shown that the control law that solves Problem 1 has
necessarily the following structure:

u, = ifcosf,, sinf, ] )

where 6, satisfies the following differential equation, known as the
navigation formula (for more details, see, for example, [20,21])

6, = v,(x,)sin’6, — 1, (X,)c0s*0, + (j1,(X.)

—v,(X,)) cos 0, sin 0, (5)
where w:= [, v]' and p,:=0u/dx, w,:=09u/dy, v, =
dv/0dx,and v, := dv/dy. Itfollows that the candidate optimal control
u, is determined up to a single parameter, namely, 6 = 6,(0) €
[0, 27), from Egs. (4) and (5); the optimal control is consequently
written as u,(t;60). One immediately observes that a candidate
optimal control of the ZNP depends explicitly on the current position
vector X,, as well as both the drift w and its Jacobian matrix dw/dX,
through the navigation formula (5). Therefore, the ZNP cannot be
solved in practice, unless the agent has a priori perfect and global
knowledge of the drift vector field w(x), in which case the ZNP can
be addressed as a standard, deterministic two-point boundary-value
minimum-time problem. The objective of this work is to derive
feedback navigation laws that require information about the drift
field only in the vicinity of the agent, and which are completely
independent of the Jacobian of the drift field (navigation with local
information).

B. Formulation of the Navigation Problem with Local Information

Next, the problem of characterizing feedback navigation laws for
different information patterns regarding the drift in the vicinity of the
agent is considered. To this end, let the kinematics of the agent be
described by Eq. (1) as before, but with the distinctive difference that
u(X) is a state feedback control law. In particular, it is assumed that
u € Uy, where

Usi={f e LCR\{0}): fXx) €U, VY x#0}
and where LC(R?\{0}) denotes the set of all locally Lipschitz
continuous functions on R?\{0}. Different information patterns
regarding the drift in the vicinity of the agent are considered:

1) The driftis perfectly known only in the vicinity of the agent, that
is, w(x)=£0, and Aw(t,x) = 0.

2) The drift is not known perfectly, that is, w(X)=0, and
Aw(t, x)£0.

3) The drift is completely unknown, that is, w(X) =0, and
Aw(t, x)=0.

Next, the navigation problem, when the drift field is only locally
known, is formulated.

Problem 2. Let the system described by Eq. (1), where, at every
instant of time #, only the local drift field w(X) is known. Given & > 0,
determine a control input u € U;, such that the trajectory
x: [0, T/]—R?* generated by the control u satisfies, for every
[Xo| > ¢, the boundary conditions

X (0) = Xo, X(Tp)| < e (6)
for some 0 < T, < oo.

One of the differences between Problem 1 and Problem 2 is that in
the formulation of the latter, the requirement that the agent should
exactly reach its destination in minimum time has been relaxed.
Instead, in Problem 2, and in order to account for the possibility of
imperfect knowledge of the local drift field, itis only required that the
agent reaches a ball of radius ¢ centered at X =0 in finite time.
Furthermore, the control law that solves Problem 2 has been
restricted to the class of (time-invariant) state feedback control laws,
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which satisfy standard regularity properties guaranteeing that the
mathematical model of the closed-loop system is well posed.

C. Navigation Problem as a Problem of Pursuit
of a Maneuvering Target

Next, the interpretation of the navigation Problem 2 as a problem
of pursuit of a maneuvering target is discussed. To this end, consider
apursuer and a moving target whose kinematics are described by the
following set of equations:

Xp = up(Xp, Xr), Xp(0) = Xo 7

).(T = —w(Xp, XT) — Aw(l, Xp, XT), XT(O) =0 (8)

where

Xp = [xp, yp]l €R?, Xri=[x7. yr["€R?
are the position vectors of the pursuer and the moving target at time ¢,
respectively. In addition, up € Up 7, where

Upsi={f e LCR'\M): f(x) e U, Vx¢ M}

and M = {(Xp,X7) € R*: Xp = X;}. Furthermore, —w(Xp, X7) —
Aw(t, Xp, X7) is the target’s velocity, where w(Xp, X7) (the known
component of the instantaneous target’s velocity) and Aw(t, Xp, X7)
(the unknown component of the instantaneous target’s velocity)
satisfy the same regularity conditions as in the formulation of the
ZNP. Next, a problem of pursuit of a maneuvering target, which, as
shown later, turns out to be equivalent to Problem 2, is presented.
Problem 3. Let the kinematics of a pursuer and a moving target be
described by Eqs. (7) and (8), respectively, and assume that, at each
instant of time, the pursuer has only knowledge of —w(X). Given
€>0, find a control law up € Up;, such that the trajectories
Xp(-;up) and X7 (-; —w — Aw) generated by up and —w — Aw,
respectively, satisfy, for all |X,| > €, the boundary conditions

Xp(0) = Xy, X7(0) =0
[Xp(Tys up) — X7 (Tp; —w — Aw)| < ¢ )

for some 0 < T, < 0.
Let one consider the special case when

up(Xp, X7) = up(Xp — X1), w(Xp, Xr) = wW(Xp — X7)

Aw(t, Xp, X7) = Aw(t,Xp — X7)
By taking X = Xp — X7 and u = up, it is easy to see that

X = up(Xp — X7) + wXp — X7) + Aw(t,Xp — X7)
=u(X) + w(X) + Aw(t, X) (10)

Furthermore,

X(0) = Xxp(0) — x7(0) =X,
X(Tp)| = [Xp(Ty; up) — X7 (Ty; —w — Aw)| < ¢

Therefore, a navigation law u that solves Problem 2 is also a pursuit
law up that solves Problem 3, and vice versa. This correspondence
between Problem 2 and Problem 3 is an illustration of the duality
between the navigation problem and the problem of pursuit of a
maneuvering target, in the special case when both the motions of the
pursuer and the target are described by single integrator kinematics,
and, in addition, their strategies are functions of their relative
positions with respect to each other. By making use of this duality
between the navigation and the pursuit problems, navigation laws
that are dual to well-known pursuit strategies are proposed in the next
section. Furthermore, the equivalence of some intuitive solutions to
the navigation problem with standard pursuit strategies is
established.

III. Navigation with Perfect Local Drift Information

First, a class of feedback laws solving Problem 2, when the agent
has perfect knowledge of the local drift, that is, when Aw(z,x) = 0,
is considered. Before proceeding with the presentation of this class of
navigation laws, a few geometric concepts that shall be extensively
used throughout this paper are introduced. In particular, it is assumed
that a moving frame (e, €2) is attached to the current position of the
agentX, where e} := —x/|x|, and €2 := Se}, forallx € R?\{0}, and

where
10 -1
§:= |:1 0 ]

Note that e} is the unit vector parallel to the direction toward its
destination (origin) as observed by the agent, whereas €2 is the unit
vector perpendicular to e}. The ray emanating from the agent’s
current position parallel to e} is henceforth referred to as the line of
sight (LOS), and it will be denoted by {;¢(X) := {z € R*: z=
pX, p € [0, 1]}. After some algebraic manipulations, one can show
that

o (x.eQ) , L (X.e5)

= , = el 11
|X| X X |X| X ( )

X

Furthermore, let A denote the angle of the LOS measured with
respect to some fixed reference direction, as illustrated in Fig. 1. It
follows readily from Eq. (11) that the rate of change of A is given by

(X, e5)

M=

12)
The following identity will be useful in the subsequent discussion,

d d d .
2|X| — x| = — x> = — (X, X) = 2(X, 13
|x|dt|x| dz|x| & (X, X) (X, X) (13)

which implies that

d ., _ (X, X) 4y el )
a|x| =N (x,ey), forall x € R*\{0} (14)

A. Line-of-Sight Feedback Navigation Laws

In this section, a class of feedback navigation laws that steer the
agent to its destination, such that the agent remains at all times on
£ 5(Xy) is presented. In particular, two different navigation laws,
which constraint the agent to travel along the LOS by canceling the
component of the drift perpendicular to e,l(o, are considered.

The first navigation law steers the agent toward its destination
while the latter maintains, at all times, maximum forward speed u as
it travels along ¢; 5(X,). The situation is illustrated in Fig. 2a. This
navigation law will be henceforth referred to as the optimal line-of-
sight (OLOS) navigation, since among all navigation laws that steer
the agent along the original LOS, it is the one that pointwise
maximizes the speed along the ensuing path. The analytic expression
of this feedback law is given by

Fig. 1 Global and local frames of reference.
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Fig. 2 Motion along the LOS direction is achieved when the agent’s
forward velocity can cancel the drift component perpendicular to the
LOS direction.

uoLs(X) = uors,1 (X)ex, + Uops2(X)€x,

Uors,1 (X) 1= /2 — (w(x), e>2(0>2

UuoLs2(X) = —(w(x), ex,) (15)

The following proposition provides sufficient conditions for the
feasibility of the navigation law (15).

Proposition 1.Let ¢ > 0 and Aw(t,X) = 0. Then, for all |X,| > &,
the navigation law (15) will drive the system (1) to the set {x: |X| <
&} in finite time, provided there exist w; > 0 and w, > 0, such that

(w(x). e5) <, < \Ji* — w3 (16)

w(x).ex)| < w, <i a7

for all x € £;5(X,). Finally, the time of travel satisfies the upper
bound

X p—
Tf<|°|78<oo (18)

= A2 =
u—w; —w,;

Proof. Note that Eq. (17) guarantees that ug; g (X) is well defined
along {; 5(X,). Furthermore, in view of Eq. (17), it follows that

wous 1 (0 = @ — (w(0.,) > /a2 —d}  (19)

In addition, it follows readily, after plugging Eq. (15) into Eq. (1),
and in light of Eqgs. (16) and (19), that

d .
@ IX| = — (X, e,) = —(uoLs(X) + w(X), ey, )

= —uoLs, (X) — (w(X), 5,) < -y i — w3 + w, (20)

Note that Eq. (16) implies that the right-hand-side of Eq. (20) is
strictly negative, and thus, the navigation law (15) will drive the
system (1) to the set {x: |X| < &} in finite time, for all |X,| > .
Furthermore, Eq. (18) follows after integrating both sides of
Eq. (20). O

Note that Proposition 1 implies that the navigation law (15) solves
Problem 2, provided the drift component perpendicular to ey, can be
canceled by the agent’s control actions, and furthermore, the
projection of the drift on —ey, (opposite of the LOS direction) never
dominates the forward speed of the agent. The reader should notice
here that conditions (16) and (17) may hold even if |w(X)| > u, for
some X € £ 3(X,). Thus, the standard assumption, which is typically
made in problems of pursuit of a maneuvering target, where the
pursuer is assumed to have a speed advantage over the target, has
been relaxed. Note that if the target is faster than the pursuer, then the
former can always escape capture by simply traveling along the
original LOS direction with its maximum speed. In the problem of
navigation, the assumptions for the feasibility of the navigation law
(15) can be relaxed given that the notional maneuvering target, whose
velocity is —w(X), may not necessarily act as an adversarial, non-
cooperative opponent, in contrast to the classical pursuit problem.

Next, a second navigation law that will enforce motion of the agent
along ¢; 5(X) is introduced.

The expression of this control law is given by

unps(X) 1= unps (X)ey, + uncs2(X)ex,
s, (X) 7= it — [wX)| — (w(x), ey,
unis2(X) == —{w(x), eiu) (21)

The interpretation of navigation law (21) is as follows: The agent
first completely “cancels” the effect of the drift, and subsequently
allocates the remaining control authority along the original LOS. The
navigation law (21) may be particularly useful during the last phase
of the navigation process and, in particular, as the agent approaches
its final destination. Note that the navigation law (21) can also be
written as follows

unLs(X) = —w(x) + (@ — [wx)|)e, (22)

The situation is illustrated in Fig. 2b. One important observation
here is that |uy; s (X) |2, forall X € £; 5(X), thatis, the agent may not
necessarily maintain maximum forward speed along its ensuing path.
This may be useful when the agent is approaching a landing/docking
point (rendezvous problem), where a “smooth” final approach is
more important than a fast one. Note, furthermore, that |uy; s (X)| = &
only if w(x) = —|w(x)|ey,, in which case, the navigation laws (15)
and (21) turn out to be exactly the same.

The following proposition provides a sufficient condition for the
feasibility of the navigation law (21).

Proposition 2. Let e > 0 and Aw(z,X) = 0. Then, for all |Xy| > &,
the navigation law (21) will drive the system (1) to the set {x: |X| <
¢} in finite time, provided there exists w > 0, such that

lwX)| < w < i, forall x € £;(Xy) (23)

Finally, the time of travel satisfies the upper bound

Xo| — &
<|_L<oo

= = (24)
i—w

Ty

Proof. Note that Eq. (23) implies that the component of the drift
w(X) can be canceled by the agent’s forward velocity. In addition, by
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plugging Eq. (21) into Eq. (1), and by virtue of Eq. (23), it follows
readily that

d .
5|X| = —(X. ex,) = —(un1s(X) + w(x), ex)

= —((u — lw(x)])ey,. ex,) = —(it — ) (25)

The rest of the proofis similar to the proof of Proposition 1, and itis
thus omitted. 0

One of the main drawbacks of the feedback law (21), compared
with Eq. (15), is that for its application it is necessary that the control
authority of the agent always dominates the drift as the agent moves
along the original LOS. Note that Eq. (23) is more restrictive than
conditions (16) and (17). Another restriction of the navigation law
(21) has to do with the fact that, as it has already been mentioned,
when the agent is driven by this law, it may not maintain constant
forward speed along its ensuing path. This may be an undesirable
situation for several applications, say, fixed-wing unmanned aerial
vehicles, where the forward speed of the aircraft must remain, at all
times, above stall speed. On the other hand, as it has already been
mentioned, the navigation law (21) may be more practical than
Eq. (15), when, for example, a smooth final approach is more
preferable than a quick one.

It is interesting to note that the control law (21) corresponds to a
pursuit strategy known as “pursuit with neutralization” [15]. With
this strategy, the pursuer first neutralizes the action of its opponent
(maneuvering target) and, subsequently, uses the remaining control
authority (provided the pursuer has a speed advantage over its
opponent) to diminish their relative distance.

B. Three-Point Navigation and LOS Guidance

Next, a navigation scheme that, in contrast to the navigation laws
(15) and (21), does not require the forward velocity of the agent to
dominate the component of the drift perpendicular to the LOS
direction is presented. The proposed navigation is derived from a
well-known pursuit strategy, namely, the LOS or three-point
guidance law [18]. It turns out that this pursuit strategy enforces the
geometric constraint of motion camouflage with respect to a fixed
point [22,23], which stipulates, in turn, that the position vector of the
pursuer with respect to the reference point X, is, at all times, parallel
to the position vector of the target with respect to the pursuer.
Equivalently, the pursuer always lies on the line segment defined by
the target’s current position and the reference point X,. It is worth-
mentioning that the term “motion camouflage” was first coined by
Srinivasan and Davey to describe an effective deception strategy
adopted by various animal and insect species, where a pursuer (the
shadower) conceals its apparent motion from an evader (the
shadowee) by emulating the optical flow produced by a stationary
point [22]. By eliminating any motion parallax, the pursuer’s motion
reduces the ability of the evader to accurately obtain depth
information regarding its actual relative distance from the pursuer
[22]. Depending on whether the distance of the fixed reference point
from the pursuer is finite or infinite, one refers to “motion camouflage
with respect to a fixed point” and to “motion camouflage with respect
to a point at infinity,”, respectively. While in the former case the
pursuer’s strategy is to match the angular velocity of its motion with
that of the target, in the latter, the pursuer’s line of sight has a fixed
direction in space.

Note that the LOS guidance law is a pursuit strategy that entails
two LOS directions, namely, the direction from X, to Xp, and the
direction from Xp to X;. Alternatively, the same pursuit strategy
involves three points of interest, namely, X, Xp and X7, which must
remain collinear at all times. The situation is illustrated in Fig. 3.

In this section, the applicability of the LOS guidance law to the
navigation problem, when the drift field is only partially known, is
examined. To this end, let A, and A, denote, respectively, the angular
positions of the pursuer and the target from X, with respect to some
fixed reference direction, at time ¢. With the aid of Fig. 3, one can

observe that the motion camouflage condition implies that Ap = A .

[x7 (t2) — xol

Fig. 3 LOS or three-point guidance is synonymous to motion
camouflage with respect to a fixed point.

Thus, the components of the velocity of both the target and the
pursuer perpendicular to e} (or e}(,p) satisfy

(up.ex) _ _ (wXp—X7).6%) _  (w(x).€5)
[Xp — X X7 — Xol X7 — X
X), e2
_ w.e) 06
[Xp —Xo| + |X]|
in light of the identity
X7 —Xo| = X7 — Xp| + [Xp — Xo| = [X| + [Xp — Xo] 27

which follows, in turn, from the collinearity of X,, Xp, and X;.
Therefore,

[Xp — X

2
o]+ (00 &) 8)

(u'P7 ei) =-

and the expression of the pursuit strategy up for LOS guidance is
given by

up(X, Xp) = up (X, Xp)€y + p (X, Xp)€x

up (X, Xp) = /ir* — ”%,z(xﬁ Xp)
[Xp — X 2
X, Xp) 1= ————__{(w(X), e 29
up (X, Xp) Xp —Xo] + IX] (w(x), &) (29)

Note that the pursuit strategy (29) depends explicitly on both X and
Xp. Therefore, the control law (29) cannot be used directly as a
navigation law for the system (1), since it depends on Xp, in addition
to the current location of the agent X. Before applying the control law
(29) to the navigation problem, the kinematic model described by
Eq. (1) needs to be dynamically extended to the following kinematic
model:

X = urpn (X, Xp) + w(X), X(0) = X%, (30)

Xp = urpn(X, Xp), Xp(0) =X (€20
where urpy (X, Xp) = up(X, Xp). The control law urpy is henceforth
referred to as the three-point navigation law.

One noteworthy observation for the three-point navigation law
uppy is that the component of u, perpendicular to the LOS direction
never dominates the component of the drift along the same direction,
as it follows readily from Eq. (29). Consequently, the agent driven by
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Eq. (29) does not travel along the LOS. This fact may incur some loss
of performance, in terms of minimizing the arrival time, when
compared with Eq. (15) (see also the discussion in Sec. VI regarding
the local optimality of Eq. (15)). On the other hand, the applicability
of the control law (29) may not be limited to navigation problems
where the control authority of the agent can cancel the term
{(w(x), €2). This is in contrast to the navigation laws (15) and (21),
which cannot guarantee convergence of the agent to its destination in
the case when the component of the drift along €%, is stronger than the
control authority of the agent. Another advantage of the navigation
law (29), compared with Eqgs. (15) and (21), is its robustness in the
presence of unknown drift. This is demonstrated in Sec. IV.B.
Proposition 3. Let ¢ > 0 and Aw(z,X) = 0. Then, for all |X,| > ¢,
the navigation law (29) will drive the system (1) to the set {x: |X| <
&} in finite time, provided there exist w; > 0 and w, > 0, such that

(w(x), ex)| <y < /> — w3 (32)

<

[(w(x). )] < w, (33)

for all x € R?\{0}. Furthermore, the time of travel satisfies the upper
bound

X —
T, < _lme (34)
W —w; —w
2 1
It follows from Eq. (33) that
Xp — Xol

ml(w(xxei)l < {wr(x), €3)| <,

lup (X, Xp)| =
(35)

which implies, in turn, that

i (%, Xp) = ([ — o (X, %p) = i — 03

for all (X, Xp) € R*\{0, Xo}. Furthermore, it follows that

&1 = —(k el = (a0 + (). &}

= —up,i(Xp, X) — (w(X), &) < —/it® — w3 + W, (36)

The rest of the proof follows similarly to the proof of Proposition 1,
and thus it is omitted. O

C. Navigation with Local Drift Information and Pursuit
with Motion Camouflage

A common theme in both the navigation laws (15) and (21) is that
when the agent is driven by either of these two control laws, its
direction of motion is constant and parallel to e}(O (the original LOS
direction). The interpretation of the previous observation, within the
context of the problem of pursuit of a maneuvering target, is that the
relative position vector of the pursuer from the target remains, at all
times, parallel to a constant vector, namely, ey . Equivalently, the
relative angular position of the target from the pursuer, and vice
versa, is constant. Therefore, both the pursuit strategies up(X) =
uors(X) and up(X) = uyns(X) satisfy the so-called requirement for
motion camouflage with respect to a point at infinity [22], also known
in the field of missile guidance as the condition for parallel guidance/
navigation [18]. Note that motion camouflage with respect to a point
at infinity results in a navigation strategy where the original LOS
direction remains always fixed, as illustrated in Fig. 4.

Another way to reach the same conclusion is by showing that when
the pursuer is driven by either the control law (15) or Eq. (21), the
LOS angle A remains constant during the course of the pursuit. In
particular, in light of Eq. (12),

o Bo—knel)  (x.Sel -
X = 7] B

It is easy to show that when the pursuer is driven by either the
control law (15) or Eq. (21), the vector X = X — X7 remains parallel
to e} = e,{o. Consequently, the inner product in the numerator of
Eq. (37)is zero, given that S is a skew symmetric matrix, and thus A is
constant at all times. Note that when the agent is steered by either the
LOS navigation law (15) or Eq. (21), it will remain on the original
LOS during its course to its destination, and thus the points X, X,, and
the origin X = 0 will always be collinear. Thus, both of the navigation
laws (15) and (21) satisfy the condition for motion camouflage with
respect to a fixed point, namely, X, rather than the condition for
motion camouflage with respect to a point at infinity, which is
satisfied, when Eq. (15) or Eq. (21) are used as pursuit strategies.

The three-point navigation law is derived directly from the pursuit
strategy (29), which satisfies, by construction, the geometric
condition for motion camouflage with respect to a fixed point,
namely, X,. Note that the geometric condition for motion camouflage
with respect to neither a fixed point (that is, collinearity of X,, X and
the origin) nor a point at infinity (that is, A = 0) are necessarily
satisfied when the control (29) is used as a navigation law.

IV. Navigation with Imperfect Information

In this section, feedback navigation laws for the case when the
information about the local drift field available to the agent is
imperfect are presented. The proposed navigation laws are derived
from the control laws presented in Sec. III, after the necessary
modifications reflecting the lack of complete knowledge of the drift
field have been carried out. Specifically, note that the control laws
(15) and (21) depend on the initial LOS direction e/, and its normal
direction €%, and both of them remain constant throughout. By
updating the initial LOS direction with the most current LOS
direction €}, and its corresponding normal direction by €2, the control
law can use the most up-to-date information of its relative position to
its destination. In other words, the drift components along the current
LOS direction and its perpendicular entail enough information about
the prevailing wind/current field so that the controller can
compensate its effect on the ensuing path of the agent.

A. Robust LOS Navigation Laws with Imperfect Local Information
of the Drift

One important remark from the discussion in Sec. IIl is that for the
implementation of both the navigation laws (15) and (21), the agent
must have perfect knowledge of the local drift at every instant of time.
If the local drift is not known perfectly, however, that is, Aw(, X) =0,
then the navigation laws (15) and (21) will not successfully cancel the
component of the drift perpendicular to the LOS direction.
Consequently, the agent may fail to reach its destination. To alleviate
this deficiency, two variations of the navigation laws (15) and (21),
which are robust to model uncertainties induced by the incomplete
knowledge of the local drift field, are introduced.

The adopted approach is based on the observation that, in contrast
to the pursuit problem, where motion camouflage is often used to
introduce the element of deception, the enforcement of the geometric
condition for motion camouflage in the navigation problem has no
apparent practical value. Therefore, one can relax the motion
camouflage requirement and consider instead the following
modification of the navigation law (15):

ubs(X) = udy s, (X)ex + M6LS,2(X)e§
Usrs, (X) = i — (w(x), 5)?
Uds 2 (X) = —(w(X), &) (38)
Note that the navigation laws (15) and (38) are almost identical
modulo the replacement of e, and 3, by ey and e}, respectively,

which is induced, in turn, by the relaxation of the geometric
constraint of motion camouflage. As shown below, the navigation
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x7(0)

XPp (O) = Xo

Fig. 4 Motion camouflage with respect to a point at infinity is
synonymous to parallel guidance/navigation, where the LOS angle
between the pursuer and the target, when measured with respect to some
fixed reference direction, remains constant at all times.

law (38) is more robust than the original navigation law (15) in the
presence of unknown drift. The performance of Eq. (38) in terms of
minimizing the arrival time, however, is still compromised by the
existence of an unknown drift. In particular, in the presence of a
nonzero component of the unknown drift along €2, the inertial
velocity of the agent will not point toward the agent’s destination, as
is the case with the navigation law (15), when the local drift is
perfectly known. Therefore, there exists an offset error between the
direction of the inertial velocity of the agent and the current LOS,
which incurs some loss of performance (see also the discussion in
Sec. VI regarding the interpretation of the LOS as the direction that
maximizes the rate of decrease of the distance of the agent from its
destination). The situation is illustrated in Fig. 5.

The following proposition furnishes sufficient conditions for the
feasibility of the navigation law (38).

Proposition 4. Let ¢ > 0. Then, for all |Xy| > &, the navigation law
(38) will drive the system (1) to the set {x € R?: |X| < &} in finite
time, provided there exist w; > 0 and w, > 0, such that

[{w(X) + Aw(t, X),el)| < w, < \/u? — w3 (39)

(w(x), ex)] < w, <it (40)

Fig. 5 Robust LOS navigation. The direction of motion of the agent
does not always align with the current LOS owing to the presence of the
unknown drift component Aw.

for all x € R?\{0}. Furthermore, the arrival time satisfies the upper
bound

X J—
Tf§7| ol=¢ & @1)

= = =
VU= w; —wy

Proof. The proof follows similarly to the proof of Proposition 1,
and thus it is omitted. O

Similarly, one can consider a variation of the navigation law (21),
whose expression is given by

ups (X) = uys ()€ + “ﬁILs,z(X)ei

Ups, () = i — [wX)| = (w(x), &)
Ul s (X) = —(w(x), ex) (42)

The following proposition presents sufficient conditions for the
feasibility of the navigation law (42).

Proposition 5. Let ¢ > 0. Then, for all |X,| > ¢, the navigation law
(42) will drive the system (1) to the set {x € R?: |X| < &} in finite
time provided there exist w > 0 and Aw, > 0, such that

[wx)| = w <i (43)

[{Aw(t,x),e))| < Aw; <u—w (44)

for all 7 > 0 and x € R?\{0}. Furthermore, the time T, satisfies the
upper bound

T/<s————<o0 (45)

Proof. The proof follows similarly to the proof of Proposition 2,
and thus it is omitted. O

If one uses the navigation laws (38) or (42) as pursuit strategies for
Problem 3, then the condition for motion camouflage with respect to
a point at infinity will not be satisfied. This comes as a consequence
of the fact that any discrepancies between the actual and the known
drift would result in anonzero A, in general. In particular, it can easily
be shown that

2
); - _ (Aw(i;()r)? ex) (46)

Since A is not zero for Aw(z,X) # 0, the constant LOS angle
requirement (the condition for motion camouflage with respect to a
point at infinity) is not satisfied. Another important observation from
Eq. (46) is that as |[x| — 0, A grows unbounded, which implies, in
turn, that the normal acceleration of the agent along its ensuing path
grows unbounded as well; this is an undesirable, from the application
point of view, situation. The following proposition furnishes a
sufficient condition for A to remain bounded at all times.

Proposition 6. Let ¢ > 0, and let all assumptions of Propositions 4
and 5 hold. Furthermore, assume that there exists Aw > 0, such that

[Aw(t,x)| < Aw, forallt>0 and XxeR? 47)
If Aw(t,x) = O(|X|), as |X| = O uniformly for all # > 0, then A
remains bounded for all ¢ € [0, 7] and for all [Xy| > &.

Proof. By hypothesis, there exists k(g) >0, such that
|[Aw(t,x)| < k(e)|X|, for all >0 and |X| < e. Furthermore, by
virtue of the Cauchy—Schwartz inequality, it follows that

) _
[{Aw(t,X), &) < [Aw(z, X)| Sﬂ
x| x| 3
forall >0 and Xxe€{yeR> |y|>e} (48)
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In light of Eqgs. (46) and (48), it follows that

[{Aw(1,x), €3]

NE i < max{k(e), Aw/e} < 0o
forall 1> 0 and xe R?\{0} (49)
and thus completing the proof. O

B. Robust Three-Point Navigation

In case the local drift is not perfectly known, that is, when
Aw(t, X)£0, the pursuit strategy (29) will not satisfy the condition
for motion camouflage with respect to a fixed point, that is, the points
Xp, X7 and X, may not be collinear at all times. Since the enforcement
of the motion camouflage condition has no apparent practical value
for the navigation problem, one can proceed with the design of a
navigation law, at the geometric level, by relaxing the motion
camouflage constraint. In particular, it is assumed that the condition
for motion camouflage is satisfied with respect to a moving point,
denoted henceforth by Xj(¢), rather than with respect to the fixed
point X,. This variation of the navigation law (29) is denoted by uJpy.

Let the moving reference point x;(7) be defined, for all # > 0, by
the following set of equations:

[Xp (1) — X5 ()] = [Xp(£) — Xo| (50)

(Xp(1) = X5 (1), €x) = [Xp () = X5 (1) (1

It follows readily from Eq. (51) that X»(7), Xj (), and X (f) are
collinear for all + > 0, and, furthermore,

[x7(2) = X5 ()] = Xp(t) = X5 ()] + [X7 (1) — Xp ()] (52)

The situation is illustrated in Fig. 6. It follows readily that, at each
time ¢ >0, the moving reference point Xj(#) belongs to the
intersection of a circle centered at X, with radius |Xp(f) — Xo| with
the line defined by X (¢) and X (). As it shall be explained later, the
exact location of xj(#) will not affect the analytic expression of the
navigation law. Indeed, in light of Eq. (52), it follows that

(w(x), e3)
= — 53
o+ x| O

_ (w(x), e5)
X7 — X3

(5o (. Xp). €3) _
Xp — X5

Finally, since by construction |Xp(#) — X5(¢)| = |Xp(f) — Xo/, for
all + > 0, it follows that

Fig. 6 Three-point guidance or motion camouflage with respect to a
moving point Xj rather than X,. The condition for motion camouflage
with respect to the fixed point X, is violated when A () # A* (7).

| Wi X)) (w00.e) o

[Xp — X [Xp — Xo| + [X]

(uhpn (X, Xp), €%)
[Xp — X5

Therefore, one can easily conclude from Eq. (34) that uy, = up, or,
equivalently,

urpn (X, Xp) = trpn (X, Xp) (55)

Thus, the analytic expressions of the three-point-navigation law
derived after relaxing the motion camouflage constraint and the
original three-point-navigation law (29) are exactly the same. On
the grounds of the previous observation, one concludes that the
navigation law (29) is robust to model uncertainties of the local drift.
The following proposition follows readily from the previous
discussion.

Proposition 7. Let ¢ > 0. Then, for all |X,| > ¢, the navigation law
(29) will drive the system (1) to the set {X: [X| < &} in finite time,
provided there exist w; > 0 and w, > 0, such that

{wX) + Aw(t,X), &) < 0, < /it — w3 (56)

[(w(x), €x)| < W, (57)

for all t > 0 and x € R?\{0}. Finally, the time of travel satisfies the
upper bound

X —
L I S (58)

V. Navigation in Unknown Drift

In this section, the problem of steering the agent in the presence of
a completely unknown drift field, that is, when w(X) =0 and
Aw(t,X) = 0, is considered.

The feedback navigation law

upp(X) = i€y (59)

steers the agent’s forward velocity to always point toward its
destination. It is worth-mentioning that due to the absence of any
knowledge about the local drift at X, the navigation law (59) steers the
inertial velocity of the agent so that it points toward a direction
different than the LOS. This fact may incur some loss of perform-
ance, in terms of minimizing the arrival time, when compared with,
for example, the navigation law (15) (see also the discussion in
Sec. VI). The situation is illustrated in Fig. 7. On the other hand, one
of the main advantages of the navigation law (59) is that it is
completely independent of the drift Aw(z, X), and thus, it is robust to
model uncertainties induced by the local drift. The navigation law
(589) is the dual to the well-known pure-pursuit or hound-hare pursuit
strategy [18], where the pursuer’s velocity vector always points
toward the current position of the target. The following proposition
provides a sufficient condition for the feasibility of the navigation
law (59).

Proposition 8. Let e > 0 and w(x) = 0. Then, for all |X,| > ¢, the
navigation law (59) will drive the system (1) to the set {X €
R?: |X| < &} in finite time, provided there exists Aw, > 0, such that

[{Aw(t,X), e5)| < Aw, < i, forallt>0 and XxeR?

(60)
Furthermore, the arrival time satisfies the upper bound
Xo| — &
fF=a- Aw, D)
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Fig. 7 Direct-bearing navigation. The forward velocity of the agent is
aligned with the LOS direction at every instant in time.

Proof. It follows readily that

X =~k el) = ~(uml0) + Auie. ). )

= —ii — (Aw(t,X), 8L) < —ii + AW, (62)

The rest of the proof follows similar to the proof of Proposition 1,
and thus it is omitted. O

Table 1 summarizes the navigation control laws developed in
terms of the corresponding information pattern of the local drift field.
It is important to remind the reader the duality between these
navigation control laws and the corresponding pursuit strategies, as
indicated in the last column of Table 1.

VI. Gradient Descent Laws for Navigation
in a Flowfield with Limited Information

In this section, the proposed navigation laws are reinterpreted as
gradient descent laws in terms of different performance indices. In
particular, it is shown that when the agent is driven by the presented
navigation laws, the direction of either the agent’s forward or inertial
velocity is parallel to the opposite of the gradient of various
performance indices; consequently, the velocity vectors point toward
the direction of the maximum rate of decrease of the performance
indices. To simplify the presentation, it is henceforth assumed that

|lw(X) + Aw(t,X)| < i, forall >0 and xeR?> (63)

First, it is shown that the navigation law (38) is a (pseudo-)gradient
descent law in terms of an estimate of the time required for the agent
to reach its destination (time-to-come). In particular, a simple
estimate of the time-to-come, which is henceforth denoted by T(X), is
given by

Vi wX)® + @ — [w)P) X (x w(x)

T69:= 7w 7~ Jwx)

B (64)

Note that T(x) is the minimum time required for the agent located
at X, at time 7 = 1, to reach the origin, assuming that the drift will
remain constant and equal to w(X), for all r > 7.

Let VT(X) denote the gradient of T(X), which is, in general, a
function of X, w(x) and dw/dx. Because, by hypothesis, the Jacobian
dw/0dX is unknown to the agent, a pseudogradient operator acting on
T(x), denoted by V T(x), where

VT (X) 1= VT(X)]a_y

is introduced instead. It is straightforward to show that the (pseudo-)
gradient descent control law

_VT(x)
u

—— (65)
IVT()]

Upgpn (X) = —

satisfies upgpn(X) = ugg(X), for all x € R2\{0}. This facts
highlights the local optimality of the navigation law (38), in terms
of minimizing the arrival time.

Next, it is shown that the LOS navigation law (38) can also be
interpreted as a quickest descent control law [24] in terms of the
Euclidean distance of the agent from its destination. In other words,
when the agent is driven by the law (38), then the rate of decrease of
the agent’s distance from its destination is locally maximized. In
particular, the time derivative of V(X) = |x| evaluated along the
trajectories of the system (1), after closing the loop with
u(X) = ug; s(X), is pointwise minimized.

Proposition 9. The navigation law ug, ¢(X) is the quickest descent
law for the system (1) with respect to the descent function V(x) = |x|.

Proof. Letu(X) € U;. The time derivative of V(X) evaluated along
the trajectories of system (1), after closing the loop, is given by

%V(x) — VVOOX = —(u(X) + w(x) + Aw(tx),el)  (66)

where the identity VV(X) = X/|X| = —ey has been used. It follows
readily that the quickest descent control u(X) satisfies

w(x) + wx) = max(u(x) + wx), €x)€x (67)

Equation (67) implies that
(u(X) + w(x),e) =0

and |u(X)| = i. Therefore, (u(x),eZ) = —(w(x),e2), which
implies, in turn, that

(u(x). €5) = virr = (w(x). &)’

Therefore, it follows that u(X) = ug; ¢(X), for all x € R?\{0}, thus
completing the proof.

Finally, the direct-bearing navigation law (59) can also be viewed
as a gradient descent control law. In particular, it is easy to show that

Table 1 Proposed navigation laws for different information patterns

Navigation law Expression

Information pattern Pursuit strategy

toLs(X) V= (W), 6,7}, — (w(x). &,)¢,
uis(X) (@ — lw)| — (w(x), ey, ))ex, — (w(x), e, )ex,
tren(X, Xp) vV - M"ZI"PN,Z(Xv Xp)ex + trpn 2 (X, Xp)€%, tirpy 2 (X, Xp) =
uys(X) Vi = (w(x), e3)%e} — (w(x), e})e3
s (X) (it = [wX)| = (w(x), ex))ex — (w(x), e5)ex

uipn (X, Xp)

upp(X) ey

V W — Uipn o (X, Xp) € 4 tirpy 2 (X, Xp)€%, Urpn 2 (X, Xp) =

w(X)#£0, Aw(t,X) = 0 Parallel guidance

w(X)#£0, Aw(r,X) = 0 Pursuit with neutralization
[xp—Xo (w(x), e2) w(X)=£0, Aw(t,x) =0 LOS guidance
w(X)#£0, Aw(t,X)£0  Parallel guidance

w(X)#£0, Aw(t,X)#£0  Pursuit with neutralization
w(X)#£0, Aw(r,X)#£0 LOS guidance

[xp=Xo[+[X|

o (W), €3)

[Xp—Xo|+IX|

w(X) = 0, Aw(t,X)5£0 Pure pursuit
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_ VV(x)
= —U—" 68
upp(X) M|VV(X)| (68)
where V(X) := |x|. Note that V(X) is a reasonable heuristic function

in terms of the time-to-come for the navigation problem in a
completely unknown drift field (this follows readily by setting
w(x) = 0 in Eq. (64)). An interesting question is when, and under
which conditions, the direct-bearing navigation law (59) is a
minimum-time control law for Problem 2. The following proposition
addresses the previous questions.

Proposition 10. Let ¢ > 0. The navigation law (39) is a minimum-
time control law of the ZNP provided there exists a Lipschitz
continuous function f: [¢, oo)i—RR, such that (w(X),ek) = F(x|).
Furthermore, the system (1) will converge to the set {x: |X| < &} in
finite time, for all |Xo|>e, if and only if f(z) <uz, for all
& < 7 < |Xo|. In addition, the final arrival time is given by

_ [Xo! zdz
fr= [ iz — f(2)

Proof. The reader can refer to [17]. O
Proposition 10 highlights a rather surprising result, namely, that
although the measurement of the local drift w(X) does not appear at
all in the expression of the navigation law (59), in contrast to all the
other navigation laws presented in this paper, which explicitly

(69)

—_— s s s s s e s>
L L L L L

-3 -2 -1 0 1 2 3
T
a) Minimum-time navigation in a perfectly known
drift field

c¢) Three-point navigation with imperfect
knowledge of the local drift
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account for the local drift, the direct-bearing navigation law (59) can
be the minimum-time navigation law for some drift fields.

VIIL.

In this section, simulation results that illustrate the previous
developments are presented. The drift field is assumed to be
expressed as the vector sum of a uniform flow component and the
local flow induced by a finite number of distinct, nonlinear flow
singularities [25]. In particular, it is assumed that the known part of
the drift w(X) can be modeled as follows

Simulation Results

we) =u' + Yo (K= x, DAX-x)  (70)
i=1

where n, is the number of flow singularities, X;, is the location of the
ith flow singularity, «;: [0, c0)—R is a continuous function, which
may vanish only atX = X, , and A; is a2 X 2 matrix, whose structure
captures the local characteristics of the ith flow singularity [26]. Note
that the flow model given in Eq. (70) extends the model adopted in
[26] to account for multiple flow singularities located at distinct
positions.

The following problem data were used in the numerical
simulations:

b) Robust, optimal LOS navigation with imperfect
knowledge of the local drift

d) Direct-bearing navigation in an unknown drift
field

Fig. 8 Trajectories toward the origin of an agent driven by the robust optimal LOS, the three-point and the direct-bearing navigation laws.
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- 2 -1
u=1, ny, =2, A, =S8, A2:|:1 O]
Xsl = [53 O]T’ sz = [—6, _4]T’
al(|x - Xs] |) = |A1(X - Xs|)|/0'3
(X =X, 1) = |Ax(x — X,,)[/0.4

w’=[0, O]

Furthermore, it is assumed that the unknown part of the drift field is
given by

Aw(t,X) = v/3]x|/6[0.3(1 — cos(t/m)), —0.25]"

Figure 8 illustrates the trajectories of the agent, when the latter is
steered by the minimum-time control law of the ZNP (Fig. 8a), the
robust optimal LOS navigation law (38) (Fig. 8b), the three-point
navigation law (29) (Fig. 8c), and the direct-bearing navigation law
(89) (Fig. 8d). For the computation of the minimum-time paths,
GPOPS [27], which is an open-source software for numerical
optimal control, has been used. One can observe from Figs. 8b—8d
that, despite the presence of the unknown part Aw(z, X) of the local
drift field, the agent driven by the robust optimal LOS, the three-point
and the direct-bearing navigation laws successfully reaches its
destination. Furthermore, it is observed that the geometry of the
ensuing paths of the agent, when the agent is far away from its
destination and it is driven by the navigation laws (29) and (59),
exhibit notable similarities, as is illustrated in Figs. 8c and 8d. The
ensuing paths of the agent are also similar when the agent is close to
its destination and is driven by the navigation laws (38) and (29), as is
illustrated in Figs. 8b and 8c. The last two observations are justified
by the fact that the navigation law (29) becomes approximately equal
to Eq. (59), for large |X| [in light of Eq. (28), the component of
Eq. (29) along €2 becomes approximately equal to zero as |X| — oo,
whereas it approximates Eq. (38), for |x| sufficiently small [in light of
Eq. (28), the component of Eq. (29) along €2 becomes approximately
equal to —(w(X), €2) as |x| — 0].

VIII. Conclusions

This paper presents several classes of navigation laws for steering
an agent in the presence of a both temporally and spatially varying
drift field, by investigating the navigation problem for different
information patterns about the drift field. The analysis, which is
based on the duality between the navigation problem and a special
class of problems of pursuit of a maneuvering target, brings to light
some interesting findings related to the effectiveness of the proposed
navigation laws in terms of coping with model uncertainties of the
drift field dynamics, as well as in terms of minimizing the arrival
time. In particular, it was shown that the effectiveness of the line-of-
sight navigation law, which is the dual to the parallel guidance law, in
terms of steering the agent to its destination, is impaired by the
incomplete knowledge of the local drift field. A robust modification
of the line-of-sight navigation law, which was derived by employing
simple geometric arguments, was subsequently proposed. In contrast
to the line-of-sight navigation law, the three-point navigation law,
may successfully steer the agent to its destination in the presence of
unknown drift. Furthermore, it was shown that the direct-bearing
navigation law, which is the dual to the pure-pursuit strategy,
furnishes a straightforward solution to the navigation problem in a
completely unknown drift field. One important observation is that all
of the proposed navigation laws that account for the unknown
component of the drift reduce to the direct-bearing navigation law in
the limiting case when the known component of the drift vanishes.
The analysis of the planar navigation problem presented in this work
can be easily extended to the three-dimensional navigation problem,
given that the adopted approach was based on tools from vector
analysis. Future work includes the use of the proposed navigation
laws for the design of novel protocols for motion coordination, and
dynamic routing problems for groups of agents traveling in the
presence of an uncertain drift field.
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