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Wepresent amulti-resolution-based approach for solving trajectory optimization problems. The original optimal

control problem is solved using a direct method, thereby being transcribed into a nonlinear programming problem

that is solved using standard nonlinear programming codes. The novelty of the proposed approach hinges on the

automatic calculation of a suitable nonuniformgrid overwhich the nonlinear programming problem is subsequently

solved. This tends to increase numerical efficiency and robustness. Control and/or state constraints are handled with

ease and without any additional computational complexity. The proposed algorithm is based on a simple and

intuitive method to balance conflicting objectives, such as accuracy of the solution, convergence, and speed of

computations. The benefits of the proposed algorithm over uniform grid implementations are demonstratedwith the

help of several nontrivial examples.

I. Introduction

I T IS well known that the solution of realistic trajectory
optimization problems is a challenging task. Analytical solutions

are seldom available or even possible. As a result, more often than
not, one resorts to numerical techniques [1–6]. Available numerical
methods can be broadly divided into direct methods [1,3,7,8] and
indirect methods [5,9,10]. Indirect methods solve the necessary
optimality conditions, stated in terms of Pontryagin’s minimum
principle, the adjoint differential equations, and the transversality
conditions. Direct methods, on the other hand, are based on
discretizing the control and/or state variables at a set of nodes,
transforming the optimal control problem into a nonlinear
programming (NLP) problem. The solution of the resulting NLP
problem can be obtained using standard NLP solvers. A nice survey
of available numerical algorithms for solving trajectory optimization
problems can be found in [11,12].

In recent years, direct transcription methods have become
increasingly popular for solving trajectory optimization problems,
the major reason being that direct methods do not need an explicit
expression for the necessary conditions, which can be intimidating
for complicated nonlinear dynamics. Moreover, incorporating state
and control constraints is rather straightforward. Most important,
experience has shown that directmethods tend to bemore robustwith
respect to inaccurate initial guesses, thus converging more easily.
Indirect methods, on the other hand, result in more accurate overall
solutions than direct methods and provide more confidence in the (at
least local) optimality of the obtained solution. Algorithms that aim
at taking advantage of both direct and indirectmethods by combining
them into a single algorithm have been also proposed in the literature
[10,13]. One of the main themes of current research on numerical
trajectory optimization techniques is to develop methods that
combine the accuracy of indirect methods with the robustness and
good convergence properties of direct methods.

The algorithm proposed in this paper falls under the direct method
category. Direct methods can be further broadly classified as either
shooting methods [1,2,8,14] or collocation methods [3,7,15–17].
Direct collocation methods discretize the ordinary differential

equations (ODEs) using collocation or interpolation schemes
[18,19], alongwith the introduction of collocation conditions asNLP
constraints, together with the initial and terminal conditions. Direct
collocation methods can be further subdivided into pseudospectral
methods [16,20–22] and other collocation methods [3,7,15,17,23].
In a sense, pseudospectral is a synonym for collocation, but the term
pseudospectral is typically applied only when collocation is used in
conjunction with a basis of global functions such as Chebyshev or
Legendre polynomials. The other difference between pseudospectral
and the rest of collocation methods is that pseudospectral methods
use differentiation, whereas typical collocationmethods are based on
integration. In other words, pseudospectral methods rely on the
discretization of the tangent bundle (roughly, the left-hand side of the
differential equations), whereas most of collocation methods rely on
the approximation of the vector field (i.e., the right-hand side of the
differential equations).

Regardless of the particular method used, if a highly accurate
solution is needed using one of the aforementioned direct methods,
one must resort to the use of a high-resolution (dense) grid. This
choice may lead to the use of a large amount of computational
resources, both in terms of CPU time and memory, especially if the
resulting NLP problem is not sparse. Therefore, recent work has
focused on suitable sparse representations or on the reduction of the
high computational load associated with uniform grid discretizations
(see, for instance, the work by Betts et al. [7,15], Ross et al. [24,25],
Gong and Ross [22], Binder et al. [8,26], and Schlegel et al. [27]).

In terms of mesh refinement algorithms, we should mention the
work of Betts et al. [7,15], which selects the new grid points by
solving an integer programming problem that minimizes the
maximum discretization error by subdividing the current grid. The
pseudospectral knottingmethod of Ross and Fahroo [25] generalizes
the spectral patching method‡ of [21] by exchanging information
across the patches in the form of event conditions associated with the
optimal control problem, hence removing the restriction of
continuity in the solution across the end points of the phases. The
phase boundaries, termed as knots, can be fixed or free, with the free
knots being part of the optimization process. On each phase, the
problem is solved using the Legendre or Chebyshev pseudospectral
method. To improve the pseudospectral methods, Gong and Ross
[22] present an algorithm in which the user specifies the number of
nodes to be increasedwithin a particular phase, in case the error of the
computed optimal control between two successive iterations is
greater than a prescribed threshold. The authors of [22] use the
gradient of the control to determine (approximately) the location of
the knots. Binder et al. [8,26] use a wavelet-Galerkin approach to
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discretize the optimal control problem into an NLP problem. They
use a local error analysis of the states and a wavelet analysis of the
control profile to add or remove wavelet basis functions. In [26] the
authors use a direct shooting approach in which the optimal control
problem is converted into an NLP problem by parameterizing the
control profile, combined with a wavelet analysis of the gradients of
the Lagrangian function with respect to the parameterizing functions
at the optimal points to determine the regions that require refinement.
For problems with state and/or control path constraints, Schlegel
et al. [27] use wavelet analysis of the control profile to determine the
regions that require refinement.

The work of this paper continues the current research activities in
the multiresolution trajectory optimization area and is motivated by
our willingness to trade numerical accuracy for robustness and
complexity for execution speed. For several applications (for
instance, for onboard real-time guidance or during emergencies) it is
of paramount importance to be able to control the accuracy of the
solution (both locally and globally) to promptly obtain a good
solution that can subsequently be further refined and improved upon
as needed. For such cases, the overall result does not hinge upon the
accuracy of a particular intermediate iteration step; imposing a high
numerical accuracy from the outset is wasteful and may even hinder
convergence. From a computational point of view, it is not advisable
to use high-accuracy numerical schemes and/or dense integration
grids during the initial iterations, because these have only a minor
effect on the final solution (assuming, of course, that the solution is
maintained within the region of convergence). For similar comments
corroborating this point of view, see also [28]. What we propose is a
progressive tightening of the tolerances at different levels of resolu-
tion. Furthermore, this progressive increase of accuracy should not
be done uniformly, but only at the locations that dominate the overall
accuracy of the solution. Finally, the algorithm should be simple
enough so as not to add to the overall computational overhead.

Motivated by the previous observations in [29,30], we have
introduced a novel multi-resolution-based mesh refinement
technique for the solution of initial boundary-value problems for
evolution equations. The algorithm results in a fewer number of
nodes than with similar grid adaptation schemes, while maintaining
the same overall accuracy of the final solution. Several challenging
examples (namely, Burgers’s equation and Euler’s equations of gas
dynamics) have demonstrated the stability and robustness of the
mesh refinement algorithm for the solution of these types of
problems in 1-D [30]. In the current paper, we use the ideas
introduced in [29,30] to design a novel, fully automated, adaptive
multiresolution trajectory optimization technique to solve optimal
control problems quickly and accurately. The criterion for deciding
the region to refine themesh is based on simple interpolations, which
tends to speed up the whole process. In a single step, the proposed
algorithm adds and removes points from the grid, as necessary.
Furthermore, all computations are performed on refinable
complementary dyadic grids (see Sec. III.A). Working with dyadic
grids is essentially equivalent to using interpolating wavelets [31–
33] for the analysis of the underlying function. We can thus take
advantage of the nicemultiresolution properties ofwavelets to obtain
error estimates about the local smoothness properties of the solution
[27,31,34].

Compared with previous similar results in this area
[7,8,15,22,24,26,27], the algorithm proposed in this paper has
several advantages. First, we avoid the solution of a secondary
optimization problem for adding points to the mesh as in [7,15,35].
Only simple interpolations are needed to refine the mesh, which can
be done on-the-fly. Furthermore, our algorithm does not involve any
integrations, as opposed to the highly accurate integrations
(Romberg quadratures) required in the method by Betts et al. [7],
which again can be computationally expensive for nonlinear
dynamics. Finally, our algorithm is capable of not only adding points
to the grid but also removing points from the grid when and where is
needed. Moreover, both the operations of adding and removing
points can be done in a single step. In the pseudospectral knotting
method of Gong and Ross [22] and Ross et al. [24], one needs to
know a priori the approximate number and location of singularities in

the solution; formost problems, thesemay not be known beforehand.
The number of nodes to be added to a particular phase must be
defined by the user before starting the algorithm. In our algorithm, the
user need not know a priori the number nor the locations of the
irregularities in the solution. The algorithm will automatically detect
the regions in the solution that are nonsmooth. Furthermore, the
nonuniform grids of pseudospectral methods result in grid
distributions that remain fixed for each phase, because the location
of the nodes are dictated by the zeros of the first derivative of the
Legendre or Chebyshev polynomials, irrespective of the location of
the soft knots [24]. Our algorithm uses a grid that is fully adaptive,
embracing any form, depending on the nonsmooth characteristics of
the solution. This provides more flexibility in capturing any
irregularities in the solution.

From all previous references in this area the work of Binder et al.
[8,26] and Schlegel et al. [27] are the closest, at least in spirit, to the
approach proposed in the current paper. These references use
wavelet-based ideas to locate possible singularities in the solution
and to refine the grid locally. However, because these references
work solely in the wavelet domain, they may lead to an increase of
the overall computational overhead, because one needs to transform
back and forth between the physical and wavelet domain. We avoid
this issue altogether by always working in the physical domain.
Nonetheless, byworking with dyadic grids we still take advantage of
the major benefit of the wavelet-based analysis: that is,
multiresolution functional representations [31,36].

The rest of the paper is organized as follows.Wefirst formulate the
trajectory optimization problem and discretize the continuous
optimal control problem into an NLP problem. Next, we present the
multiresolution trajectory optimization algorithm (MTOA),
followed by a section underpinning the rationale behind the
proposed mesh refinement technique, along with a discussion on
error estimates. We then give several nontrivial examples that show
the robustness, efficiency, and accuracy of the proposed algorithm.
We conclude with a brief summary of our results, along with some
remaining related open problems and potential extensions.

II. Problem Statement

We wish to determine the state x��� and the control u��� that
minimize the Bolza cost functional:

J� e�x�tf�; tf� �
Z
tf

t0

L�x���;u���; �� d� (1)

where

e: RNx � R� ! R; � 2 �t0; tf�; x: �t0; tf� ! RNx ;

u: �t0; tf � ! RNu ; L: RNx � RNu � �t0; tf� ! R

subject to the state dynamics

_x�t� � f�x�t�;u�t�; t� (2)

the boundary conditions

x �t0� � x0; ef�x�tf�; tf� � 0 (3)

where ef: RNx � R� ! RNe , and the constraints

C u�u�t�� 	 0; Cx�x�t�� 	 0; Cxu�x�t�;u�t�� 	 0 (4)

where

C u:RNu!RNCu ; Cx:RNx!RNCx ; Cxu:RNx �RNu!RNCxu

The initial time t0 is assumed to be given and the final time tf can be
fixed or free.

Without loss of generality, we will assume that the time interval of
interest is the unit interval, that is, t 2 �0; 1� � �t0; tf�. The
transformation from �t0; tf � to [0, 1] is trivial when tf is fixed. For a
free-final-time problem, one can use an appropriate transformation of
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the independent variable and the dynamics to cast the problem as a
fixed-final-time problem. Because this is a well-known fact, the
details are omitted.

We next transcribe the continuous optimal control problem
[Eqs. (1–4)] over the interval [0, 1] into an NLP problem over dyadic
grids. This process is described in the next section.

III. NLP Formulation

A. Dyadic Grids

All discretizations of the state dynamics, constraints, and
performance index in Eqs. (1–4) will be performed on (nonuniform)
grids induced by dyadic grids. A uniform dyadic grid over the unit
interval is a collection of points of the form

V j�ftj;k 2 �0;1�: tj;k�k=2j;0	 k	 2jg; Jmin	 j	 Jmax (5)

where j denotes the resolution level, k is the spatial location, and Jmin

and Jmax are positive integers.We denote byWj the set of grid points
belonging to Vj�1 n Vj; that is,

W j � ft̂j;k 2 �0; 1�: t̂j;k � �2k� 1�=2j�1; 0 	 k 	 2j 
 1g;
Jmin 	 j 	 Jmax 
 1

(6)

Hence, tj�1;k 2 Vj�1 if and only if

tj�1;k �
�
tj;k=2; if k is even
t̂j;�k
1�=2; otherwise

(7)

An example of a dyadic grid with Jmin � 0 and Jmax � 5 is shown in
Fig. 1.

The subspaces Vj are nested; that is, VJmin
� VJmin�1 � � � � VJmax

,
with

lim
Jmax!1

VJmax
��0; 1� (8)

where the overbar denotes set closure. Furthermore, the sequence of
subspaces Wj satisfy the property Wj \W‘ � for all j ≠ ‘.
Notice that these dyadic grids are constructed by successive
subdivisions. Furthermore, the sets Vj and Wk for k � j are
orthogonal to each other, as are the sets Wj and W‘ for j ≠ ‘ (see
Fig. 1). Such subdivision schemes of dyadic grids can be used to
construct interpolating wavelets using, for instance, the scheme of
Deslauriers and Dubuc [32], independently discovered later by
Donoho [33] andHarten [37]. The idea here is that one can keep only
the even-indexed points in the grid and generate the odd-indexed grid
points (at every level) using polynomial interpolation. The use of
subdivision schemes simplifies the computations, because it
eliminates the need to constantly transform back and forth between
the physical domain and the wavelet/scaling coefficient domain, as
was done, for example, in [27].

B. Discretizations on Dyadic Grids

For simplicity, henceforth we denote xj;k � x�tj;k� and
uj;k � u�tj;k�. We convert the optimal control problem [Eqs. (1–
4)] into an NLP problem using Runge–Kutta (RK) discretizations.
To this end, let a nonuniform grid of the form

G � ftji;ki : tji;ki 2 �0; 1�; 0 	 ki 	 2ji ; Jmin 	 ji 	 Jmax;

for i� 0; . . . ; N; and tji;ki < tji�1;ki�1 ;

for i� 0; . . . ; N 
 1g
(9)

Then a q-stage RK method for discretizing Eq. (2) is given by
[11,35]

x ji�1 ;ki�1 � xji;ki � hji;ki
Xq
‘�1

�‘f‘ji;ki (10)

where

f ‘ji;ki � f�y‘ji;ki ;u
‘
ji;ki
; t‘ji;ki�

y‘ji;ki , u
‘
ji;ki
;, and t‘ji;ki are the intermediate state, control, and time

variables on the interval �tji;ki ; tji�1;ki�1 �. These are given by

y ‘ji;ki � xji;ki � hji;ki
Xq
m�1

�‘;mfmji;ki (11)

where

hji;ki � tji�1;ki�1 
 tji;ki ; t‘ji;ki � tji;ki � hji;ki�
‘;

u‘ji;ki � u�t‘ji;ki�; for 1 	 ‘ 	 q

The variable q denotes the stage of the RK method. In the previous
expressions, �‘, �‘, and �‘;m are known constants with
0 	 �1 	 �2 	 . . . 	 1. The scheme is explicit if �‘;m � 0 for m �
‘ and implicit otherwise. Some common examples of q-stage RK
methods are the trapezoidal method (q� 2), the Hermite–Simpson
method (q� 3), and the classical fourth-order RK method (q� 4)
[11,35,38].

Using Eq. (10), the defects of the discretization are given by

�i � xji�1 ;ki�1 
 xji;ki 
 hji;ki
Xq
‘�1

�‘f‘ji;ki (12)

for i� 0; . . . ; N 
 1. To discretize the cost functional (1), we
introduce a new state z�t� such that

_z�t� � L�x�t�;u�t�; t�; z�0� � 0 (13)

Using a q-stage RK method to discretize Eq. (13) yields

zji�1 ;ki�1 � zji;ki � hji;ki
Xq
‘�1

�‘L‘ji;ki (14)

where L‘ji;ki � L�y
‘
ji;ki
;u‘ji;ki ; t

‘
ji;ki
� for i� 0; . . . ; N 
 1. Hence, we

have

zjN;kN � zj0;k0 �
XN
1
i�0

hji;ki

Xq
‘�1

�‘L‘ji;ki (15)

Because z�0� � zj0 ;k0 � 0, the cost functional (1) in discretized
form can be written as follows:

J� e�xjN ;kN � �
XN
1
i�0

�
hji;ki

Xq
‘�1

�‘L‘ji;ki

�
(16)

Let us now define the following sets:

X � fxj0;k0 ; . . . ;xjN ;kN g; U� fuj0;k0 ; . . . ;ujN ;kN g;
~G� ft‘ji;ki 2 �0; 1�: t

‘
ji;ki

=2 G; 0 	 i < N; 1 	 ‘ 	 qg;
~X� fy‘ji;ki : t

‘
ji;ki
2 ~Gg; ~U� fu‘ji;ki : t

‘
ji;ki
2 ~Gg

As a result of the discretization, the optimal control problem
reduces to the followingNLP problem in terms of the variablesX,U,
and ~U.Fig. 1 Example of a dyadic grid.
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Minimize

J� e�xjN ;kN � �
XN
1
i�0

�
hji;ki

Xq
‘�1

�‘L‘ji;ki

�
(17)

subject to the constraints

�i � 0; i� 0; . . . ; N 
 1 (18)

x j0;k0
� x0 (19)

e f�xjN ;kN � � 0 (20)

C u�U; ~U� 	 0 (21)

C x�X; ~X� 	 0 (22)

C xu�X; ~X;U; ~U� 	 0 (23)

Remark 1. It is well known [39,40] that RK discretizations for
optimal control problems need to satisfy additional assumptions to
obtain consistent approximations. Henceforth, we will therefore
assume that the following conditions always hold:

1) If the optimal control problem does not have any constraints, or
if the optimal control problem has only pure control constraints, then
by RK discretizations we mean RK discretizations that satisfy the
conditions in [39].

2) If the optimal control problem has only pure control constraints,
the coefficients of the RK scheme satisfy the conditions given in [40]
or [39].

3) If the optimal control problem has state or mixed state/control
constraints, then by RK discretizations we mean either Euler,
trapezoidal, or Hermite–Simpson discretization.

The restriction to the aforementioned schemes stems from the fact
that the convergence of these schemes for optimal control problems
has been demonstrated in the literature [35,39–42]. Nonetheless, we
point out that the proposedmesh refinement approachwill workwith
any RK discretization for which the convergence for the optimal
control problems can be shown, using either uniform or nonuniform
meshes.

We are now ready to present the proposed multi-resolution-based
trajectory optimization algorithm.

IV. Multiresolution Trajectory Optimization

Consider a set of dyadic grids Vj andWj as described in Eqs. (5)

and (6). Suppose g: �D! R is specified on a grid G [see Eq. (9)],
such that

U � fgj;k: tj;k 2 Gg (24)

where gj;k � g�tj;k�. Let Ip�t; T G�t�� denote the pth-order
essentially nonoscillatory (ENO) interpolation [31] of

U � fgj;k: tj;k 2 T G�t�g

where

T G�t� � ftjm;kmg
i�p
m�i 
 G; 0 	 i 	 N 
 p 
 1

The stencil T G�t� consists of one neighboring point on the left and
one neighboring point on the right of t in the setG, with the remaining
p 
 1 points selected from the set G in a way such that the resulting

polynomial is least oscillatory. For more details on ENO
interpolations the reader is referred to [31].

To proceed with the algorithm, we first choose the minimum
resolution level Jmin based on the minimum time step required to
achieve the desired accuracy in the regions of the solution where
no constraints are active,§ the threshold �, which should be at
least on the order of hJmin

, where hJmin
� 1=2Jmin (the significance

of � and the reason for such a choice of � will be clear shortly),
and pick the maximum resolution level Jmax. The proposed
MTOA involves the following steps. First, we transcribe the
continuous trajectory optimization problem into an NLP problem
using a q-stage RK discretization, as described in the previous
section. We use trapezoidal discretization for the first iteration
and switch to a high-order discretization for subsequent
iterations. Next, we set iter� 1, initialize griditer � VJmin

, and
choose an initial guess for all NLP variables. Let us denote the
set of initial guesses by X iter. The proposed MTOA then
proceeds as follows:

Multiresolution Trajectory Optimization Algorithm:
1) Solve the NLP problem on griditer with the initial guessX iter. If

griditer has points from the level WJmax
1, terminate.
2) Mesh refinement:

a) If the problem has either pure state constraints or mixed
constraints on the states and controls, set�iter � fxj;k;uj;k: tj;k 2
griditerg and Nr � Nx � Nu.

b) If the optimal control problem does not have any constraints,
or if only pure control constraints are present, set �iter �
fuj;k: tj;k 2 griditerg and Nr � Nu.

c) In case no controls are present in the problem, set
�iter � fxj;k: tj;k 2 griditerg.
In the following, let�iter denote the set constructed in steps 2a–2c

of the algorithm; that is, let

�iter � f�‘�tj;k�: ‘� 1; . . . ; Nr; tj;k 2 griditerg

d) Initialize an intermediate grid gridint � VJmin
1, with function
values

�int � f�‘�tJmin ;k
� 2 �iter; 0 	 k 	 2Jmin ; ‘� 1; . . . ; Nrg (25)

and set j� Jmin 
 1.
e) While j < Jmax do
f) Procedure_MR
g) End while
h) The final nonuniform grid is gridnew � gridint and the cor-

responding function values are in the set �new ��int.
3) Set iter� iter� 1. If the number of points and the level of

resolution remain the same after the mesh refinement procedure,
terminate. Otherwise interpolate the NLP solution found in step 1 on
the new mesh gridnew (which will be the new initial guess X iter),
resassign the set griditer to gridnew, and go to step 1.

Next, we give the algorithm Procedure_MR (step 2f of MTOA).
Procedure_MR:
1) Find the points that belong to the intersection ofWj and griditer:

T̂ j�ft̂j;ki : t̂j;ki 2Wj\ griditer; for i� 1; . . . ;Nt̂;1	Nt̂ 	 2j
 1g
(26)

If T̂j is empty, set j� Jmax and terminate Procedure_MR.
2) Set i� 1.
3) While i 	 Nt̂ do

a) Compute the interpolated function values at t̂j;ki 2 T̂j and

�̂ ‘�t̂j;ki� � Ip�t̂j;ki ; T gridint
�t̂j;ki��

where �̂‘ is the ‘th element of �̂, for ‘� 1; . . . ; Nr.

§The minimum time step required to achieve a desired accuracy in the
regions of the solution where no constraints are active can be calculated using
well-known error estimation formulas for RK schemes [39,42–44].
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b) Calculate the interpolative error coefficient dj;ki at the point
t̂j;ki

¶:

dj;ki���� max
‘�1;...;Nr

dj;ki ��‘�� max
‘�1;...;Nr

j�‘�t̂j;ki �
 �̂‘�t̂j;ki�j<� (27)

If the value of dj;ki is below the threshold �, then reject t̂j;ki and go
to step 2e, otherwise add t̂j;ki to the intermediate grid gridint and
move on to the next step.

c) Add to gridint points belonging to the set

�V Ĵ \ �tj;ki ; tj;ki�1�� n gridint

where Ĵ�minfj� ĵ; Jmaxg, ĵ� 2 if iter� 1, and ĵ � 2 if

iter � 1. Here, ĵ is the number offiner levels fromwhich the points
are added to the grid for refinement. In particular, we add to the
intermediate grid gridint the points

ftĴ;k: 2Ĵ
jki 	 k 	 2Ĵ
j�ki � 1�g n gridint

d) Add the function values at all the newly added points to�int.
If the function value at any of the newly added points is not known,
interpolate the function value at that point from the points ingriditer
and their function values in X iter using Ip��; T griditer

����.
e) Set i� i� 1.

4) End while.
5) Set j� j� 1.
The order of the interpolating polynomial p can be taken to be one

less than the order of the RK discretization of the differential
equations. This choice of p is dictated by the error analysis given in
the next section, which considers the case with no constraints. It is
noted that under the presence of constraints, the order of the RK
discretization for optimal control problemsmay be less than the order
of the RK discretization used for the differential equations [39]. The
subsequent analysis, albeit heuristic, elucidates the motivation
behind the proposed approach and the previous choice of p.
Although a more rigorous analysis is required to justify the
recommended choice for the order of the interpolating polynomials
(hence the order of the RK discretization as well), nonetheless, in all
numerical examples we considered, choosing the interpolating
polynomial according to the previous criterion turned out to be
adequate, irrespective of the presence (or not) of the constraints.

V. Rationale of Proposed Multiresolution Scheme
and Error Estimates

In this section, we outline themain idea behind themultiresolution
mesh refinement algorithm. In the process, we also provide estimates
on the error one expects to obtain by following the proposed
approach. To keep the notation as simple as possible, the subsequent
discussion will be restricted to the case of a scalar-valued control
function u. Furthermore, we will consider a problem without state
and control constraints, so that the refinement algorithm is performed
based on the (scalar-valued) control histories [case 2b ofMTOAwith
Nu � Nr � 1].

The key idea behind the proposed mesh refinement algorithm is
based on the fact that the interpolative error coefficient in step 3b of
the procedure_MR, and for a sufficiently fine grid, provides a good
measure of the local smoothness of the function u. To see why this is
so, consider a function u that, at t� �t, has � � 
1 continuous
derivatives,∗∗ but that has a jump discontinuity in its ��� 1�th
derivative. Locally around any point t ≠ �t, the function u can be
approximated accurately by a polynomial (say, û) of degree �.
Furthermore, in the neighborhood of �t, any interpolating polynomial
of degree at least �� 1will induce an error that is proportional to the
jump discontinuity of u���1�.

The proposed algorithm uses the information of the local
interpolation error in Eq. (27) to locally refine the grid, if necessary.
In particular, at the locations where the solution is smooth (hence it

can be accurately interpolated by neighboring points), no further
refinement is performed. At those locations where the function is not
smooth, grid points are added to reduce the interpolation error below
a certain threshold.

To this end, let the final grid at a certain iteration step be given by
the pointsG� ft0; t1; . . . ; tNg. For each point ti 2 G, (0 	 i 	 N), let

T G�ti� � f�i0; �i1; . . . ; �ipg 2 Gnftig

where �i0 < � � �< �ip is the stencil of p� 1 points that are used to
interpolate the function u in the interval ��i0; �ip�, according to the
discussion in the previous section. That is, let û be the unique
polynomial of degree p, such that

û��im� � u��im�; 0 	 m 	 p; 0 	 i 	 N (28)

and

u�t� � û�t� � u��i0; . . . ; �ip; t��
p
m�0�t 
 �im�; �i0 	 t 	 �ip

(29)

where u��i0; . . . ; �ip; t� is the �p� 2�-divided difference of u at the
points of the stencil T G�ti� and t. Moreover, if u is sufficiently
smooth (i.e., is continuously differentiable at least � � p� 1 times)
in the interval ��i0; �ip�, then [45,46]

u��i0; . . . ; �ip; t� �
u�p�1��	�
�p� 1�! ; �i0 	 	 	 �ip (30)

It then follows from Eq. (29) that

di�u� � ju�ti� 
 û�ti�j � ju�p�1�jhp�1i ; �� � p� 1� (31)

where

hi � max
0	m	p
1

��im�1 
 �im�

In Eq. (31) the notation � indicates a term of the same order of
magnitude. Similarly, the notation ≲ will be used to indicate a term
dominated by an expression of a known order of magnitude.

If, on the other hand, u has a jump discontinuity in its ��� 1�
derivative and � < p� 1, then [37,45]

u��i0; . . . ; �ip; t� �
��u���1���
hp
�i

(32)

where ��u���1��� denotes the jump at the discontinuity of the ��� 1�th
derivative of u inside the interval ��i0; �ip�. It follows from Eq. (29)
that, in this case, we have the estimate

di�u� � ju�ti� 
 û�ti�j � ��u���1���h��1i ; �� < p� 1� (33)

It has been shown in [39] that under appropriate smoothness and
coercivity hypotheses [39], and assuming that the solution u? of the
continuous optimal control problem [Eqs. (1–3)] is at least �� p 
 1
continuous differentiable, the following estimate,

max
0	i	N
jxi 
 x?�ti�j � max

0	i	N
jui 
 u?�ti�j

≲ hp�1 � hp
Z

1

0

!�u?�p�; �0; 1�; t; h� dt (34)

holds for sufficiently small h�max0	i	Nfti�1 
 tig, and where
!�v; �a; b�; t; h� denotes the local modulus of continuity of the
function v, defined by [47]

!�v; �a; b�; t; h� � supfjv�
1� 
 v�
2�j: 
1; 
2
2 �t 
 h=2; t� h=2� \ �a; b�g (35)

In Eq. (34) it was assumed that the optimal solution (xi, ui) of the
discrete problem [Eqs. (18–21)] is computed using a p� 1th-order
RK scheme, satisfying the Hager [39] conditions.

¶Note that �‘�t̂j;k� 2 �iter for all t̂j;k 2 T̂j and ‘� 1; . . . ; Nr.
∗∗This notation implies that for ��
1 the function is discontinuous.
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The MTOA estimates the last term in Eq. (34) using the local
interpolating error for the control. To see why this is true, rewrite the
last term in Eq. (34) as follows:

Z
1

0

!�u?�p�; �0; 1�; t; h� dt�
XN
1
i�0

Z
ti�1

ti

!�u?�p�; �0; 1�; t; h� dt

�
XN
1
i�0

Z
ti�1

ti

!�u?�p�; �t0i; t00i �; t; h� dt (36)

where t0i � 3ti=2 
 ti�1=2 and t00i � 3ti�1=2 
 ti=2. Using the
definition of themodulus of continuity (35) and the estimate (32), we
have

!�u?�p�; �t0i; t00i �; t; h� 	 sup

1;
22�t0i ;t

00
i
�
ju?�p��
1� 
 u?�p��
2�j � ��u?�p���

(37)

It follows thatZ
ti�1

ti

!�u?�p�; �t0i; t00i �; t; h� dt≲ h1
pi di�u?� (38)

Because the MTOA ensures the bound jdi�u?�j 	 �, we finally get
the estimate

hp
Z

1

0

!�u?�p�; �0; 1�; t; h� dt≲ � (39)

recalling that

XN
i�0

hi � 1

It follows that

max
0	i	N
jxi 
 x?�ti�j � max

0	i	N
jui 
 u?�ti�j≲ hp�1 � � (40)

Given the general grid in Eq. (9), it follows fromEq. (40) that if we

chose �� hp�1Jmin
, where

hJmin
� tJmin;k�1 
 tJmin ;k

� 1=2Jmin ; 0 	 k 	 2Jmin 
 1

we get an estimate of the form

max
0	i	N
jxji;ki 
 x?�tji;ki�j � max

0	i	N
juji;ki 
 u?�tji;ki�j≲ h

p�1
Jmin

(41)

Remark 2. As pointed out by Hager [39], the error in the discrete
controls ui may be one or more orders larger that the error obtained if
the control were computed by the minimization of the Hamiltonian

and by using the discrete state/costate pair instead. Hence, ideally,
the approximation order in the right-hand side of Eq. (34) will be one
or more orders less that p� 1, even if a p� 1th RK order is used.
The interested reader may refer to [39] for further details in regard to
this observation. Because here we are only interested in rough error
estimates, the exact order of convergence for the discrete controls is
immaterial for the overall analysis (for example, use a higher order
RK scheme if needed) and is well beyond the scope of the paper.

VI. Numerical Examples

In this section, we provide several examples to demonstrate the
robustness and efficiency of the proposed approach for the solution
of optimal control problems. For all cases, we have used SNOPT [48]
to solve the resulting NLP problem [Eqs. (17–23)]. SNOPT is an
NLP solver, which is based on sequential quadratic programming.
All computations were performed in MATLAB on a Pentium IV
machine with a 3-GHz processor and 2 GB of RAM. In all of the
following examples, and unless stated otherwise, a linear function
was used as an initial guess for the first iteration of MTOA. We also
used the implicit Hermite–Simpson scheme for the high-order
discretizations in MTOA, the defects of which can be found in [35].

Example 1. We first consider a simple minimum-energy problem
with a second-order state variable inequality constraint, taken from
[49]. Because the analytic solution for this problem is known, we can
infer the absolute accuracy of the solution provided by the proposed
MTOA.

The problem is to find the control u�t� that minimizes the cost
function

J� 1

2

Z
1

0

u2�t� dt (42)

subject to the dynamics

_x� v; _v� u (43)

initial and final conditions

x�0� � x�1� � 0; v�0� � 
v�1� � 1 (44)

and the path constraint

x�t� 	 0:04 (45)

We solved this problem on a grid with Jmin � 3 and Jmax � 10. The
threshold used was �� 10
4. The algorithm terminated in 5
iterations. The time histories of the states x and v at the final iteration
are shown in Fig. 2. The time history of the control u and the grid
point distribution at thefinal iteration are shown in Fig. 3. It should be
noted that the proposed algorithm used only 61 points out of the
maximum of 1025 points at the finest resolution grid V10. Because

Fig. 2 Example 1: time history of x and v at the final iteration of MTOA.
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the analytic solution of this problem is known [49], the absolute error
can be computed for all cases. The errors in the computed solution,
along with the number of grid points (Niter) used by the algorithm at
each iteration, are shown in Table 1. As shown in Table 1, the
numerical solution converges to the analytic solution and, with each
iteration, the errors are decreasing by roughly an order of magnitude.

The overall CPU time taken by MTOA to solve this problem was
5.6 s. For comparison, we also solved the same problem using a
Hermite–Simpson discretization on a uniform grid with the same
number of points as in MTOA at the final iteration: that is, on a
uniform mesh with 61 nodes. The algorithm terminated in 2.5 s with
the errors shown in Table 2. Because the errors in the solution using a
uniform mesh with 61 nodes are larger than those achieved using
MTOA, we also gradually increased the number of nodes in the
uniform mesh and resolved the problem using the same linear initial
guess until either the errors were of the same order of magnitude as
those obtained using the MTOA or the CPU time taken by the
algorithm was approximately equal to the CPU time taken by
MTOA. This process ended up in a uniform mesh of 131 nodes. The
algorithm terminated in 5.7 s and the final errors are shown in
Table 2. These results show a typical trend we observed in all
examples we tested and demonstrate the efficacy of the MTOA:
higher accuracy for the same CPU time or a smaller number of grid
points and CPU time for the same accuracy, compared with uniform
grid implementations.

Example 2. Here, we consider a problem derived from the control
of a chemical reaction [15,50]. The problem is to maximize the final
amount of product y during a two-stage chemical reaction,
x! y! z, by a proper choice of the rate coefficient u�t�. The

amount of waste product z formed does not influence x and y, and
because themagnitude of z is of no interest, wemay consider only the
reaction rates for x and y, which are given by

_x�
ux (46)

_y� ux
 �uky (47)

where � and k are positive constants. For this example we consider
the same parameters as in [15,50]

�� 2:5; k� 1:5; tf � 2 (48)

and initial conditions

x�0� � 1; y�0� � 0:01 (49)

The allowable control must lie within the range

0:1 	 u�t� 	 umax (50)

We solved this problem on a grid with Jmin � 3 and Jmax � 6 for
three different choices of umax: namely, umax � 0:5, 0.4, and 0.3. The
threshold used in the simulations was �� 10
4. The algorithm
terminated in four iterations for all cases. The time history of the
states x and y and the control u, along with the grid point distribution
for different values of umax at the final iteration ofMTOA, are shown
in Fig. 4. The final states x�2� and y�2� (rounded off to five decimal
places), the overall CPU time taken by MTOA to solve the problem,
and the number of nodes used at the final iteration ofMTOA (Nf) for
the previous three values of umax are summarized in Table 3. The
values of x�2� and y�2� are the same as those reported in [50].

We also solved the same problem using the Hermite–Simpson
discretization on a uniform grid with the same number of points as
used by MTOA at the final iteration: that is, on a uniform mesh with
N4 nodes. The CPU times tCPU used by the algorithm for all the cases
are summarized in Table 4. The values for both x�2� and y�2� were
accurate up to five decimal places for the case umax � 0:4. Because
neither of the twovalues x�2�or y�2�was of the same accuracy for the
remaining two cases, we resolved the problem for the cases umax �
0:5 and 0.2 with a larger number of nodes in the uniformmesh (again
using a linear initial guess). We repeated this process until the values
for both the states at the final time coincided to five decimal places to
the solution given in Table 3. The result was a uniform mesh of 55
and 20 nodes for the cases umax � 0:5 and 0.3, respectively. These
observations, along with the corresponding CPU times, are reported
in Table 4. The uniform mesh implementation required more points
to obtain the same accuracy. The corresponding CPU times were
comparable for this example for both uniform and nonuniform mesh
implementations. The reader should be reminded, however, that the
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No. of Points: 61 out of 1025
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−18
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Time ( τ)
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a) Iteration 8: time history of u b) Iteration 8: grid point distribution

Fig. 3 Example 1: time history of u along with the grid point distribution at the final iteration of MTOA.

Table 1 Example 1: number of grid points along with the error in the

computed optimal cost at each iteration

Iteration Niter kx 
 x�kL1 kv 
 v�kL1 ku 
 u�kL1 jJ 
 J�j
1 9 4:0 � 10
2 1:5 � 10
1 1:7 � 100 Failed
2 15 1:3 � 10
4 2:1 � 10
3 1:3 � 10
1 5:7 � 10
3

3 29 3:9 � 10
6 5:9 � 10
5 3:0 � 10
3 4:6 � 10
4

4 45 3:1 � 10
7 1:4 � 10
5 5:2 � 10
4 6:6 � 10
6

5 61 3:0 � 10
8 1:6 � 10
6 5:6 � 10
5 3:3 � 10
8

Table 2 Example 1: number of grid points and error for uniformmesh

N1 kx 
 x�kL1 kv 
 v�kL1 ku 
 u�kL1 jJ 
 J�j
61 3:7 � 10
6 1:4 � 10
4 1:4 � 10
1 2:7 � 10
4

131 1:7 � 10
6 9:5 � 10
5 2:7 � 10
2 6:0 � 10
5
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uniform grid solutions were obtained by calling SNOPT only once
(assuming convergence was possible). Hence per iteration, the CPU
time for the MTOA is indeed smaller, as expected.

Example 3. In this example, we investigate the performance of
MTOA to a hypersensitive problem, taken from [35]. As pointed out
in [35,51], this problem is extremely difficult to solve using indirect
methods. The problem is to minimize

J�
Z

10;000

0

�x2�t� � u2�t�� dt (51)

subject to

_x�
x3 � u (52)
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a) Time history of x, y, and u for umax = 0.5

c) Time history of x, y, and u for umax = 0.4

e) Time history of x, y, and u for umax = 0.3 f) Grid point distribution

d) Grid point distribution

b) Grid point distribution

Fig. 4 Example 2: time history of states x and y and control u along with the grid point distributions for different umax at the final iteration of MTOA.
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and

y�0� � 1; y�10; 000� � 1:5 (53)

We solved this problem on a grid with Jmin � 4 and Jmax � 10. The
threshold used was �� 10
4. MTOA terminated in 5 iterations and
the overall CPU time taken by MTOA to solve this problem was

17.5 s. The final nonuniform grid (shown in Fig. 5b) included 53
nodes. The time history of the state x and the grid point distribution at
the final iteration of MTOA are shown in Fig. 5.

For comparison, we also solved the same problem using a
Hermite–Simpson discretization on a uniform grid with the same
number of nodes as used byMTOA at the final iteration: that is, on a
uniform mesh with 53 nodes. The algorithm terminated after 43.7 s;
the value of the optimal cost found was an order of magnitude larger
than the optimal cost found using MTOA. These results again show
the superiority of theMTOAover uniform grid implementations. For
this example, the uniform grid implementation not only took more
than twice the CPU time of MTOA, but also returned a solution that
was far worse than that obtained from MTOA.

Example 4. As ourfinal example,we consider the realistic problem
of optimizing the reentry trajectory of an Apollo-type vehicle [9].
This is a benchmark problem in trajectory optimization that is known
to be very challenging, owing to its sensitivity in terms of the initial
guesses.

The equations of motion during the flight of the vehicle through
the Earth’s atmosphere are as follows:

_v�
 S
2m
�v2cD�u�


gsin�

�1�	�2 ;

_�� S

2m
�vcL�u��

vcos�

R�1�	�

gcos�

v�1�	�2 ;
_	� v
R
sin�; _�� v

1�	cos�

Table 3 Example 2: number of nodes used by MTOA at the

final iteration, overall CPU time taken byMTOA, and final states

for three different values of umax

umax Nf tCPU, s x�2� y�2�
0.5 31 6.2 0.52222 0.30813
0.4 23 3.8 0.53051 0.30611
0.3 17 1.7 0.55765 0.30013

Table 4 Example 2: Uniform mesh

umax N tCPU, s Error N tCPU, s Error

0.5 31 3 10
5 55 6.9 10
6

0.4 23 1.7 10
6 —— —— ——

0.3 17 1.0 10
5 20 1.3 10
6
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4

5

6

7

8

9

10

Time (τ )

j

No. of Points: 53 out of 1025
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a) Iteration 5: time history of x b) Iteration 5: grid point distribution

Fig. 5 Example 3: time history of state x along with the grid point distribution at the final iteration of MTOA.

Fig. 6 Example 4, problem A: time histories of v and h for umax � 180 at the final iteration of MTOA.
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where v is the velocity, � is the flight-path angle, 	� h=R is the
normalized altitude, h is the altitude above the Earth’s surface, R is
the Earth’s radius, and � is the distance on the Earth’s surface of a
trajectory of anApollo-type vehicle. The control variable is the angle
of attack u. For the lift and drag, the following relations hold:

cD � cD0
� cDL cos u; cD0

� 0:88; cDL � 0:52 (54)

cL � cL0 sinu; cL0
�
0:505 (55)

The air density is assumed to satisfy the relationship �� �0e
�R	.
The values of the constants are

R� 209:0352�105 ft�; S=m� 50; 000�10
5 ft2 slug
1�;
�0 � 2:3769 � 10
3 �slug ft
3�;
g� 3:2172 � 10
4�105 ft s
2�; �� 1=0:235�10
5 ft
1�

The cost functional to be minimized that describes the total
stagnation point convective heating per unit area is given by the
integral

J�
Z
tf

0

10v3
���
�
p

dt (56)

The vehicle is to be maneuvered into an initial position favorable for
the final splashdown in the Pacific. Data at the moment of entry are

v�0� � 0:35�105 ft s
1�; ��0� � 
5:75 deg (57)

	�0� � 4=R�h�0� � 400; 000 ft�; ��0� � 0�105 ft� (58)

Pesch [9] considered two situations for the given problem: one with
constraints on control and the other with constraints on the state. We
consider both of these problems in the sequel.

ProblemA. ProblemA imposes a control inequality constraint that
limits the deceleration of the vehicle:

juj 	 umax; umax > 0 (59)

The data prescribed at the unspecified terminal time tf for problemA
are as follows:

v�tf� � 0:0165�105 ft s
1�; ��tf�unspecified (60)

	�tf� � 0:75530=R�h�tf� � 75; 530 ft�;
��tf� � 51:6912�105 ft�

(61)
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a) Iteration 5: time history of u
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b) Iteration 5: grid point distribution

Fig. 7 Example 4, problem A: time history of u along with the grid point distribution for umax � 180 at the final iteration of MTOA.
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Fig. 8 Example 4, problem A: time histories of � and � for umax � 68 at the final iteration of MTOA.
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We solved this problem for all the cases considered by Pesch [9], and
the results obtained using MTOA vindicate the proposed algorithm.
For the sake of brevity, we only give the results for the cases when
umax � 180 and 68.

We solved this problem on a grid with Jmin � 3 and Jmax � 7. The
threshold used for this problemwas �� 10
2. The algorithm for both
cases terminated after 5 iterations and the overall CPU times taken by
MTOA to solve the problem for both cases were 111.2 and 125.6 s,
respectively. The time histories of the velocity v and altitude above
the Earth’s surface (h) at the final iteration of MTOA for umax � 180
are shown in Fig. 6. The time history of the angle of attack u along
with the grid point distribution at the final iteration of MTOA for
umax � 180 are shown in Fig. 7. The time histories of the flight-path
angle � and the distance on the Earth’s surface (�) at the final iteration
of MTOA for umax � 68 are shown in Fig. 8. The time history of the
angle of the angle of attack (u) along with the grid point distribution
at the final iteration of MTOA for umax � 68 are shown in Fig. 9.

We also solved this problem for both the previous two cases on a
grid with Jmin � 3 and Jmax � 6, but this time we uniformly refined
the mesh after each iteration. The reason for choosing Jmax � 6 is
because this problem could not be solved on a uniform grid finer than
V6 because of hardware limitations. The CPU times taken by the
algorithm for both the cases are shown in Table 5. We solved the
problem using MTOA with the same parameters as before, but this
timewith Jmax � 6.MTOA terminated within four iterations for both
cases. The overall CPU times taken by MTOA, along with the
number of nodes used byMTOA at the final iterationNf , are given in
Table 5. As shown in Table 5, theMTOA outperformed the standard
uniform grid implementation for this problem in terms of CPU time.

Problem B. For this problem, we impose a constraint to reduce
reascent after the first dip into the atmosphere; that is, we have

	 	 	max; 	max > 0 (62)

The data prescribed at the unspecified terminal time tf for this
problem are

v�tf��0:01239929�105 fts
1�; ��tf��
26:237124 deg (63)

	�tf� � 0:75530=R�h�tf� � 75; 530 ft�;
��tf� � 51:10198�105 ft�

(64)
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Fig. 9 Example 4, problem A: time history of u along with the grid point distribution for umax � 68 at the final iteration of MTOA.

Table 5 Example 4: Uniform mesh vs MTOA

Problem Uniform mesh MTOA

N tCPU, s Nf tCPU, s

A�umax � 180� 65 241.1 39 76.6
A�umax � 68� 65 174.9 30 94.2
B�	max � 0:0066� 65 265.4 41 60.0

Fig. 10 Example 4, problem B: time histories of v and h for �max � 0:0066 at the final iteration of MTOA.

1434 JAIN AND TSIOTRAS



Again, we solved this problem for all the cases considered by
Pesch [9]. The results obtained using MTOA once again justify the
proposed algorithm. For the sake of brevity, we only give the results
for the case when 	max � 0:0066. We solved this problem on a grid
with Jmin � 2 and Jmax � 7. The threshold used for this problem was
�� 10
2. The algorithm terminated after 6 iterations and the overall
CPU time taken by MTOA to solve this problem was 235.2 s. The
time histories of the velocity v and altitude above the Earth’s surface
(h) at the final iteration of MTOA are shown in Fig. 10. The time
history of the angle of attack u and the final grid point distribution are
shown in Fig. 11.

When we attempted to solve the same problem on a uniformmesh
with 33 nodes (with the same linear initial guess) using Hermite–
Simpson discretization, the algorithm failed to converge. Increasing
the number of nodes to 65 nodes and again using the same linear
initial guess did not help.We therefore solved this problemagain on a
grid with Jmin � 2 and Jmax � 6, but this time we progressively
refined themesh uniformly after each iteration. The value of Jmax � 6
was chosen because the problem could not be solved on a uniform
grid finer than V6, owing to hardware limitations. The CPU time
taken by the algorithm in this case is given in Table 5. Once again, we
solved the problemusingMTOAwith the same parameters as before,
but this time with Jmax � 6. MTOA terminated in 5 iterations. The
overall CPU times taken byMTOA, along with the number of nodes
used by MTOA at the final iteration Nf , are also given in Table 5.
These results again show the benefits of the MTOA in terms of
accuracy and speed when compared with uniform grid
implementations for this problem.

VII. Conclusions

In this paper, we proposed a novel multi-resolution-based
approach for direct trajectory optimization. The algorithm
automatically, and with minimal effort, generates a nonuniform
grid that reduces the discretization error with each iteration. As a
result, one is able to capture the solution accurately and efficiently
using a relatively small number of points. All the transition points in
the solution (for example, bang–bang subarcs or entry and exit points
associated with state or mixed constraints) are captured with high
accuracy. The convergence of the algorithm can be enhanced by
initializing the algorithm on a coarse grid with a small number of
variables. Once a converged solution is attained, the grid can be
further refined by increasing the accuracy locally, only at the vicinity
of those points that cannot be accurately interpolated by neighboring
points in the grid. The methodology thus provides a compromise
between robustness with respect to initial guesses, intermediate and
final solution accuracy, and execution speed. These observations are
supported by several numerical examples of challenging trajectory
optimization problems.

A preliminary error analysis shows that the effect of the proposed
multiresolution scheme is somewhat akin to a local control of the
tolerance of the Runge–Kutta integration error. The error analysis
also provides guidelines on how certain parameters needed in the
algorithm (e.g., the order of the interpolating polynomials, the
maximum/minimum time steps, etc.) can be chosen during
implementation and to yield consistent approximations. Future work
will focus on more quantitative measures for the selection of these
parameters as well as on providing explicit error bounds for both the
unconstraint case and for more general cases that include path
constraints.

Acknowledgments

Partial support for this work was provided by National Science
Foundation award no. CMS 0510259 and NASA award no.
NNX08AB94A. The authors acknowledge useful discussions with
Hao-Min Zhou from the Mathematics Department at Georgia
Institute of Technology.

References

[1] Brauer, G. L., Cornick, D. E., and Stevenson, R., “Capabilities and
Applications of the Program to Optimize Simulated Trajectories
(POST),” NASA CR-2770, Feb. 1977.

[2] Meder, D. S., and McLaughlin, J. R., “A Generalized Trajectory
Simulation System,” Summer Computer Simulation Conference, edited
by J. B. Mankin, R. H. Gardner, and H. H. Shugart, AFIPS Press,
Montvale, NJ, July 1976, pp. 366–372.

[3] Hargraves, C. R., and Paris, S. W., “Direct Trajectory Optimization
Using Nonlinear Programming and Collocation,” Journal of Guidance,
Control, and Dynamics, Vol. 10, No. 4, 1987, pp. 338–342.

[4] Fahroo, F., and Ross, I., “Trajectory Optimization by Indirect Spectral
Collocation Methods,” AIAA/AAS Astrodynamics Specialist Confer-

ence, AIAA, Reston, VA, Aug. 2000, pp. 123–129.
[5] Oberle, H. J., andGrimm,W., “BNDSCO-AProgram for theNumerical

Solution of Optimal Control Problems,” Inst. for Flight System
Dynamics, DLR, German Aerospace Research Center, TR DLR IB/
515-89/22, Oberpfaffenhofen, Germany, 1989.

[6] Bulrish, R., and Kraft, D., “Computational Optimal Control,”
International Series of Numerical Mathematics, Vol. 115, Birkhäser
Verlag, Basel, Switzerland, 1994.

[7] Betts, J. T., Biehn, N., Campbell, S. L., and Huffman, W. P.,
“Compensating for Order Variation in Mesh Refinement for Direct
Transcription Methods,” Journal of Computational and Applied

Mathematics, Vol. 125, Nos. 1–2, Dec. 2000, pp. 147–158.
doi:10.1016/S0377-0427(00)00465-9

[8] Binder, T., Blank, L., Dahmen, W., and Marquardt, W., “Grid
Refinement in Multiscale Dynamic Optimization,” RWTH Aachen,
Tech. Rep. LPT-2000-11, Aachen, Germany, 2000.

[9] Pesch, H. J., “Real-Time Computation of Feedback Controls for
Constrained Optimal Control Problems, Part 2: A Correction Method

0 100 200 300 400
−180

−100

0

100

180

Time (τ)

u

a) Iteration 5: time history of u

0 100 200 300
2

3

4

5

6

7

Time (τ)

j

No. of Points: 61 out of 129

b) Iteration 5: grid point distribution

Fig. 11 Example 4, problem B: time history of u for �max � 0:0066 along with the grid point distribution at the final iteration of MTOA.

JAIN AND TSIOTRAS 1435

http://dx.doi.org/10.1016/S0377-0427(00)00465-9


Based on Multiple Shooting,” Optimal Control Applications and

Methods, Vol. 10, 1989, pp. 147–171.
doi:10.1002/oca.4660100206

[10] Stryk, O. v., and Bulirsch, R., “Direct and Indirect Methods for
Trajectory Optimization,” Annals of Operations Research, Vol. 37,
No. 1, Dec.1992, pp. 357–373.
doi:10.1007/BF02071065

[11] Betts, J. T., “Survey of Numerical Methods for Trajectory
Optimization,” Journal of Guidance, Control, and Dynamics,
Vol. 21, No. 2, 1998, pp. 193–207.

[12] Polak, E., “AnHistorical Survey of ComputationalMethods in Optimal
Control,” SIAM Review, Vol. 15, No. 2, 1973, pp. 553–584.
doi:10.1137/1015071

[13] Shen, H., and Tsiotras, P., “Time-Optimal Control of Axi-symmetric
Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 22,
No. 5, 1999, pp. 682–694.

[14] Bock, H. G., and Plitt, K. J., “AMultiple Shooting Algorithm for Direct
Solution of Optimal Control Problems,” Proceedings of the Ninth

Triennial World Congress of IFAC, Pergamon, New York, 1984,
pp. 242–247.

[15] Betts, J. T., and Huffman, W. P., “Mesh Refinement in Direct
Transcription Methods for Optimal Control,” Optimal Control

Applications & Methods, Vol. 19, No. 1, 1998, pp. 1–21.
doi:10.1002/(SICI)1099-1514(199801/02)19:1<1::AID-
OCA616>3.0.CO;2-Q

[16] Fahroo, F., and Ross, I. M., “Direct Trajectory Optimization by a
Chebyshev Pseudospectral Method,” Journal of Guidance, Control,

and Dynamics, Vol. 25, No. 1, 2002, pp. 160–166.
[17] Herman, A. L., and Conway, B. A., “Direct Optimization using

Collocation Based on High-Order Gauss-Lobatto Quadrature Rules,”
Journal of Guidance, Control, and Dynamics, Vol. 19, No. 3, 1996,
pp. 592–599.

[18] Russell, R. D., and Shampine, L. F., “A Collocation Method for
Boundary Value Problems,” Numerische Mathematik, Vol. 19, No. 1,
1972, pp. 1–28.
doi:10.1007/BF01395926

[19] Weiss, R., “The Application of Implicit Runge–Kutta and Collocation
Methods to Boundary Value Problems,”Mathematics of Computation,
Vol. 28, No. 126, 1974, pp. 449–464.
doi:10.2307/2005918

[20] Elnagar, G., Kazemi, M. A., and Razzaghi, M., “The Pseudospectral
Legendre Method for Discretizing Optimal Control Problems,” IEEE
Transactions on Automatic Control, Vol. 40, No. 10, 1995, pp. 1793–
1796.
doi:10.1109/9.467672

[21] Fahroo, F., and Ross, I., “A Spectral Patching Method for Direct
Trajectory Optimization,” Journal of the Astronautical Sciences,
Vol. 48, Nos. 2–3, 2000, pp. 269–286.

[22] Gong, Q., and Ross, I. M., “Autonomous Pseudospectral Knotting
Methods for Space Mission Optimization,” 16th AAS/AIAA Space
Flight Mechanics Meeting, American Astronautical Society Paper 06-
151, 2006.

[23] Enright, P. J., andConway,B.A., “DiscreteApproximations toOptimal
Trajectories Using Direct Transcription and Nonlinear Programming,”
Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4, 1992,
pp. 994–1002.

[24] Ross, I. M., Fahroo, F., and Strizzi, J., “Adaptive Grids for Trajectory
Optimization by Pseudospectral Methods,” AAS/AIAA Spaceflight

Mechanics Conference, AIAA, Reston, VA, 2003, pp. 649–668.
[25] Ross, I. M., and Fahroo, F., “Pseudospectral Knotting Methods for

Solving Nonsmooth Optimal Control Problems,” Journal of Guidance,
Control, and Dynamics, Vol. 27, No. 3, 2004, pp. 397–405.
doi:10.2514/1.3426

[26] Binder, T., Cruse, A., Villar, C. A. C., and Marquardt, W., “Dynamic
Optimization Using a Wavelet Based Adaptive Control Vector
Parametrization Strategy,” Computers and Chemical Engineering,
Vol. 24, July 2000, pp. 1201–1207.
doi:10.1016/S0098-1354(00)00357-4

[27] Schlegel, M., Stockmann, K., Binder, T., and Marquardt, W.,
“Dynamic Optimization using Adaptive Control Vector Parameter-
ization,” Computers and Chemical Engineering, Vol. 29, No. 8, 2005,
pp. 1731–1751.
doi:10.1016/j.compchemeng.2005.02.036

[28] Schwartz, A. L., “Theory and Implementation of Numerical Methods
Based on Runge–Kutta Integration for Solving Optimal Control
Problems,” Ph.D. Thesis, Electrical Engineering and Computer
Science, Univ. of California, Berkeley, Berkeley, CA, 1996.

[29] Jain, S., Tsiotras, P., and Zhou,H.-M., “AdaptiveMultiresolutionMesh

Refinement for the Solution of Evolution PDEs,” Proceedings of the

46th IEEE Conference on Decision and Control, Inst. of Electrical and
Electronics Engineers, Piscataway, NJ, 2007, pp. 3525–3530.

[30] Jain, S., Tsiotras, P., and Zhou, H.-M., “AHierarchical Multiresolution
AdaptiveMesh Refinement for the Solution of Evolution PDEs,” SIAM
Journal on Scientific Computing (submitted for publication).

[31] Harten, A., “Multiresolution Representation of Data: A General
Framework,” SIAM Journal on Numerical Analysis, Vol. 33, No. 3,
1996, pp. 1205–1256.
doi:10.1137/0733060

[32] Deslauriers, G., and Dubuc, S., “Symmetric Iterative Interpolation
Processes,” Constructive Approximation, Vol. 5, No. 1, 1989, pp. 49–
68.
doi:10.1007/BF01889598

[33] Donoho, D. L., “InterpolatingWavelet Transforms,”Dept. of Statistics,
Stanford Univ., Stanford, CA, 1992.

[34] Cohen, A., “Numerical Analysis of Wavelet Methods,” Studies in

Mathematics and its Applications, Vol. 32, edited by D. N. Arnold, P.
G. Ciarlet, P. L. Lions, and H. A. van der Vorst, Elsevier Science,
Amsterdam, 2003.

[35] Betts, J. T., Practical Methods for Optimal Control Using Nonlinear

Programming, Society for Industrial and Applied Mathematics,
Philadelphia, 2001.

[36] Mallat, S. G., “ATheory forMultiresolution Signal Decomposition: the
Wavelet Representation,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 11, No. 7, 1989, pp. 674–693.
doi:10.1109/34.192463

[37] Harten, A., “Adaptive Multiresolution Schemes for Shock
Computations,” Journal of Computational Physics, Vol. 115, No. 2,
1994, pp. 319–338.
doi:10.1006/jcph.1994.1199

[38] Butcher, J. C., “Implicit Runge–Kutta Processes,” Mathematics of

Computation, Vol. 18, No. 85, 1964, pp. 50–64.
doi:10.2307/2003405

[39] Hager, W. W., “Runge–Kutta Methods in Optimal Control and the
Transformed Adjoint System,” Numerische Mathematik, Vol. 87,
No. 2, 2000, pp. 247–282.
doi:10.1007/s002110000178

[40] Dontchev, A. L., Hager, W. W., and Veliov, V. M., “Second-Order
Runge–Kutta Approximations in Control Constrained Optimal
Control,” SIAM Journal on Numerical Analysis, Vol. 38, No. 1,
2000, pp. 202–226.
doi:10.1137/S0036142999351765

[41] Dontchev, A. L., and Hager,W.W., “The Euler Approximation in State
Constrained Optimal Control,”Mathematics of Computation, Vol. 70,
No. 233, 2001, pp. 173–203.
doi:10.1090/S0025-5718-00-01184-4

[42] Betts, J. T., Biehn, N., and Campbell, S. L., “Convergence of
Nonconvergent IRK Discretizations of Optimal Control Problems with
State Inequality Constraints,” SIAM Journal on Scientific Computing,
Vol. 23, No. 6, 2002, pp. 1981–2007.
doi:10.1137/S1064827500383044

[43] Hairer, E., Norsett, S. P., andWanner, G., SolvingOrdinaryDifferential
Equations 1: Nonstiff Problems, Springer–Verlag, New York, 1987.

[44] Hairer, E., Norsett, S. P., andWanner, G., SolvingOrdinaryDifferential
Equations 2: Stiff and Differential-Algebraic Problems, Springer–
Verlag, New York, 1991.

[45] Drikakis, D., and Rider, W., High Resolution Methods for

Incompressible and Low-Speed Flows, Springer, New York, 2004.
[46] De Boor, C., “A Practical Guide to Splines,” Applied Mathematical

Sciences, Vol. 27, Springer–Verlag, New York, 1978.
[47] Sendov, B., and Popov, V. A., The Averaged Moduli of Smoothness,

Pure and Applied Mathematics, Wiley, Chichester, England, U.K.,
1988.

[48] Gill, P. E., Murray, W., and Saunders, M. A.,User’s Guide for SNOPT
Version 6: A Fortran Package for Large-Scale Nonlinear

Programming, Systems Optimization Lab., Stanford Univ., Stanford,
CA, 2002.

[49] Bryson, A. E., and Ho, Y.-C., Applied Optimal Control: Optimization,
Estimation, and Control, Hemisphere, Washington, D.C., 1975.

[50] Citron, S. J.,Elements ofOptimal Control, Holt, Rinehart, andWinston,
New York, 1969.

[51] Rao, A. V., and Mease, K. D., “Eigenvector Approximate Dichotomic
BasisMethod for SolvingHyper-Sensitive Optimal Control Problems,”
Optimal Control Applications and Methods, Vol. 20, No. 2, 1999,
pp. 59–77.
doi:10.1002/(SICI)1099-1514(199903/04)20:2<59::AID-
OCA646>3.0.CO;2-8

1436 JAIN AND TSIOTRAS

http://dx.doi.org/10.1002/oca.4660100206
http://dx.doi.org/10.1007/BF02071065
http://dx.doi.org/10.1137/1015071
http://dx.doi.org/10.1002/(SICI)1099-1514(199801/02)19:1<1::AID-OCA616>3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1099-1514(199801/02)19:1<1::AID-OCA616>3.0.CO;2-Q
http://dx.doi.org/10.1007/BF01395926
http://dx.doi.org/10.2307/2005918
http://dx.doi.org/10.1109/9.467672
http://dx.doi.org/10.2514/1.3426
http://dx.doi.org/10.1016/S0098-1354(00)00357-4
http://dx.doi.org/10.1016/j.compchemeng.2005.02.036
http://dx.doi.org/10.1137/0733060
http://dx.doi.org/10.1007/BF01889598
http://dx.doi.org/10.1109/34.192463
http://dx.doi.org/10.1006/jcph.1994.1199
http://dx.doi.org/10.2307/2003405
http://dx.doi.org/10.1007/s002110000178
http://dx.doi.org/10.1137/S0036142999351765
http://dx.doi.org/10.1090/S0025-5718-00-01184-4
http://dx.doi.org/10.1137/S1064827500383044
http://dx.doi.org/10.1002/(SICI)1099-1514(199903/04)20:2<59::AID-OCA646>3.0.CO;2-8
http://dx.doi.org/10.1002/(SICI)1099-1514(199903/04)20:2<59::AID-OCA646>3.0.CO;2-8

