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Singularity Analysis of Variable-Speed Control Moment Gyros

Hyungjoo Yoon∗ and Panagiotis Tsiotras†

Georgia Institute of Technology, Atlanta, Georgia 30332-0150

Single-gimbal control moment gyros (CMGs) have many advantages over other actuators for attitude control of
spacecraft. For instance, they act as torque amplifiers and, thus, are suitable for slew maneuvers. However, their use
as torque actuators is hindered by the presence of singularities, that, when encountered, do not allow a CMG cluster
to generate torques about arbitrary directions. One method to overcome this drawback is to use variable-speed
single-gimbal control moment gyros (VSCMGs). Whereas the wheel speed of a conventional CMG is constant,
VSCMGs are allowed to have variable wheel speed. Therefore, VSCMGs have extra degrees of freedom that can
be used to achieve additional objectives, such as singularity avoidance and/or power tracking, as well as attitude
control. The singularity problem of a VSCMGs cluster is studied in detail for the cases of attitude tracking, with
and without a power tracking requirement. A null motion method to avoid singularities is presented, and a criterion
is developed to determine the momentum region over which this method will successfully avoid singularities. This
criterion can be used to size the wheels and develop appropriate momentum damping strategies tailored to the
specific mission requirements.

I. Introduction

A CONTROL moment gyro (CMG) is a device used as an ac-
tuator for attitude control of spacecraft. It generates torques

through angular momentum transfer to and from the main space-
craft body. This is achieved by changing the direction of the an-
gular momentum vector of a gimballed flywheel. Because a CMG
operates in a continuous manner, contrary to the gas jet’s on/off
operation, it can achieve precise attitude control. Moreover, as with
other momentum exchange devices, for example, reaction wheels,
it does not consume any propellant, thus prolonging the operational
life of the spacecraft. Single-gimbal CMGs essentially act as torque
amplifiers.1 This torque amplification property makes them espe-
cially advantageous as attitude control actuators for large space
spacecraft and space structures, for example, a space station. In
fact, single-gimbal and double-gimbal CMGs have been used for
attitude control of the Skylab, the MIR and the International Space
Station (ISS).

An obstacle when using a CMG system in practice is the exis-
tence of singular gimbal angle states for which the CMGs cannot
generate a torque along arbitrary directions. At each singular state,
all admissible torque directions lie on a two-dimensional surface
in the three-dimensional angular momentum space; therefore, the
CMG system cannot generate a torque normal to this surface. The
CMG singularities can be classified into two categories: 1) exter-
nal or saturated singularities in which the total angular momentum
sum of the CMGs lies on the maximum momentum envelope and
2) internal singularities in which the total momentum lies inside
this envelope. The external singularities can be easily anticipated
from the given CMG configuration and mission profile; therefore,
they can be taken into account at the design step. A properly de-
signed momentum management scheme can also relieve the external
singularity problem. The internal CMG singularities, on the other
hand, are in general difficult to anticipate. Avoiding such internal
singularities has, thus, been a long-standing problem in the CMG
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attitude control literature.1−3 Various methods have been developed
during the last few decades for avoiding CMG singularities, for ex-
ample, the gradient method with null motion,1,3,4 the singularity
robust methods,5−8 the path planning method,9 the preferred gimbal
angle method,10 the workspace restriction method,4,11 etc.

In the present paper, a singularity avoidance method using single
gimbal variable speed CMGs (VSCMGs) is presented. The con-
cept of a VSCMG was first introduced by Ford and Hall,12 where it
was called “gimballed momentum wheel.” The term VSCMG was
coined in Ref. 13 and emphasizes the fact that these devices typi-
cally function as conventional CMGs. Whereas the wheel speed of
a conventional CMG is kept constant, the wheel speed of a VSCMG
is allowed to vary continuously. Thus, a VSCMG can be consid-
ered as a hybrid between a reaction wheel and a conventional CMG.
The extra degree of freedom, owing to the wheel speed changes,
can be used to avoid the singularities. Also it allows a VSCMG to
be used as an actuator in an integrated power/attitude control sys-
tem (IPACS).14,15 Such a scheme uses reaction wheels or VSCMGs
as “mechanical batteries” to store energy in addition to providing
torques for attitude control.

An IPACS combines the energy-storage and the attitude-control
functions into a single device, which, thus, increases reliability and
significantly reduces the overall weight and spacecraft size. This
concept has been studied since the 1960s,16 but it has become partic-
ularly popular during the last decade, thanks to the recent advances
in composite materials and magnetic bearing technology. A com-
plete survey of IPACS has been given in Refs. 14 and 17. VSCMGs
have been used for attitude control and energy storage for an IPACS
in the authors’ previous work.15 In particular, in Ref. 15 the gimbal
rates of the VSCMGs were used to provide the reference track-
ing torques, whereas the wheel accelerations were used both for
attitude and power reference tracking. The control algorithm per-
forms both the attitude and power tracking goals simultaneously.
However, the singularity problem was not dealt with explicitly in
Refs. 15 and 18.

The present paper complements the results of Ref. 15, as well
as those of Refs. 19 and 20, in several aspects. First, we provide
a mathematical analysis for the singularities of a VSCMG clus-
ter and present a singularity avoidance method using null motion
for the VSCMG case. When applied to conventional CMGs, this
analysis provides new insights into the issue of CMG singulari-
ties. In addition, it is more straightforward than existing ones.19,21

Second, we offer a singularity avoidance and escape method (us-
ing null motion) and we characterize the conditions for its validity.
Note that although a singularity avoidance method using VSCMGs,
has also been introduced in Ref. 20, conditions are not provided in
Ref. 20 under which such a strategy is possible. Moreover, in Ref. 20
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the authors restrict the discussion to the case of attitude tracking,
whereas in the present paper we include the case of simultaneous
attitude and power tracking. As shown in Sec. VI, this has several im-
portant repercussions to the singularity classification and avoidance
problem.

This paper is organized as follows: In Sec. II, we provide the equa-
tions of a VSCMG actuator. In Sec. III, we define a singularity of
a VSCMG cluster and related key terminology for both CMGs and
VSCMGs. In Sec. IV, we provide a condition in which null motion
can exist at a singular configuration. It is shown that a CMG cluster
with no less than two wheels operating in VSCMG mode will avoid
all singularities using null motion. A singularity avoidance scheme
using null motion and based on the gradient method is also proposed
in Sec. V. The analysis includes the case of combined attitude and
power constraints, and it is given in Sec. VI. We show that there
are singularities for which the null motion method does not work
if both attitude and power tracking requirements have to be met si-
multaneously. In Sec. VII, we provide a geometric analysis on these
singular states. As a result of this analysis, in Sec. VIII we present a
simple criterion for determining whether such singularities are en-
countered. Finally, in Sec. IX we present numerical examples for the
verification of the singularity analysis and the proposed singularity
avoidance method for VSCMGs.

II. System Model
Consider a rigid spacecraft with a cluster of N single-gimbal

VSCMGs that are used to produce internal torques onboard a space-
craft. The mutually orthogonal unit vectors of the i th VSCMG are
shown in Fig. 1 and are defined as follows:

gi = gimbal axis vector
si = spin axis vector
ti = transverse axis vector (torque vector), given as gi × si

The wheel of the VSCMG can rotate about the gimbal axis gi with
a gimbal angle γi . The wheel can also rotate about the spin axis si

with an angular speed �i . The unit vectors si and ti depend on the
gimbal angle γi , while the gimbal axis vector gi is fixed in the body
frame. The relationship between the derivatives of these unit vectors
can be written as

ṡi = γ̇i ti , ṫi = −γ̇i si , ġi = 0, i = 1, . . . , N (1)

There are several ways to configure a number of VSCMG units.
The standard pyramid configuration with four VSCMG units is em-
phasized here (Fig. 2). The skew angle θ in Fig. 2 is chosen as
cos θ = 1/

√
3 (θ ≈ 54.74 deg) so that the pyramid becomes half

of a regular octahedron. This configuration has been studied exten-
sively because it is only once redundant and its momentum envelope
(Sec. III.A) is nearly spherical7 and three-axis symmetric.22

In deriving the equations for a VSCMG actuator, we will assume
that the gimbal rates γ̇i are much smaller than the wheel speeds �i ,

Fig. 1 Spacecraft body with a single VSCMG.

a)

b)

Fig. 2 VSCMG system with pyramid configuration.

so that γ̇i do not contribute to the total angular momentum. We will
also neglect the moments of inertia of the gimbal frame structures.
These assumptions are common in the studies of CMGs/VSCMGs
systems, and they are accurate for typical CMG/spacecraft config-
urations. For the exact equations of motion of a spacecraft with
VSCMG actuators without these assumptions, see Refs. 13 and 15.

With a slight abuse of notation, in the sequel we use bold letters
to denote both a vector and its elements in the standard basis. The
angular momentum vector of each wheel can be expressed as hi si ,
for i = 1, . . . , N , where hi = Iwsi �i and with Iwsi denoting the mo-
ment of inertia of the i th VSCMG wheel about its spin axis. The
total angular momentum H of the VSCMG system is the vector sum
of the individual momenta of each wheel

H(γ1, . . . , γN , �1, . . . , �N ) =
N∑

i = 1

hi si (2)

The time derivative of H is equal to the torque T applied from the
spacecraft main body to the VSCMG system, which is equal and
opposite to the output torque from the VSCMG to the spacecraft
body. This relation is written as

T = Ḣ =
N∑

i = 1

hi ti γ̇i +
N∑

i = 1

si Iwsi �̇i (3)

and in matrix form

[C(Ω,γ) D(γ)]

[
γ̇

Ω̇

]
= T (4)

where C : R
N × [0, 2π)N → R

3 × N and D : [0, 2π)N → R
3 × N are

matrix-valued functions given by

C(Ω,γ) �= [Iws1�1t1, . . . , IwsN �N tN ] (5)

D(γ) �= [Iws1 s1, . . . , IwsN sN ] (6)
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and where γ �= (γ1, . . . , γN )T ∈ [0, 2π)N and Ω �= (�1, . . . , �N )T

∈ R
N . Notice that Eq. (4) is also valid for a conventional CMG

system, if we set the wheel speeds �i to be constant (Ω̇= 0), and
for a reaction wheel system, if we set the gimbal angles γi to be
constant (γ̇ = 0).

III. Singular Configurations of a VSCMGs System
If there are at least two wheels and their (fixed) gimbal axes are not

parallel to each other, as in the pyramid configuration, and if none
of the wheel speeds becomes zero, the column vectors of [C D]
in Eq. (4) always span the three-dimensional space, that is, rank
([C D]) = 3 (Ref. 13). This means that we can always solve Eq. (4)
for any given torque command T. It follows that such a VSCMG
system is always able to generate control torques along an arbitrary
direction. In other words, such a VSCMG system never falls into
a singularity because of the extra degrees of freedom provided by
wheel speed control.13,15,20 However, the norm of the column vec-
tors of the matrix C is much larger than those of the matrix D. It is,
therefore, preferable to generate the required torque using gimbal
angle changes, that is, as in CMGs, rather than using wheel speed
changes, that is, as in reaction wheels. (This is the torque amplifi-
cation effect of a CMG, which is the main advantage of the CMG
system over other actuators.) Also, for high wheel speeds it is power
inefficient to produce torques via wheel acceleration/deceleration.
Therefore, in practice, it is desirable to keep rank C = 3. In the
sequel we define as a singularity of a VSCMG cluster the rank de-
ficiency of the matrix C , even though the VSCMGs will be able to
generate an arbitrary torque at such cases. Notice that if none of
the wheel speeds is zero, the matrix C defined in Eq. (5) becomes
singular if and only if the unit vectors ti span a two-dimensional
plane, similarly to the conventional CMG case. Hence, the rank of
the matrix C(Ω,γ) in Eq. (5) is independent of the (nonzero) wheel
speeds. This observation leads us to the conclusion that the singu-
larities of VSCMGs occur at a similar condition as the singularities
of the conventional CMGs. Before the analysis of singularities of
VSCMGs is continued, it is, therefore, imperative to review briefly
the singularities of conventional CMGs. This will also allow the
introduction of the key terminology that is essential in the ensuing
analysis of VSCMGs.

A. Brief Review of the Singularities of a CMG System
For simplicity, and without loss of generality, let us assume that

hi = 1 for i = 1, . . . , N . Then the torque equation (4) becomes

C(γ)γ̇ = T (7)

where C(γ) = [t1, . . . , tN ]. To generate a torque T along an arbi-
trary direction, we need rank C(γ) = 3 for all γ ∈ [0, 2π)N . If rank
C(γs) �= 3 for some γs , however, γ̇ cannot be calculated for arbi-
trary torque commands. [Even in this case, there may exist a solution
γ̇ to Eq. (7), if the required torque T lies in the two-dimensional
range of C(γs), but this can be treated as an exceptional case.]
Thus, henceforth we define the singularities of a CMG system as
the gimbal states γs for which rank C(γs) = 2. (Rank C = 1 can
happen only in very special configuration, for example, in roof-type
configuration,4 and so we neglect this case.) In the singular states
all unit vectors ti lie on the same plane, and thus, we can define a
singular direction vector u that is normal to this plane, that is,

uT ti = 0, ∀i = 1, . . . , N (8)

Moreover, ti is normal to gi by definition, so that ti is normal to
the plane spanned by gi and u. Geometrically this means that each
si has a maximal or minimal (negatively maximal) projection onto
the singular vector u, that is, the dot product u · si is maximal or
minimal,1 as shown in Fig. 3.

For a given singular vector u �= ±gi , there are two possibilities:

u · ti = 0, u · si > 0, or u · ti = 0, u · si < 0 (9)

Fig. 3 Vectors at a singular gimbal state.

When εi
�= sign (u · si ) is defined, the torque axis vector and the spin

axis vector at a singular state can be obtained as

ti = εi gi × u/|gi × u|, u �= ±gi , i = 1, . . . , N (10)

si = ti × gi = εi (gi × u) × gi/|gi × u|, u �= ±gi

i = 1, . . . , N (11)

and therefore, the total angular momentum at the singular states
corresponding to a singular direction u is expressed as1,4,19

H =
N∑

i = 1

si =
N∑

i = 1

εi (gi × u) × gi

|gi × u| , u �= ±gi (12)

Hence, given a set of εi , we can draw a singular surface, which is
defined as the locus of the total momentum vector at the singular
states, for all u ∈ R

3 with ‖u‖ = 1, u �= ± gi , where ‖ · ‖ denotes
the Euclidian norm. Figure 4 shows examples of these singular sur-
faces for a pyramid configuration for two different combinations of
ε1, ε2, ε3, and ε4.

Among the singular surfaces of a CMG system, of a special inter-
est is the angular momentum envelope that is defined as the bound-
ary of the maximum workspace of the total angular momentum H.
The angular momentum envelope of a CMG cluster in a pyramid
configuration consists of two types of singular surfaces which are
connected to each other smoothly. The first type corresponds to the
case when all εi are positive, that is, the angular momentum of each
CMG unit has a maximal projection onto the singular direction, as
shown in Fig. 4a. (The case of all negative εi is also on the angular
momentum envelope due to symmetry.) Notice that this singular
surface does not cover the whole momentum envelope, and there
exist holes on the surface. These holes are smoothly connected to
the second type of singular surface, for which one and only one
of the εi , i ∈ {1, . . . , N }, is negative (or only one positive due to
symmetry).1,4 This singular surface produces a trumpetlike funnel
at the holes, which completes the envelope and is shown in Fig. 4b.

In conclusion, the complete momentum envelope is composed of
the singular surface with εi > 0 for i = 1, . . . , N and the external
portion of the singular surface with one and only one negative εi .
Figure 5 shows the complete angular momentum envelop with a cut
revealing part of the rather complicated internal singular surface.

IV. Singularity Analysis of VSCMGs
Without Power Tracking

Whereas the gimbal rates γ̇i are the only control input variables in
a CMG system, the wheel accelerations �̇i offer additional control
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a) ε1 = ε2 = ε3 = ε4 = +1 b) ε1 = −1, ε2 = ε3 = ε4 = +1

Fig. 4 Singular surfaces of CMGs in pyramid configuration.

Fig. 5 Angular momentum envelope of CMGs.

variables in the case of a VSCMG system. The torque equation (7)
for a CMG cluster has to be modified in the case of VSCMGs as

[C(Ω,γ) D(γ)]

[
γ̇

Ω̇

]
= T

When rank C(Ω,γ) = 2, there exists a singular direction u per-
pendicular to this plane, that is, uT ti = 0 for all i = 1, . . . , N , and
the condition for singularity, therefore, remains the same as for the
CMG case; see Eqs. (8).

Schaub et al.13 introduced a technique to cope with this type
of singularity of the matrix C using the weighted minimum norm
solution of Eq. (4), namely,

[
γ̇

Ω̇

]
= W QT (QW QT )−1T (13)

where Q �= [C D] and W is a weighting matrix, which is function
of the singularity index of the matrix C ,13,15 for instance,

W �=
[
w1e−w2κ(C)IN 0N

0N IN

]
(14)

where κ(C) is the condition number of the matrix C and w1 and w2

are positive constants. According to this approach, the VSCMGs
operate as CMGs to take full advantage of the torque amplification
effect under normal conditions, that is, κ(C) is small, but as the
singularity is approached, κ(C) becomes large and the VSCMGs
smoothly switch to a momentum wheel mode.13,15 However, this
technique is a passive method that by itself does not ensure avoidance
of singularities. Therefore, an active method to avoid the singularity
is needed.

For this purpose, let us consider the possibility of null motion for
a VSCMG system. Such a null motion must satisfy

[C D]

[
γ̇

Ω̇

]

null

= 03 × 1 (15)

Equivalently, a null motion strategy will not change the total angular
momentum H. Notice that γ̇ ∈N (C) and Ω̇∈N (D) is a sufficient
but not necessary condition for the existence of null motion. Even
if γ̇ /∈N (C) and Ω̇ /∈N (D), there still exists the possibility of sat-
isfying Eq. (15). In fact, there always exists a null motion solution

[γ̇T Ω̇
T

]T
null satisfying Eq. (15), if N > 2.

Our objective is to investigate the possibility of escaping from a
singularity using null motion. Mathematically, we are interested in
conditions such that the following is true: at time t ,

C[Ω(t),γ(t)]γ̇(t) + D[γ(t)]Ω̇(t) = 0 (16)

and at time t + dt ,

C[Ω(t + dt),γ(t + dt)]γ̇(t + dt) + D[γ(t + dt)]Ω̇(t + dt) = 0

(17)

where C(Ω,γ) and D(γ) as in Eqs. (5) and (6). Using Taylor’s
theorem, one obtains

γ(t + dt) = γ(t) + γ̇(t)dt + r1(dt)

γ̇(t + dt) = γ̇(t) + γ̈(t)dt + r2(dt)

Ω(t + dt) = Ω(t) + Ω̇(t)dt + r3(dt)

Ω̇(t + dt) = Ω̇(t) + Ω̈(t)dt + r4(dt)

where limdt → 0 ‖ri (dt)‖/dt = 0, i = 1, . . . , 4. The question of ex-
istence of null motion, therefore, reduces to one of finding
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[γ̈T (t)Ω̈
T
(t)]T ∈ R

2N such that Eq. (17) holds, given that Eq. (16)
holds. Noticing that

C[Ω(t + dt),γ(t + dt)] = C[Ω(t),γ(t)]

+
N∑

i = 1

∂C

∂γi
γ̇i (t)dt +

N∑

i = 1

∂C

∂�i
�̇i (t)dt + r5(dt)

D[γ(t + dt)] = D[γ(t)] +
N∑

i = 1

∂ D

∂γi
γ̇i (t)dt + r6(dt)

where limdt → 0 ‖ri (dt)‖/dt = 0, i = 5, 6, we have from Eq. (17) that

0 = C[Ω(t),γ(t)]γ̇(t) + D[γ(t)]Ω̇(t) +
[

N∑

i = 1

∂C

∂γi
γ̇i (t)dt

]
γ̇(t)

+
[

N∑

i = 1

∂C

∂�i
�̇i (t)dt

]
γ̇(t) + C[Ω(t),γ(t)]γ̈(t)dt

+
[

N∑

i = 1

∂ D

∂γi
γ̇i (t)dt

]
Ω̇(t) + D[γ(t)]Ω̈(t)dt + r7(dt) (18)

with limdt → 0 ‖r7(dt)‖/dt = 0. Using Eq. (16), dividing with dt , and
taking the limit as dt → 0, we have that a null motion exists if and
only if there exist γ̈(t) ∈ R

N and Ω̈(t) ∈ R
N such that the following

is true:

0 = C(Ω(t),γ(t))γ̈(t) + D(γ(t))Ω̈(t) +
[

N∑

i = 1

∂C

∂γi
γ̇i (t)

]
γ̇(t)

+
[

N∑

i = 1

∂C

∂�i
�̇i (t)

]
γ̇(t) +

[
N∑

i = 1

∂ D

∂γi
γ̇i (t)

]
Ω̇(t) (19)

Condition (19) can be written as

[
C[Ω(t),γ(t)] D[γ(t)]}]

[
γ̈(t)

Ω̈(t)

]

= − 2
N∑

i = 1

Iwsi ti γ̇i �̇i +
N∑

i = 1

Iwsi�i si γ̇
2
i (20)

where [γ̇T (t), Ω̇
T
(t)]T ∈N ([C D]). Because the column vectors of

[C D] always span the three-dimensional space, there always exist
vectors γ̈(t) ∈ R

N and Ω̈(t) ∈ R
N that satisfy Eq. (20). Thus, a null

motion always exists for the VSCMG case. Most interestingly, we do
not need all N wheels to operate as VSCMGs to avoid singularities.
Only two out of all N wheels need to operate as VSCMGs, whereas
the remaining N − 2 may operate as conventional CMGs. This is
because any two inner products u · si cannot be zero at a singularity
simultaneously, provided that no two gimbal directions are identical.
We conclude that every singularity (in terms of the rank deficiency
of C) is escapable with null motion [γ̇T , Ω̇

T
]T
null ∈N ([C D]), if we

have no less than two VSCMGs out of a total of N wheels.
Remark: The preceding analysis can be easily adapted to investi-

gate the existence of null motions for a conventional CMGs cluster.
By setting hi = 1 for all i = 1, . . . , N and Ω̇(t) ≡ Ω̈(t) ≡ 0N × 1 in
Eq. (19), one obtains the following condition for existence of null
motion for the CMG case as

C[γ(t)] γ̈(t) = D[γ(t)]γ̇2(t) (21)

where γ̇2 �= [γ̇ 2
1 , . . . , γ̇ 2

N ]T and C[γ(t)]γ̇(t) = 0. There exists γ̇(t)
∈N [C(γ(t))] such that Eq. (21) has a solution for some
γ̈(t) ∈ R

N if and only if there exists γ̇(t) ∈N [C(γ(t))] such that
D[γ(t)]γ̇2(t) ∈R[C(γ(t))], equivalently, vT D[γ(t)]γ̇2(t) = 0, for
all nonzero v ∈R⊥[C(γ(t))]. Now recall that R⊥[C(γ(t))] =

span{u}; hence, the condition for existence of a solution to con-
dition (21) is that

∃γ̇ ∈ N [C(γs)] such that uT D(γs)γ̇
2 = 0 (22)

Notice now that uT D(γs)γ̇
2 = γ̇TPγ̇, where P �= diag

[uT s1, . . . , uT sN ]. Therefore, condition (22) takes the form

∃γ̇ ∈ N [C(γ(t))] such that γ̇TPγ̇ = 0 (23)

Condition (23) for the existence of null motion is identical to the
condition obtained in Ref. 21. However, the preceding method is
more straightforward and avoids using the concept of virtual gim-
bal angle displacements, which is to some degree, a mathematical
artifact; also see Ref. 19.

V. Singularity Avoidance Using Null Motion
of VSCMGs Without Power Tracking

Let κ(γ,Ω) be a measure of the singularity of the matrix C(Ω,γ)
that is a function of the gimbal angles and wheel speeds. Without
loss of generality, let κ(γ,Ω) be the condition number of the matrix
C . [Among the several choices of κ(γ,Ω), the condition number has
been selected as a measure of the singularity in this paper because
it is known that it is a more reliable measure of rank deficiency of
a matrix than, for example, the determinant of the matrix.23] The
condition number of C has to be kept small to avoid any singularities.
The proposed method, commonly, known as the gradient method,4

adds a null motion that does not have any effect on the generated
output torque but it decreases the singularity measure κ(γ,Ω). For
example, if we let Q = [C D], then any null motion can be written
as
[
γ̇

Ω̇

]

null

= [I2N − W̃ QT (QW̃ QT )−1 Q]W̃ d, d ∈ R
2N × 1 (24)

where W̃ > 0 is some weighting matrix that can be used to distribute
the control input between gimbal rate and wheel speed acceleration.
It can be easily shown that Q[γ̇T , Ω̇T ]T

null = 0 and that the matrix
[I2N − W̃ QT (QW̃ QT )−1 Q]W̃ is positive semidefinite. If the vector
d is selected as

d = −k





∂κ

∂γ

T

∂κ

∂Ω

T




, k > 0 (25)

then, the rate of change of κ(γ,Ω) due to Eq. (24) is

κ̇null =
[

∂κ

∂γ

∂κ

∂Ω

][
γ̇

Ω̇

]

null

= −k

[
∂κ

∂γ

∂κ

∂Ω

]

×[I2N − W̃ QT (QW̃ QT )−1 Q]W̃





∂κ

∂γ

T

∂κ

∂Ω

T




≤ 0

(26)

Therefore, it is expected that the singularity will be avoided. How-
ever, this method does not necessarily guarantee singularity avoid-
ance, because the change of κ(γ,Ω) due to the torque-generating
solution of Eq. (13) may dominate the change due to the null motion
of Eq. (24). Nevertheless, singularity avoidance methods based on
null motions have been successfully used in practice.4,20 If a con-
dition number is chosen for κ , Schaub and Junkins20 provide an
algorithm to quickly compute ∂κ/∂γ. The other sensitivity ∂κ/∂Ω
also can be computed in similar way; also see Ref. 24. Finally, we
point out that, although Eq. (24) looks similar to Eq. (16) of Ref. 20,
the latter is missing the postmultiplication by the matrix W̃ . Without
it one cannot ensure that κ̇null ≤ 0.
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VI. Singularity Analysis of VSCMGs
with Power Tracking

In Ref. 14, the authors have introduced a control method for the
simultaneous attitude and power tracking problem for the case of a
rigid spacecraft with N momentum wheels. These results have been
extended to the case of N VSCMGs in Refs. 15 and 18. By setting
the gimbal angles in Ref. 15 to be constant, one can retrieve the
results of Ref. 14 as a special case.

The total kinetic energy stored in the wheels of the VSCMG
cluster is

E �= 1
2Ω

T IwsΩ (27)

where Iws
�= diag[Iws1 , . . . , IwsN ] ∈ R

N × N . Hence, the power (rate
of change of the energy) is given by

P = dE

dt
= ΩT IwsΩ̇ = [

0 ΩT Iws

] [
γ̇

Ω̇

]
(28)

This equation is augmented to the attitude tracking equation (4), to
obtain

Q pu = L (29)

where

u �=
[
γ̇

Ω̇

]
, Q p

�=
[

C(Ω,γ) D(γ)

01 × N ΩT Iws

]
, L �=

[
T
P

]

The existence of a solution to Eq. (29) depends on the rank of the
coefficient matrix Q p ∈ R

4 × 2N . If rank Q p = 4, then Eq. (29) always
has a solution, for example,

[
γ̇

Ω̇

]
= W QT

p

(
Q pW QT

p

)−1
L (30)

for some 2N × 2N weighting matrix W . However, if rank Q p = 3,
it is not possible to solve Eq. (29). (Notice that rank Q p ≥ 3, be-
cause rank [C(Ω,γ) D(γ)] = 3 for all Ω∈ R

N and γ ∈ [0, 2π)N .)
In Ref. 15, the authors have shown that a sufficient (but not neces-
sary) condition for rank Q p = 4 is that rank C = 3. This means that
the issue of singularity avoidance for a VSCMGs system (in terms
of the rank deficiency of C) becomes more pronounced in case of a
power tracking requirement.

To investigate the existence of null motion for the case of both
attitude and power tracking problem, we first notice that in this case,
in addition to conditions (16) and (17), the following conditions must
be true as well: at time t ,

ΩT (t)IwsΩ̇(t) = 0 (31)

and at time t + dt,

ΩT (t + dt)IwsΩ̇(t + dt) = 0 (32)

leading to the condition that a null motion exists if and only if there
exist γ̈(t) ∈ R

N and Ω̈(t) ∈ R
N such that

[
C[Ω(t),γ(t)] D[γ(t)]

01 × N ΩT (t)Iws

][
γ̈(t)

Ω̈(t)

]
=

[
ζ1

ζ2

]
(33)

where ζ1 ∈ R
3 and ζ ∈ R from

ζ1
�= −2

N∑

i = 1

Iwsi ti γ̇i �̇i +
N∑

i = 1

Iwsi�i si γ̇
2
i (34)

ζ2
�= − Ω̇

T
IwsΩ̇ = −

N∑

i = 1

Iwsi �̇
2
i (35)

Next, we show that a solution to Eq. (33) exists if and only if rank
M = 2, where

M �=
[

Iws1 uT s1 Iws2 uT s2 · · · IwsN uT sN

Iws1�1 Iws2�2 · · · IwsN �N

]
(36)

To this end, notice that a solution to Eq. (33) exists if and only if
ζ �= [ζT

1 ζ2]T ∈R[Q p], equivalently, if and only if vT ζ = 0 for all
nonzero v ∈R⊥[Q p]. Notice that

R⊥[Q p] = {v = [
vT

1 v2

]T ∈ R
4 : v1 ∈ R⊥(C), vT

1 D(γ)

+ v2ΩT Iws = 0} (37)

which, via the fact that R⊥(C) = span{u}, leads to the condition

[uT η]

[
ζ1

ζ2

]
=

N∑

i = 1

Iwsi u
T si�i γ̇

2
i − η

( N∑

i = 1

Iwsi �̇
2
i

)
= 0 (38)

for all η such that uT D(γ) + η ΩT Iws = 0, that is, for all η such that

[
Iws1 uT s1, . . . , IwsN uT sN

] + η
[

Iws1�1, . . . , IwsN �N

] = 0 (39)

If rank M = 2, then there does not exist an η ∈ R that satis-
fies Eq. (39), thus, sufficiency follows. On the other hand, if rank
M = 1, then there exists a nonzero scalar η satisfying Eq. (39).
This yields

Iwsi u
T si = −ηIwsi �i , i = 1, . . . , N

Thus, Eq. (38) becomes

− η

( N∑

i = 1

Iwsi�
2
i γ̇

2
i +

N∑

i = 1

Iwsi �̇
2
i

)
= 0 (40)

which cannot hold for any [γ̇, Ω̇] �= 0.
In case rank M = 1, it is, therefore, impossible to satisfy both the

angular momentum (torque) and the kinetic energy (power) require-
ments for singularity avoidance using null motion. Therefore, the
inescapable singularities of a VSCMG system used for combined
attitude control and power tracking is completely characterized by
the rank of the matrix M in Eq. (36). Notice that because the wheel
speeds �i are all positive by the definition of the spin axes si , the
rank deficiency of M can occur only when εi

�= sign(u · si ) = +1 for
all i = 1, . . . , N .

VII. Angular Momentum Envelopes
of a VSCMG Cluster

In this section, the inescapable singularities of a VSCMG sys-
tem and their relation to the rank deficiency of the matrix M in
Eq. (36) are studied in more detail. For this purpose, we intro-
duce three singular surfaces in the three-dimensional angular mo-
mentum space. The first surface is the momentum envelope for
given kinetic energy, the second surface is the momentum enve-
lope for given wheel speeds, and the third surface is the momen-
tum envelope for given kinetic energy and gimbal angles. With
the help of these three surfaces, we can visualize the geomet-
ric conditions under which a singularity is either escapable or
inescapable.

A. Momentum Envelope for Given Kinetic Energy
In this section, we define the angular momentum envelope of a

VSCMG cluster for a given kinetic energy, and we show that the
total angular momentum vector reaches this envelope if and only if
the VSCMG cluster encounters an inescapable singularity, that is,
rank M = 1.
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To this end, consider the case when a power command P(t)
is given for all t0 ≤ t ≤ t f . Then the kinetic energy stored in the
VSCMG cluster for t ≥ t0 can be computed from

E(t) =
∫ t

t0

P(t) dt + E(t0)

Suppose that E(t̄) is given at some instant t = t̄ . The objective is to
find the maximum workspace of H(t̄) with the given value of the
kinetic energy. The boundary of the maximum angular momentum
workspace can be found by solving the following maximization
problem.

For a given singular direction u, find the gimbal angles γi and
wheel speeds �i that maximize the function J defined by

J �= H · u =
N∑

i = 1

Iwsi �i u · si =
N∑

i = 1

αi (γi )Iwsi �i (41)

subject to the constraints

N∑

i = 1

Iwsi �
2
i = 2E (42)

α2
i (γi ) ≤ α2

maxi
, i = 1, . . . , N (43)

where αi (γi )
�= u · si and αmaxi is its maximum value. Because αi

becomes maximum when si has a maximum projection onto u as
shown in Fig. 3, αmaxi is given by αmaxi = √

[1 − (gi · u)2].
In Appendix A, it is shown that the solution to this maximization

problem is

α∗
i = αmaxi , �∗

i = αmaxi

2λ∗
0

, i = 1, . . . , N (44)

where

λ∗
0

�
=

1√
8E

( N∑

i = 1

Iwsi α
2
maxi

) 1
2

Equation (44) implies that the gimbal angles of the VSCMGs are
in a singular configuration with all εi = +1 and that each wheel has
a speed that is proportional to u · si . It can also be shown that the
solution (44) corresponds to an inescapable singularity when rank
M = 1. (See Appendix A for the details.) In summary, an inescapable
singularity for the case of attitude/power tracking for a VSCMG
cluster occurs when the wheels have maximum angular momentum
along the singular direction with the given kinetic energy constraint.

The preceding observations also lend themselves to a method for
drawing the angular momentum envelope of a VSCMGs system
with given kinetic energy constraint. Given a singular direction u,
each spin axis si is determined as in the conventional CMGs case,
that is, from Eq. (11) with all εi = +1 and with the wheel speeds
determined from Eq. (44). Hence, the total angular momentum at
this singular configuration for a given singular direction u can be
expressed as

H =
N∑

i = 1

(gi × u) × gi

|gi × u| �∗
i Iwsi = 1

2λ∗
0

N∑

i = 1

[u−gi (gi ·u)]Iwsi (45)

where the last equality follows from |gi × u| = max
{si · u} = αmaxi .

Equation (45) defines an ellipsoid in the momentum space. If
the total angular momentum vector reaches this surface and the
reference attitude (torque requirement) forces it to go outside this
surface, then the VSCMGs cluster cannot meet both attitude and
power tracking requirements. Contrary to the CMGs case, shown in
Fig. 4a, the momentum envelope of a VSCMG cluster with given
kinetic energy has no holes. The reason is that, when the singular

direction u is along a gimbal axis gi , the angular speed of the i th
wheel does not have a component along u because si ⊥ gi and, thus,
si ⊥ u. Hence, the i th wheel speed does not contribute to the maxi-
mization of the total angular momentum along u. Thus, �i may be
taken to be zero with all of the other wheels having higher speeds
(to satisfy the kinetic energy constraint).

B. Geometric Picture of the Inescapable Singularity Case
A nice geometric picture emerges for describing the occurrence

of inescapable singularities using the earlier concept of the angular
momentum envelope. In addition to the angular momentum enve-
lope for given kinetic energy introduced in the preceding section,
one can also define the angular momentum envelope of a VSCMG
system with given energy and a given set of gimbal angles. Given
the total kinetic energy E and the gimbal angles, this envelope is
defined as the boundary of the maximum workspace of the total
momentum H as the wheel speeds vary but the total energy E and
the gimbal angles γi are kept constant. This surface can be drawn
by solving the following maximization problem.

Maximize

J �= H · u =
N∑

i = 1

Iwsi �i u · si =
N∑

i = 1

αi Iwsi �i (46)

subject to the constraint

N∑

i = 1

Iwsi �
2
i = 2E

for each u ∈ R
3, ‖u‖ = 1, while the gimbal angles γi are fixed.

The procedure for solving this maximization problem is similar
to the one in Sec. VII.A, and thus, it is omitted. Its solution yields

�∗
i = αi

/
2λ∗

0

where

λ∗
0

�=
1√
8E

( N∑

i = 1

Iwsi α
2
i

) 1
2

In addition to the angular momentum envelope for given kinetic
energy, and the envelope with given kinetic energy and gimbal an-
gles, one can also construct the angular momentum envelope for
given wheel speeds using the method described in Sec. III.A. The
interplay between the latter two surfaces provides a clear picture for
the occurrence of the inescapable singularities.

Figures 6 and 7 show these three envelopes at a singular config-
uration corresponding to the singular direction u = [0, 0, 1]T with
εi > 0 for i = 1, 2, 3, and 4. In Figs. 6 and 7, surface A is the momen-
tum envelope with given wheel speeds, surface B is the momentum
envelope with given energy and gimbal angles, and surface C is the
momentum envelope with given kinetic energy.

Figure 6 shows a case when the gimbal angles are singulary con-
figured with all εi > 0, but the wheel speeds are not equal to the
maximizing solution of Eq. (44), hence, rank M �= 1. Notice that the
total momentum vector H lies inside the momentum envelope with
given energy (surface C). As the gimbal angles vary with the wheel
speeds fixed, H will move inside the surface A; thus, the projection
of the change of the angular momentum due to the gimbal changes
along the singular direction is �H · u|γ̇ < 0. As the wheel speeds
vary with gimbal angles and total energy fixed, H will move inside
the surface B; thus, the projection of the change of the angular mo-
mentum due to the wheel speed changes along the singular direction,
�H ·u|�̇, can be either positive or negative. This is shown in Fig. 6.
Hence, the term �H · u|�̇ can cancel the negative term �H · u|γ̇ .
Therefore, a gimbal angle change is possible without violating the
angular momentum and energy constraints. As a result, in this case
the singularity is escapable using null motion. On the other hand,
Fig. 7 shows an inescapable singularity, that is, when rank M = 1.
The momentum vector H reaches the envelope C. At this value of H,
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Fig. 6 Escapable singularity of VSCMG.

Fig. 7 Inescapable singularity of VSCMG.

both surface A and surface B are normal to the singular direction u,
and so both �H ·u|γ̇ and �H ·u|�̇ are negative. Therefore, these two
cannot cancel each other. This means that gimbal angle changes and
wheel speed changes while �H = 0 is impossible. Thus, escaping
from the singularity without violating either the momentum or the
power constraints is impossible.

VIII. Condition for Singularity Avoidance
If a VSCMGs cluster has a pyramid configuration with skew

angle θ (Fig. 2) and each wheel has the same moment of inertia
Iw

�= Iws1 = Iws2 = Iws3 = Iws4 , it can be shown that the momentum
envelope with energy constraint E becomes an ellipsoid with the
semi-axes of lengths

√
[4E Iw(1 + cos2 θ)],

√
[4E Iw(1 + cos2 θ)],

and
√

[8E Iw] sin θ . (See Appendix B for the proof of this fact.)
This provides a criterion for detecting whether the VSCMGs will
encounter an inescapable singularity.

Theorem 1: Consider a VSCMG cluster used for attitude and
power tracking. Assume that the VSCMG cluster has a pyramid
configuration with angle θ and the wheels have the same moment of
inertia Iw . Then, for a given energy command history E(t) and angu-
lar momentum command history H(t) for t0 ≤ t ≤ t f , the VSCMG
cluster encounters an inescapable singularity, if and only if there
exist t̄ ∈ [t0, t f ] such that

H 2
x (t̄)

4E(t̄)Iw(1 + cos2 θ)
+ H 2

y (t̄)

4E(t̄)Iw(1 + cos2 θ)
+ H 2

z (t̄)

8E(t̄)Iw sin2 θ
�1

(47)

where Hx (t̄), Hy(t̄), and Hz(t̄) are the components of H(t̄) in the
body frame.

Specifically, when the skew angle is θ = 54.74 deg, then
cos θ = 1/

√
3 and sin θ = √

(2/3) and the ellipsoid becomes a
sphere with radius

√
[(16/3)E(t̄)Iw]. Therefore, the following is

an immediate consequence of the theorem.
Corollary 1: Consider a VSCMG cluster used for attitude and

power tracking. Assume that the VSCMG cluster has a regular pyra-
mid configuration (skew angle θ = 54.74 deg) and the wheels have
the same moment of inertia Iw . Then, for a given energy command
history E(t) and angular momentum command history H(t) for
t0 ≤ t ≤ t f , the VSCMG cluster encounters an inescapable singular-
ity, if and only if there exist t̄ ∈ [t0, t f ] such that

‖H(t̄)‖�
√

(16/3)E(t̄)Iw (48)

One method to solve the inescapable singularity problem for
VSCMGs for an IPACS is, therefore, to increase the workspace
of the VSCMGs by increasing the inertia of the wheels as suggested
by inequality (48). This means that the wheel size must be carefully
determined depending on the spacecraft mission. Another possi-
bility is to perform momentum dump/desaturation using external
torque actuators such as magnetic torquers or gas thrusters. With
this method, we can decrease ‖H(t)‖, thus keeping H(t) within the
ellipsoid (or sphere) defined in the theorem (or corollary).

Once we know that the VSCMGs will never encounter in-
escapable singularities for a given attitude and power command
from the theorem, we can apply the gradient method introduced in
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Eqs. (24) and (25) by replacing Q with Q p , that is,

[
γ̇

Ω̇

]

null

= −k
[
I2N − W̃

1
2
(

Q pW̃
1
2
)†

Q p

]
W̃





∂κ

∂γ

T

∂κ

∂Ω

T



 (49)

where A† denotes the Moore–Penrose inverse of the matrix A.
The control law (49) will escape all singularities of the VSCMG
system while tracking the required attitude and power reference
commands.

IX. Numerical Examples
A numerical example is provided to test the proposed singular-

ity avoidance method in Eq. (49). A spacecraft with four VSCMGs
in a regular pyramid configuration is used for all numerical simula-
tions. Table 1 contains the parameters used for the simulations. They
closely parallel those used in Refs. 13, 15 and 18. In Table 1 B I is
the spacecraft moment of inertia matrix without the VSCMG clus-
ter and Ig∗, ∗ = g, t, and s, are the inertias of the gimbal frame. For
more information on the exact equations on motion for a spacecraft
with a VSCMG cluster, see Ref. 15.

Table 1 Simulation parameters

Parameter Value

N 4
θ , deg 54.75
γ(0), rad [π/2, −π/2, −π/2, π/2]T

γ̇(0), rad/s2 [0, 0, 0]T

B I , kg · m2




15053 3000 −1000

3000 6510 2000

−1000 2000 11122





Iws, kg · m2 diag{0.7, 0.7, 0.7, 0.7}
Iwt, Iwg, kg · m2 diag{0.4, 0.4, 0.4, 0.4}
Igs, Igt, Igg, kg · m2 diag{0.1, 0.1, 0.1, 0.1}

Fig. 8 Reference and actual attitude trajectory.

The exact equations of motion from Ref. 15 are used in all
simulations to validate our approach. For all simulations, the ini-
tial reference attitude is assumed to be aligned with the iner-
tial frame, and the angular velocity of the reference attitude is
chosen as

ωd(t) =




2 × 10−3 sin(2π t/9000)

−3 × 10−3 sin(2π t/12000)

1 × 10−3 sin(2π t/10000)



 (rad/s)

The initial attitude of the spacecraft body frame is chosen as

q0 = [−1, 1, −1, 1]T
/√

4 (50)

where q is the Euler parameter vector with respect to the inertial
frame. The initial attitude in Eq. (50) corresponds to the 3–2–1
Euler angle set φ0 = −90, θ0 = 0, and ψ0 = −90 deg. The initial
angular velocity of the body frame is set to zero.

The results from two simulation are presented. In the first case,
only the attitude and power tracking control of Eq. (30) is applied.
In the second case, the singularity avoidance control of Eq. (49) is

Fig. 9 Desired and actual power profile.
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a) Angular speed of wheels

b) Gimbal angle

c) Wheel acceleration control input

d) Gimbal rate control input

e) Condition number of C

Fig. 10 Simulation without singularity avoidance.

used in addition to Eq. (30). The gain in the singularity avoidance
control is chosen as k = 0.005. Figure 8 shows the reference and
actual attitude histories. In Figs. 8, the subscript d designates the
desired quaternion history. The spacecraft attitude tracks the desired
attitude exactly after a short period of time. The reference and the
actual power profiles are shown in Fig. 9. The two profiles overlap
each other perfectly and appear as a single line in Fig. 9. Figures 8
and 9 show that both attitude and power tracking are successfully
achieved. Figure 10 shows that the matrix C becomes close to being
singular at approximately t = 4000 s without any singularity avoid-
ance algorithm. The control input Ω̇ becomes very large during
this period, becasue the weighting matrix W in Eq. (30) makes the
VSCMGs operate in reaction wheel mode, and so Ω̇ has to generate
the required output torque. Note that without the weighting matrix,
the gimbal rate input γ̇ would become very large, instead of Ω̇. Both
cases are undesirable.

On the other hand, Fig. 11 shows that singularities are success-
fully avoided using the null motion algorithm of Eq. (49). Although
slightly larger control inputs γ̇ are needed to reconfigure the gim-
bal angles as the matrix C approach the singular states, the overall
magnitudes of both γ̇ and Ω̇ are kept within a reasonable range,
contrary to the case without a singularity avoidance strategy. The

attitude and power history profiles are exactly the same as the earlier
case and are shown in Figs. 8 and 9. Note that the attitude and the
power time histories with null motion are identical to those without
null motion, that is, the null motion has affected neither the output
torque nor the delivered power to the spacecraft bus, as expected.

Figure 12 shows that the singularity cannot be avoided even us-
ing the null motion method, if the criterion in the theorem is vio-
lated. In Fig. 12a, the magnitude of the total angular momentum
‖H‖ and the radius of the momentum envelope of the VSCMGs,
which is equal to

√
[(16/3)E Iw], are plotted. During the period

when ‖H(t)‖ <
√

[(16/3)E(t)Iw], singularities are avoided using
null motion, but when ‖H(t)‖ ≈ √

[(16/3)E(t)Iw] (near t = 6600s)
the condition number κ(γ,Ω) increases, as shown in Fig. 12b.

At this instant, the value of the matrix M defined in Eq. (36) is
given by

M ≈




0.6844 0.6719 0.4073 0.4686
0.6844

0.0011

0.6719

0.0011

0.4073

0.0011

0.4686

0.0011





It can be seen that at this instant the row vectors of the matrix M
are parallel to each other, as expected by the analysis in Sec. VII.
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a) Angular speed of wheels

b) Gimbal angle

c) Wheel acceleration control input

d) Gimbal rate control input

e) Condition number of C

Fig. 11 Simulation with singularity avoidance.

a) Norm of H(t) and radius of momentum envelope b) Condition number of C

Fig. 12 Inescapable singularity.

X. Conclusions
In this paper the properties of the singular states of a conven-

tional CMG system are reviewed. Building on this, the singular-
ity problem associated with a VSCMGs system is introduced and
studied in detail. A VSCMG system has more degrees of free-
dom than a conventional CMG system, and so, in theory, it can
generate arbitrary torques. However, in practice, it is still desir-
able to keep the gimbal angles away from singular configura-

tions to make the best use of the torque amplification effect of
the CMGs.

A gradient-based method using null motion has been introduced
to avoid the singularities of a VSCMG cluster. It has been shown
that this method will work if no less than two wheels operate in
variable wheel speed mode and there is no power requirement. If
a power trajectory command must also be tracked as in an IPACS,
then the VSCMG system may encounter inescapable singularities.
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We have shown that all such inescapable singularities are external,
that is, they all lie on the momentum envelope subject to the kinetic
energy constraint of the VSCMGs. Geometric and algebraic consid-
erations provide a criterion for determining whether the VSCMGs
will encounter an inescapable singularity. This criterion can be used
to determine the size of a VSCMG system for a given attitude/power
mission.

Appendix A: Solution of Optimization Problem VII.A.
To show solution (44) let φi ∈ [0, π/2] denote the angle between

u and si at the singular configuration with εi = sign(si · u) = +1 in
Fig. 3. The value of αi

�= u · si is maximum at this singular config-
uration, and so we have that

αmaxi = max{u · si } = cos φi =
√

1 − sin2(φi )

=
√

1 − cos2(π − φi ) =
√

1 − (gi · u)2

Introduce the Lagrange multipliers λ0 and λi for i = 1, . . . , N
and define the Lagrangian L as

L �
=

N∑

i = 1

αi Iwsi �i − λ0

( N∑

i = 1

Iwsi �
2
i − 2E

)
−

N∑

i = 1

λi

(
α2

i − α2
maxi

)

Then the necessary conditions for a maximum are

∂L
∂�i

= α∗
i Iwsi − 2λ∗

0 Iwsi �
∗
i = 0, i = 1, . . . , N (A1)

∂L
∂αi

= Iwsi �
∗
i − 2λ∗

i α
∗
i = 0, i = 1, . . . , N (A2)

The complementary slackness conditions

λ∗
i

(
α∗

i
2 − α2

maxi

) = 0, i = 1, . . . , N (A3)

also must be satisfied.
If λ∗

0 = 0 then Eq. (A1) implies that α∗
i = 0 for all i = 1, . . . , N

and Eq. (A2) yields that �∗
i = 0 for all i = 1, . . . , N , which violates

the energy constraint. Hence, λ∗
0 �= 0, and thus, Eq. (A1) yields that

�∗
i = α∗

i

/
2λ∗

0, i = 1, . . . , N (A4)

Now, let us show that the maximizing solution satisfies λ∗
i �= 0

for all i = 1, . . . , N . To this end assume that an optimal solution
exists such that λ∗

k = 0 for some k ∈ {1, . . . , N }. It follows from
Eq. (A2) that �∗

k = 0. Clearly, there exists at least one wheel with
nonzero wheel speed, to satisfy the energy constraint. Without loss of
generality, let this be the (k + 1)th wheel. Then, we haveλ∗

k = �∗
k = 0

and λ∗
k + 1 �= 0 and �∗

k + 1 �= 0. To satisfy the energy constraint,

Iwsk + 1�
∗2
k + 1 = 2E −

N∑

i = 1
i �= k,k + 1

Iwsi �
∗
i

2 �= 2E ′

and from Eq. (A3), α∗
k + 1 = αmaxk + 1 because α∗

k + 1 = −αmaxk + 1 is not
the maximum obviously.

Let now �∗∗
i = �∗

i , α∗∗
i = α∗

i for i = 1, . . . , k − 1, k + 2, . . . , N
and let

�∗∗
i = αmaxi

/
2λ∗∗

0 , α∗∗
i = αmaxi , i = k, k + 1

where

λ∗∗
0 = 1

/√
8E ′(Iwsk α

2
maxk

+ Iwsk + 1α
2
maxk + 1

) 1
2

It is easily shown that this solution satisfies the constraints (42) and
(43).

The cost of the solution (α∗
i , �

∗
i ) is given by

J ∗ =
N∑

i = 1

α∗
i Iwsi �

∗
i =

N∑

i = 1
i �= k,k + 1

α∗
i Iwsi �

∗
i + α∗

k + 1 Iwsk + 1�
∗
k + 1

=
N∑

i = 1
i �= k,k + 1

α∗
i Iwsi �

∗
i +

√
2E ′ Iwsk + 1α

2
maxk + 1

(A5)

whereas the cost for the solution (α∗∗
i , �∗∗

i ) is given by

J ∗∗ =
N∑

i = 1

α∗∗
i Iwsi �

∗∗
i

=
N∑

i = 1
i �= k,k + 1

α∗
i Iwsi �

∗
i + α∗∗

k Iwsk �
∗∗
k + α∗∗

k + 1 Iwsk + 1�
∗∗
k + 1

=
N∑

i = 1
i �= k,k + 1

α∗
i Iwsi �

∗
i +

√
2E ′(Iwsk α

2
maxk

+ Iwsk + 1α
2
maxk + 1

)

(A6)

Clearly, J ∗ ≤J ∗∗. Moreover, J ∗ =J ∗∗ if and only if αmaxk = 0,
that is, when u = ±gk . However, in this case �∗

k = 0 regardless of
the value of λ∗

k . It follows that at the maximizing solution λ∗
i �= 0 for

all i = 1, . . . , N .
When the fact that λ∗

i �= 0 for all i = 1, . . . , N , is used, the com-
plementary slackness condition (A3) yields that

α∗
i = αmaxi , i = 1, . . . , N

and from Eq. (A4),

�∗
i = α∗

maxi

/
2λ∗

0, i = 1, . . . , N

Moreover, to satisfy the energy constraint,

N∑

i = 1

Iwsi �
∗2
i =

∑N
i = 1 Iwsi α

2
maxi

4λ∗
0

2
= 2E

Thus, we have

λ∗
0 = 1√

8E

(
N∑

i = 1

Iwsi α
2
maxi

) 1
2

which completes the proof.
Next, we show that the maximizer (44) occurs if and only if

the VSCMG system encounters a singularity such that rank M = 1,
where M is given in Eq. (36), that is, an inescapable singularity.

Sufficiency follows from the fact that α∗
i = αmaxi implies a singu-

larity with εi = +1 for all i = 1, . . . , N . Then the matrix M defined
in Eq. (36) becomes

M =
[

Iws1 u · s1 Iws2 u · s2 . . . IwsN u · sN

Iws1�
∗
1 Iws2�

∗
2 . . . IwsN �∗

N

]

=
[

Iws1αmax1 . . . IwsN αmaxN

Iws1αmax1

/
2λ∗

0 . . . IwsN αmaxN

/
2λ∗

0

]

which obviously has rank 1.
To show necessity, notice that when the VSCMG system en-

counters a singularity with rank M = 1, then necessarily εi = sign
(u · si ) = +1 for all i = 1, . . . , N , and thus, αi = αmaxi , i = 1, . . . ,
N . Moreover, there exists a constant η > 0 such that ΩT =
η[u · s1, . . . , u · sN ]. The energy constraint must be satisfied, that is,

E = 1
2Ω

T IwsΩ = 1
2 η2

N∑

i = 1

Iwsi (u · si )
2 = 1

2 η2
N∑

i = 1

Iwsi αmax
2
i
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thus,

η =
√

2E
∑N

i = 1 Iwsi α
2
maxi

= 1

2λ∗
0

which implies that

�∗
i = αmaxi

2λ∗
0

, i = 1, . . . , N

thus completing the proof.

Appendix B: Momentum Envelope for Given Energy

Let cθ
�= cos θ and sθ

�
= sin θ . Then the gimbal axes of the

VSCMG system in Fig. 2 with skew angle θ are

g1 = [sθ , 0, cθ ]T , g2 = [0, sθ , cθ ]T

g3 = [−sθ , 0, cθ ]T , g4 = [0, −sθ , cθ ]T

Also assume that every wheel has the same moment of inertia Iw,
that is, Iwsi = Iw for all i = 1, . . . , N . Then, for an arbitrary singu-
lar direction vector u = [u1, u2, u3]T , and using Eq. (45), the total
angular momentum vector becomes

H = Iw

2λ∗
0

[
4u −

4∑

i = 1

gi (gi · u)

]
= Iw

λ∗
0





(
1 + c2

θ

)
u1

(
1 + c2

θ

)
u1

2s2
θ u3





We also have

H · u = Iw

2λ∗
0

[
4 −

4∑

i = 1

(gi · u)2

]

Since

λ∗
0

2 = Iw

8E

4∑

i = 1

α2
maxi

= Iw

8E

[
4 −

4∑

i = 1

(gi · u)2

]
= λ∗

0

4E
H · u

it follows that

λ∗
0 = (H · u)/4E

Therefore,

(H · u)H = 4E Iw Au

where A �
= diag{1 + c2

θ , 1 + c2
θ , 2s2

θ }, which implies

u = [(H · u)/4E Iw]A−1H

Finally, taking the dot product with H in both sides yields

H · u = [(H · u)/4E Isw]HT A−1H

Therefore, we have the following quadratic equation for all possible
values of H

HT BH = 1 (B1)

where

B �=
1

4E Iw

A−1 =





1

4E Iw

(
1 + c2

θ

) 0 0

0
1

4E Iw

(
1 + c2

θ

) 0

0 0
1

8E Iwsθ
2





The last equation represents an ellipsoid with the semi-
axes of lengths

√
[4E Iw(1 + cos2 θ)],

√
[4E Iw(1 + cos2 θ)], and√

(8E Iw) sin θ .
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