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Optimal Two-Impulse Rendezvous Using
Multiple-Revolution Lambert Solutions
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The minimum-¢V, � xed-time, two-impulse rendezvousbetween two spacecraft orbitingalong two coplanaruni-
directional circular orbits (moving-target rendezvous) is studied. To reach this goal, the minimum-¢V, � xed-time,
two-impulse transfer problem between two � xed points on two circular orbits is � rst solved. This � xed-endpoint
transfer is related to the moving-target rendezvous problem by a simple transformation.The � xed-endpoint trans-
fer problem is solved using the solution to the multiple-revolution Lambert problem. A solution procedure is
proposed based on the study of an auxiliary transfer problem. When this procedure is used, the minimum ¢V of
the moving-target rendezvous problem without initial and terminal coasting periods is obtained for a range of sep-
aration angles and times of � ight. Thus, a contour plot of the cost vs separation angle and transfer time is obtained.
This contour plot, along with a sliding rule, facilitates the task of � nding the optimal initial and terminal coasting
periods and, hence, obtaining the globally optimal solution for the moving-target rendezvous problem. Numerical
examples demonstrate the application of the methodology to multiple rendezvous of satellite constellations on
circular orbits.

Introduction

I N this paper, we are interested in � nding the best two-impulse
solutions for a class of rendezvous problems. Speci� cally, we

study the � xed-time, two-impulserendezvousproblembetween two
spacecraft. Both the chaser and the target spacecraft move on two
coplanarcircularorbits in the same direction.The motivation for in-
vestigatingsuchtwo-impulse� xed-timerendezvousproblemsstems
from our interest in solving multiple rendezvousproblems between
several vehicles in a satellite constellation. Clusters of satellites
and satellite constellations (including formation � ying schemes)
promise to provide increased � exibility, autonomy, reliability, and
operabilitycomparedto traditionalsingle-spacecraftapproaches.1¡3

In many cases, the satellites in the constellationcan be serviced ei-
ther from a vehicle launchedfrom Earth for that purposeor by other
satellites in the same constellation.4 Such scenarios require a com-
plete understandingof multiple orbital transfers between a number
of satellites.

Before being able to solve the multiple-rendezvousproblem for
a satellite constellation (which may include dozens or hundreds of
satellites) it is imperative to have a complete characterization for
the simplest case of an optimal rendezvous, namely, between two
satellites in a circular orbit. As a matter of fact, as shown in this
paper,even the simplecaseof prioritizingthe rendezvousmaneuvers
between three satellites is not clear from the outset. The results of
this paper, thus, lay the foundation for solving ef� ciently optimal
and suboptimal rendezvous strategies in a constellation with many
satellites.

In Ref. 5 a solution procedure is outlined for the multiple-
revolution Lambert problem. It is shown that given two points and
a speci� ed time of � ight long enough to allow Nmax revolutions for
the chaser, there exist 2Nmax C 1 Keplerian orbits that pass through
the given two points. With the use of the solutions to the multiple-
revolution Lambert problem, Prussing5 studied the minimum-cost,
� xed-time transfer between two � xed points on coplanar circular

Received 15 November 2001; revision received 19 July 2002; accepted
for publication 25 September 2002. Copyright c° 2002 by Haijun Shen and
Panagiotis Tsiotras. Published by the American Institute of Aeronautics and
Astronautics, Inc., with permission. Copies of this paper may be made for
personal or internal use, on condition that the copier pay the $10.00per-copy
fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923; include the code 0731-5090/03 $10.00 in correspondence with
the CCC.

¤Ph.D. Candidate, School of Aerospace Engineering; haijun shen@
ae.gatech.edu. Member AIAA.

†Associate Professor, School of Aerospace Engineering; p.tsiotras@
ae.gatech.edu. Associate Fellow AIAA.

orbits. He showed that allowing more than one revolution may re-
duce fuel consumption. However, Prussing does not identify which
of the possible 2Nmax C 1 solutions provides the least cost. As a
result, the minimum-cost solution is obtained only after calculat-
ing all 2Nmax C 1 candidates. In this paper, we provide an algo-
rithm that quickly and ef� ciently identi� es the optimal (minimum-
1V ) solution without the need to calculate all 2Nmax C 1 transfer
orbits.

This paper is organized in the following manner: After the In-
troduction, the formulation of the minimum-1V , � xed-time, � xed-
endpoint orbital transfer problem is presented, then the auxiliary
transfer problem is introduced and its solution is analyzed. The
solution to the auxiliary transfer problem is then applied to the
� xed-endpoint transfer problem. Next, solutions to the moving-
target rendezvousproblem without initial and � nal coastingperiods
are obtained for a range of separationanglesand times of � ight. The
global optimal solution for the moving-target rendezvous problem
can then be obtained by applying a sliding rule.6 As an application
to the proposed methodology,in the last section of the paper we an-
alyze rendezvousmaneuvers motivated by the problem of servicing
satellites in a circular constellation.

Fixed-Time, Fixed-Endpoint Transfer
Between Circular Orbits

Given two points P1 and P2 in space, there are two elliptic orbits
with the same semimajor axes that connect the two points, as shown
in Fig. 1. In Fig. 1, F and F¤ are the primary and secondary foci
of the transfer orbits, r1 and r2 are the radii from F to the points
P1 and P2, respectively, d is the length of the chord connecting
P1 and P2 , and µ is the central angle between r1 and r2. The two
orbits in Fig. 1 belong to two separate categories: the long-path
transfer orbits and short-path transfer orbits. As seen in Fig. 1, for a
long-path transfer orbit, F and F¤ lie on opposite sides of the P1 P2

line segment, whereas for a short-path transfer orbit, F and F ¤ lie
on the same side of the P1 P2 line segment. For a given transfer
time t f , an N -revolution transfer orbit is an elliptic orbit passing
through P1 and P2, and the time of travel along the P1 P2 arc plus
N complete revolutions is t f . An N -revolution transfer then is one
where the chaser spacecraft moves along the elliptic transfer orbit
for N complete revolutions plus the P1 P2 arc before meeting the
target at P2 . In general, there is more than one elliptic orbit that
passes through P1 and P2 for a given travel time t f , depending on
the numberof revolutionsallowed. These orbits are either long-path
or short-path orbits with different semimajor axes.

According to Lambert (see Ref. 7), the time of � ight is a function
only of the semimajor axis a, the sum of the radii r1 C r2, and the
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Fig. 1 Orbital geometry for Lambert problem.

Fig. 2 Example graph of tf vs a.

chord length d . Lagrange’s formulationof the Lambert problem can
be generalized to the multiple-revolutioncase as5

p
¹t f D a

3
2 [2N¼ C ® ¡ ¯ ¡ .sin® ¡ sin ¯/] (1)

where ¹ is the gravitational parameter, N is the number of allowed
revolutions,and ® and ¯ are de� ned as follows:

sin.®=2/ D [s=.2a/]
1
2 ; sin.¯=2/ D [.s ¡ d/=.2a/]

1
2 (2)

where s D .r1 C r2 C d/=2. A geometric interpretation of the vari-
ables ® and ¯ can be found in Ref. 8.

In the following,canonicalunits are used in the calculations.That
is, the referencecircularorbit has radius r1 D 1 and period 1. Hence,
¹ D 4¼ 2 , and the velocityunit is the reference orbital speed divided
by 2¼ .

An example plot of t f vs the semimajor axis a is shown in Fig. 2.
Figure 2 is drawn with the help of Eq. (1). N denotes the number of
revolutions.The plot in Fig. 2 corresponds to the case where r1 D 1,
r2 D 2, and µ D 60 deg. For each N , two solution branches exist, an
upper branch and a lower branch. The upper branch corresponds
to a long path for µ · 180 deg, and a short path for µ ¸ 180 deg;
the lower branch corresponds to a short path for µ · 180 deg, and a
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long path for µ ¸ 180 deg. For each N ¸ 1, there are two semimajor
axes correspondingto the same t f , and they de� ne two N -revolution
transferorbits(short-pathand long-pathorbits).However,for N D 0,
the lowerbranchismonotonicallydecreasingandso there is onlyone
semimajor axis that correspondsto the same t f (either for the short-
path orbit or for the long-pathorbit). Therefore, for a given t f , there
are 2Nmax C 1 solutions for the multirevolution Lambert problem,
where Nmax is the maximum number of allowed revolutions. For
example, in Fig. 2, it is shown that for a time of � ight of t f D 7:6 we
have Nmax D 5. It is clear that there is a total of 11 semimajor axes
that determine 11 different transfer orbits connecting P1 and P2.

A minimum-energyKeplerianorbit always exists connectingtwo
given � xed points in space.7 The semimajor axis of this minimum
energy orbit is given by am D s=2. This is the minimum semimajor
axis shown in Fig. 2. (This is the same for all branches.)The travel
time corresponding to an N -revolution transfer orbit with semima-
jor axis am is denoted by tm`, ` D 0; 1; : : : ; Nmax. A procedure for
determining Nmax and solving for all 2Nmax C 1 transfer orbits for a
given t f is provided in Ref. 5.

Next, we consider the case where the two endpoints P1 and P2 lie
on two coplanar unidirectional circular orbits. The objective is to
� nd the minimum-1V transferorbit for a chaserat P1 to rendezvous
with a target at P2 in a given time of � ight t f . Both the chaserand the
target aremovingalongthe two circularorbitsbefore the rendezvous
maneuver, and P2 is the location where the rendezvous takes place.
This scenario is also shown in Fig. 1. For ease of reference we
henceforth refer to this problem as the � xed-time, � xed-endpoint
transfer problem. In the following, “cost” and 1V will be used
interchangeably. Prussing5 has listed and compared the minimum
costs for various cases of ratios of orbital radii and central angles.
He is interestedin the questionof whether the long-pathor the short-
path transfer orbit renders the minimum cost. He also studies the
optimal number of revolutions corresponding to the minimum-cost
solution. In Ref. 5, it is shown that there are no clear patterns to
facilitate the answer to these two questions.Therefore, a minimum-
cost transfer orbit is determined after all of the 2Nmax C 1 solutions
have been calculated and compared.

In the following sections, an auxiliary orbital transfer problem is
introduced. This problem is slightly different from the formulation
of the original � xed-time, � xed-endpoint transfer problem in the
sense that the transfer time in the auxiliary transfer problem is free.
It will be shown in the sequel that the solution to this auxiliary
transfer problem greatly facilitates the solution to the underlying
� xed-time, � xed-endpoint transfer problem. Indeed, at most two
(instead of all 2Nmax C 1) solutions need to be computed to yield
the minimum cost.

Auxiliary Transfer Problem
The auxiliary transfer problem also seeks the two-impulse,

minimum-cost transfer between any two points P1 and P2 in two
coplanar circular orbits. However, unlike the � xed-time, � xed-
endpoint transfer problem, in the auxiliary transfer problem, the
time of � ight is free. The main purpose of the auxiliary transfer
problem is to study the relation between 1V and the semimajor
axis. An explicit expression of the 1V needed to transfer from
P1 to P2 along a Keplerian orbit can be obtained from classical
orbital mechanics, as follows9:

1V D 1V1 C 1V2 (3)

where 1V1 and 1V2 are the costs incurredat points P1 and P2 . They
are given by

1Vi D
p

v2
i C v2

ic ¡ 2vi vic cos Ái ; i D 1; 2 (4)

where v1 and v2 are the orbital speeds at points P1 and P2 on the
transfer orbit, v1c and v2c are the orbital speeds on the two circular
orbits, and Á1 and Á2 are the elevation angles, that is, the angles
at P1 and P2 between the velocities on the circular orbits and the
velocities on the transfer orbit.

Note that allowing for multiple revolutions does not change
the 1V . However, the more the number of revolutions the longer

the transfer time will be. As a result, as shown in Fig. 2, there are
two transfer orbits passing through P1 and P2 that have the same
semimajor axis.One is the long-pathtransfer orbit, and the other the
short-pathtransferorbit.These two transferorbits correspondto dif-
ferent times of travel. It is shown in the Appendix that the cost 1V
for both the long-path and the short-path solutions of the auxiliary
orbital transfer problem are a function of only the semimajor axis
of the transfer orbit. However, the analytical relationship between
a and 1V is rather complicated. Nevertheless, numerical results
suggest a great deal of insight.

To this end, we have plotted in Fig. 3 the relationshipof 1V vs a
for the cases where r1 D r2 and r2 D 2r1. In both cases µ D 120 deg.
Extensivenumericalstudiesshow that the plots of 1V vs a for other
combinationsof r1 , r2 , and µ have similar characteristicsas in Fig. 3.
Thus, Fig. 3 will be used to induce salient propertiesof the solution.
From Fig. 3, it is evident that there is a unique semimajor axis
that corresponds to the minimum 1V . Let this be denoted by amin.
The elliptic Keplerian transfer orbit with semimajor axis amin is the
solution to the auxiliarytransfer problem. Interestingly,this transfer
orbit is always a short-pathtransferorbit. For the case where r1 D r2,
we have that amin D r1 D r2 , and, hence, the total 1V D 0. Figure 3
shows that amin is not a stationary point for 1V . This can also
be veri� ed that d.1V /=da does not exist at amin D r1 D r2 because
in this case the eccentricity is zero. However, for the case r1 6D r2,
Fig. 3 shows that amin is a stationarypoint for 1V . Hence, amin can
be calculated by setting d.1V /=da D 0. Numerical schemes such
as the Newton–Raphson algorithm or the bisection method can be
used to compute amin . Detailed expressions for 1V and d.1V /=da
can be found in the Appendix.

As shownin Fig. 3, for a givensemimajoraxis,followingthe long-
path transfer orbit always costs more than following the short-path
transfer orbit. The cost associated with a long-path transfer orbit
is monotonically increasing with a. For a short-path transfer orbit,
however, the cost increases if the semimajor axis a is greater than
amin and decreases if the semimajor axis is less than amin . Caution
has to be exercised because it is not true that any long-path orbit
alwaysresults in a larger cost thanany short-pathorbit. For example,
as seen in Fig. 3, a short-path transfer orbit with a large semimajor
axis could be more costly than a long-path transfer orbit with a
smaller semimajor axis.

Solution to the Fixed-Time, Fixed-Endpoint
Transfer Problem

Based on the observations made earlier about the characteristics
of 1V with respect to a for the auxiliary transfer problem, the com-
putations required for the minimum-1V solution for a � xed-time,
� xed-endpointtransferproblemcan be signi� cantly reduced.This is
especially true for cases with large times of travel that allow a large
numberof revolutions.As a result, in some cases, the minimum-1V
solution is readily chosen by inspection; in other cases, only two
of the 2Nmax C 1 solutions need to be calculated and compared to
obtain the minimum-1V transfer orbit.

Recall that given a � xed-time, � xed-endpoint transfer problem
with transfer time t f , there are 2Nmax C 1 solution candidates, that
is, there are 2Nmax C 1 semimajor axes corresponding to the same
time of � ight on the plot of t f vs a (Fig. 2). Each of these 2Nmax C 1
semimajor axes corresponds to an elliptic Keplerian transfer or-
bit. The semimajor axis that corresponds to the minimum-1V
transfer orbit can be chosen by applying the observations made
earlier about the auxiliary transfer problem to these 2Nmax C 1
semimajor axes. In the following, we present a solution proce-
dure to achieve this goal. This will be demonstrated on the plot
of t f vs a for a case µ · 180 deg. The case when µ > 180 deg
can be treated similarly and is discussed brie� y at the end of
this section.

We need to calculate the times of transfer tN` and tNs from P1 to
P2 along the long-pathand short-pathtransferorbitswith semimajor
axis amin with N revolutions,where N D 0; 1; : : : ; Nmax . This calcu-
lation can be done in a straightforwardmanner using Eq. (1). In the
sequel, the subscript ` stands for the long-path and the subscript s
stands for the short-path transfer orbit. Figure 4 shows, for instance,
the values of tNs and tN ` for N D 4.
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a)

b)

Fig. 3 ¢V vs a: a) r1 = r2 and b) r1=/ r2 .

Fig. 4 Case 2, tNs <– tf <– tN` and N =/ Nmax .

According to the comparison between t f and tN` and tN s ,
.N D 0; 1; : : : ; Nmax/, there are four cases to consider.

1) If Nmax D 0, no revolution is allowed (case 1). Clearly, there is
only one solution candidate, which is either a long-path or a short-
path solution. Thus, this is the optimal solution.

For cases 2, 3, and 4, we assume that Nmax ¸ 1.
2) If tNs · t f · tN` and N 6D Nmax, then amin is between the semi-

major axes of the long-path transferorbit and the short-path transfer
orbit with N < Nmax revolutions (case 2). This is shown in Fig. 4.
Recall that any short-path transfer orbit with a · amin costs less

than any long-path transfer orbit. Thus, the optimal solution is a
short-path transfer orbit. In addition, for short-path transfer orbits,
1V monotonically decreases for a · amin and monotonically in-
creases for a ¸ amin . Therefore, either the short-path N -revolution
orbit (point R in Fig. 4) or the short path (N C 1)-revolution orbit
(point L in Fig. 4) provides the minimum cost. However, there is no
a priori knowledge regarding whether the former or the latter is the
minimum-cost solution.Thus, both transfer orbits correspondingto
points R and L in Fig. 4 need to be calculated. The one with the
smaller cost is the optimal transfer orbit. A special subcase occurs
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Fig. 5 Subcase 3a, tNmaxs <– tf <– tNmax` and tf >– tmNmax .

Fig. 6 Subcase 3b, tNmaxs <– tf <– tNmax ` and tminNmax
<– tf <– tmNmax .

when N D 0. In this case, the short-path one-revolution orbit with
a < amin provides the minimum cost because there is no short-path
solution for a ¸ amin.

3) Case 3, when tN s · t f · tN ` and N D Nmax , is complicated
by the fact that the short-path branch for N ¸ 1 is not monotoni-
cally increasing. Instead, t f has a stationarypoint. Let us denote by
tmin N the value of the time of travel at this stationary point and by
amin N the correspondingsemimajor axis. There are two subcases to
consider.

a) Case 3a, when t f ¸ tm Nmax , is shown in Fig. 5. Following
a similar argument as in case 2, only two solutions need to be

calculated. These are the long-path and the short-path orbits cor-
responding to N D Nmax (points L and R in Fig. 5). The smaller of
the two renders the minimum-cost transfer orbit.

b) Figure 6 shows case 3b, when tmin Nmax · t f · tm Nmax . The
two short-path Nmax-revolution solutions (points L and R in Fig. 6)
need to be calculated and compared. The smaller one renders the
minimum-cost transfer orbit.

4) In case 4, tN ` · t f · t.N C 1/s , that is, amin is between the semi-
major axis of the N -revolutionlong-pathtransferorbit and the semi-
major axis of the (N C 1)-revolutionshort-path transfer orbit.There
are three subcases to consider.
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Fig. 7 Case 4a, tf >– tNmax` .

Fig. 8 Case 4b, t(Nmax ¡ 1)` <– tf <– tNmaxs and am <– amin <– aminNmax .

a) In subcase 4a, t f ¸ tNmax `
, that is, amin is less than the least

semimajor axis candidate, as seen in Fig. 7. In this case, only two
candidates need to be calculated (points L and R in Fig. 7). These
are the Nmax-revolutionlong- and short-path transferorbits. The one
with the smaller 1V is the optimal solution.

b) In subcase 4b, t.Nmax ¡ 1/` · t f · tNmax s but am · amin ·
amin Nmax . This is shown in Fig. 8. In this case, amin is less than
the least semimajor axis candidate. Because the closest semimajor

axis candidate corresponds to a short-path transfer orbit, it follows
that this transfer orbit is the minimum-1V solution.

c) Subcase 4c includes all remaining cases under the con-
dition of case 4. The situation is shown in Fig. 9. The (N C 1)-
revolution short-path transfer orbit requires less 1V than any other
solution with a · amin and any long-path transfer orbit. Similarly,
the N -revolutionshort-path transferorbit requires less 1V than any
other short-path transfer orbit with a ¸ amin. Therefore, as before,
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Fig. 9 Case 4c, tN` <– tf <– t((N + 1))s , excluding subcases 4a and 4b.

only two solutions need to be calculated and compared. These are
the N -revolution and N C 1 revolution short-path solutions (points
L and R in Fig. 9). The one with the smaller 1V represents the
minimum-1V transfer orbit. If N D 0, the one-revolutionshort-path
transfer orbit provides the minimum 1V .

The described procedure allows one to determine the minimum-
1V transfer orbits for � xed-time, � xed-endpoint transfer problems
where µ · 180 deg. However, similar rules can be obtainedfor cases
where µ > 180 deg. In such cases, the lower branch correspondsto a
long-pathtransferorbit and the upperbranch correspondsto a short-
path transfer orbit. For brevity, we do not elaborate any further on
the case µ > 180 deg; the interested reader should be able to derive
the correspondingresults vis-à-vis the case µ · 180 deg.

Minimum-¢V, Fixed-Time, Two-Impulse Rendezvous
Between Circular Orbits

Problem Description
So far we have presented a procedure for obtaining the � xed-

time, minimum-1V transfer orbit between two � xed points on two
coplanar unidirectional circular orbits. In this section, we apply
this procedure to � nd solutions to the moving-target rendezvous
problem.To thisend, considertwo spacevehicles(denotedby s1 and
s2) in two coplanar circular orbits moving in the same direction.
Vehicle s1 is in the lower orbit, and s2 is in the higher orbit. The
initial separation angle µ0 from s1 to s2 is given. The objective is to
� nd the minimum-1V , two-impulse trajectory for s1 to rendezvous
with s2 in a given time t f . Although s2 initially leads s1 by the angle
µ0, the central angle measured from s1 to the location where the
rendezvous is supposed to take place is

µ D µ0 C t f !2 (5)

where !2 is the orbital frequencyof the outer orbit. This is because
s2 moves along the outer circular orbit during the maneuver. Essen-
tially, once µ is known, that is, the projected rendezvous location is
obtained,the moving-targetrendezvousproblemis transformedinto
a � xed-endpointtransfer problem between s1 and the projectedren-
dezvouslocation.Therefore,the aforementionedsolutionprocedure
can be applied to this problem as well.

Contour Plots
For any two coplanarcircularorbits,minimum-1V transferorbits

can be obtained for a range of initial separation angles and transfer

times. Thus, a contour plot of the minimum 1V can be obtained as
a function of the separationangles and the transfer times. Figure 10
shows such a contourplotwhere r1 D r2, and Fig. 11 shows a contour
where r1 D 1 and r2 D 1:5.

For the case r1 D r2 (Fig. 10), the absolute minimum cost (which
is zero in this case) occurs along the vertical lines µ0 D n £ 360 deg,
n D 0; §1; §2; : : : . There are isolated nonzero local stationary
points, which appear in a saddle pattern. Some rather abrupt
changes of the 1V as t f or µ0 changes are observed at the points
t f ¼ n C 0:5; n D 1; 2; : : : , and when µ0 is slightly larger than the
integral multiples of 360 deg. These abrupt changes are mainly due
to the steep jumps or drops of 1V when the number of revolutions
associated with the optimal solution changes with the total time of
� ight. When r2 deviates from r1, the characteristicsof the contours
change drastically, as shown in Fig. 11. There are no connected re-
gions of absolute minima, but, instead, isolated local minima are
observed resembling a central node pattern. These local minima
are in fact global minima because they correspond to the cost of a
Hohmann transfer. Note that the local minima when t f ¸ 1:5 cor-
respond to multiple-revolutionHohmann transfers. Similarly to the
case when r1 D r2 , stationary points in a saddle pattern are also ob-
served, as well as abrupt changes in the cost close to Hohmann
transfers for t f ¸ 1:5.

Initial and Final Coastings
Thus far, we have presenteda procedure to obtain the solution for

the moving-target rendezvousproblem. Note that the solution does
not involve any initial and � nal coasting periods. A coasting arc is
de� nedas a trajectoryduringwhichgravityis theonlyexternalforce,
that is, there is no thrust. In many cases, it is advisable that the � rst
impulse be applied some time after the starting time, and the second
impulse be applied some time before the � nal time t f . The waiting
period after the starting time is called the initial coasting, and the
time from the second impulse to the � nal time is called the � nal (or
terminal) coasting. Clearly, during the initial coasting period, both
the chaserand the target move along their respectiveorbits,whereas
during the � nal coastingperiod, both the chaser and the target move
together on the orbit of the latter.

From Eq. (5), it can be seen that allowing initial and/or � nal
coastingchanges the value of the central angle µ and the actual time
of � ight between the two impulses. Thus, initial and/or terminal
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Fig. 10 Contour of ¢V when r1 = r2 .

Fig. 11 Contour of ¢V when r1 = 1 and r2 = 1.5.

coastings allow the two spacecraft to achieve a more favorable con-
� guration.As a result, if initial and/or terminal coasting is allowed,
it is possible to perform the desired moving-target rendezvouswith
a lower cost.

Suppose that we are given an initial separation angle µ00 and a
total transfer time t f 0 . Then after an initial coasting period tc0 , the
separation angle µ0 becomes

µ0 D µ00 ¡ t0c.!1 ¡ !2/ D µ00 ¡ .t f 0 ¡ t f 1/.!1 ¡ !2/

D .!1 ¡ !2/t f 1 C [µ00 ¡ t f 0.!1 ¡ !2/] (6)

Hence,

t f 1 D [1=.!1 ¡ !2/]µ0 ¡ [µ00=.!1 ¡ !2/ ¡ t f 0] (7)

where t f 1 is the remaining transfer time after the initial coasting
and !1 is the orbital frequency of the inner orbit. Therefore, on the
contour plot an initial coasting results in the point (µ0; t f ) moving
down along a straight line with slope of 1=.!1 ¡ !2/. On the other
hand,a � nal coastingperiod t f c doesnot changethe initialseparation
angle,but it shortensthe time spenton the transferorbit.Thus, a � nal
coasting results in the point (µ0; t f ) moving down along a vertical
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Fig. 12 ¢V vs tf when r1 = r2 and µ0 = 60 deg, with and without � nal coasting.

line while µ0 remains unchanged. The effect of an initial or a � nal
coasting is shown in Fig. 11.

The Sliding Rule
With these contour plots and the knowledge of how the initial

and terminal coastingsaffect the solutions, it is now straightforward
to � nd the global minimum cost. Given an initial separation angle
µ0 and a transfer time t f , the initial and terminal coastings can be
determined by a sliding rule. To make this point clear, let us � rst
refer to Fig. 10 where r1 D r2 . In this case, an initial coasting does
not change the relative geometry of the two spacecraft, so that only
the terminal coastingperiod needs to be determined.The given sep-
aration angle µ0 and the � nal time t f correspond to a single point
on the contour plot. Any point with the same µ0 but with a transfer
time tt · t f also performs the required rendezvous with a terminal
coasting of t f c D t f ¡ tt . The transfer time tt that yields the least
1V can be easily picked from the contour plot. It is observed that,
along a vertical line in Fig. 10 as t f increases, local minima and
local maxima of 1V appear alternately.This is shown by the dash-
dotted curve in Fig. 12 for the special case when µ0 D 60 deg. Not
surprisingly,the valuesof the local minima decreaseas t f increases,
and this trend persists for all 0 · µ0 · 360 deg. Therefore, the op-
timal amount of terminal coasting can be picked as follows. Given
t f , we decrease t f while holding µ0 unchanged until the � rst local
stationaryminimum is encountered.Denote the correspondingtime
tt . If 1V .µ0; t f / < 1V .µ0; tt /, then no terminal coasting can give a
smaller1V . However, if 1V .µ0; t f / ¸ 1V .µ0; tt /, then the terminal
coasting period is t f ¡ tt . Figure 12 shows this scheme for comput-
ing the proper amount of terminal coasting for the case µ0 D 60 deg.
The solid line represents the cost with proper terminal coasting.For
example, as shown in Fig. 12, for a given time of � ight of t f D 2:33,
the cost for the rendezvous maneuver without terminal coasting is
5.23. However, this rendezvous can be achieved by a transfer with
time of � ight t f D 1:83 plus a terminal coasting of duration 0.5. The
new cost is reduced to 0.381. The portions in Fig. 12 where the
solid line and the dash-dotted lines overlap represent rendezvous
scenarios for which no � nal coasting can reduce the 1V .

Anotherobservationthatdramaticallyexpeditesthecalculationof
the � nal coastingfor the case when r1 D r2 can bemade. As shownin
Fig. 10, the set of all local minima can be representedby the slanted
solid lines. The slope of each slanted line is ¡1=360 deg, and they

all pass through points where the separation angle is zero and the
times of � ight are integers. That is, the local minima correspond
to scenarios where the rendezvous site is the starting location of
the chaser. With this information, and given the separation angle µ0

and the time of � ight t f , the largest transfer time less than t f that
corresponds to a local minimum is given by

tt D n ¡ .µ0=360/ (8)

where n D b.t f C µ0=360/c denotes the largest integer that is
smaller than t f C µ0=360. There is no terminal coasting if
1V .t f ; µ0/ · 1V .tt ; µ0/. Otherwise, the terminal coasting time is
given by t f ¡ tt . This observationallows us to eliminate the reliance
on the contourplot when � nding the optimal rendezvous in the case
when both the target and chaser are in the same circular orbit.

For the case when r1 6D r2, we may refer to Fig. 11. The local min-
ima in a center node pattern represent Hohmann transfers. The two
solid vertical lines represent transfer problems that can be achieved
by a Hohmann transfer by adding an appropriate amount of � nal
coasting. The slanted lines represent transfer problems that can be
achieved by a Hohmann transfer by adding an appropriate amount
of initial coasting.The whole contourplot is thus divided into upper
and lower portions, with the upper portion labeled A and the lower
portion B. A moving-target rendezvous problem in portion A can
be achieved by a Hohmann transfer, with a unique combination of
initial and � nal coastings. On the other hand, portion B consists of
problems that cannot be achievedby a Hohmann transfer.However,
for some points in portionB, a bettercost can be obtainedwith either
an initial coasting or a � nal coasting. For all other points in portion
B, no coasting can decrease the cost.

The points in portions A and B can be completely characterized.
For a moving-target rendezvous problem with given r1 , r2 , t f , and
µ0, we can calculate the time of � ight th , and the required initial
separationangle µh that the target leads the chaser for the Hohmann
transfer.9 Both µ0 and µh are assumed to be between 0 and 360 deg.
If µ0 < µh , we replace µ0 by 360 C µ0 deg. Then the initial coasting
time for the two satellites to achieve the separation angle µh can be
written as

t0c D .µ0 ¡ µh/=.!1 ¡ !2/ (9)

Thus, if t f ¡ t0c > th , the underlyingrendezvousproblembelongsto
portion A, and the rendezvouscan be accomplishedby a Hohmann
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transferwith an initial coastingperiod t0c and a � nal coastingperiod
t f c D t f ¡ t0c ¡ th . Otherwise, the problembelongsto portionB. For
problems in portion B, we have to rely on the contour plot to � nd
the optimal duration of initial coasting and/or � nal coasting.

Remark: The concept of the sliding rule was � rst mentioned
brie� y by Lion and Handelsman,6 where it was used to demon-
strate the necessary conditions for initial and � nal coasting arcs
derived by Lawden’s primer vector theory. However, it has not been
used in the literature to calculate the globally optimal solution for a
moving-target rendezvous problem.

Application Examples
In this section, we make some observations on � xed-time,

moving-targetrendezvousproblemsarisingfromservicingsatellites
in a circular constellation. We are mainly interested in a scenario
where the n satellites are distributed (perhaps nonuniformly) along
a circular orbit, as shown in Fig. 13. In Fig. 13, � ve satellites are
shown, which are labeled by si , i D 1; : : : ; 5. The separationangles
between satellite s1 and satellites s2, s3 , s4 and s5 are µ2, µ3, µ4 , and
µ5, respectively.

Rendezvous with Two Neighbor Satellites
The � rst question we want to answer is the following: Given a

� xed total time t f , � nd the best rendezvous option for satellite s1,
namely, rendezvous with satellite s2, or rendezvous with satellite
s4. At � rst glance, one may think that the cost for both options is
the same if the separation angles are the same, that is, if jµ2j D jµ4j.
Indeed, this conjecture is supported by a linear analysis using the
Clohessy–Wiltshire (C–W) equations.10 To this end, let us consider
the currentcircularorbit as the referenceorbitwith satellite s2 being
the originof theassociatedEuler–Hill coordinateframe for the C–W
equations. Let the x axis point along the radial direction and the
y axis point along the velocity direction (Fig. 13). In this frame, the
initial coordinates for the satellite s1 are given by .0; ¡µ2/. When
the state transition matrix11 is used, the � nal states and the initial
states are related as
2

6664

0

0

Px¡
f

Py¡
f

3

7775
D

2

664

4 ¡ 3 cos ¿ 0 sin ¿ 2.1 ¡ cos ¿/

6.sin ¿ ¡ ¿ / 1 ¡2.1 ¡ cos ¿/ 4 sin ¿ ¡ 3¿

3 sin ¿ 0 cos ¿ 2 sin ¿

6.cos ¿ ¡ 1/ 0 ¡2 sin ¿ 4 cos ¿ ¡ 3

3

775

2

66664

0

¡µ2

PxC
0

PyC
0

3

77775
(10)

Fig. 13 Satellite constellation on a circular orbit.

where .PxC
0 ; PyC

0 / is the velocity vector of satellite s1 immediately
after it leaves its original location, .Px¡

f ; Py¡
f / is the velocity vec-

tor of s1 immediately before it arrives at the satellite s2 , and ¿ is
2¼ times the transfer time. From the � rst two rows, of Eq. (10),
obtains

µ
0

0

¶
D

"
0

¡µ2

#
C

µ
sin ¿ 2.1 ¡ cos ¿/

¡2.1 ¡ cos ¿/ 4 sin ¿ ¡ 3¿

¶ 2

4 PxC
0
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0

3

5 (11)

Equivalently,
2
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0
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0

3

5 D
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µ
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sin ¿

¶
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From the last two rows of Eq. (10), we have
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Substituting Eq. (12) into Eq. (13), it can be shown that
"
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f
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f
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(14)

In the Euler–Hill coordinate frame, the velocity of s1 immediately
before the � rst impulse and the velocity of s2 are both zero. Hence,
.PxC

0 ; PyC
0 / and .¡Px¡

f ; ¡Py¡
f / are the velocity changes (impulses) re-

quired for the rendezvous. Thus,

1V0 D 1V f D



"
PxC

0

PyC
0

#D
p

5 ¡ 8 cos¿ C 3 cos2 ¿

j8 ¡ 3¿ sin ¿ ¡ 8 cos¿ j
jµ2j (15)

The total cost 1V0 C 1V f is proportional to the separation angle,
which shows that the cost for the satellite s1 to rendezvous with
either s2 or s4 in a given time is the same, as long as jµ2j D jµ4j.

Contrary to our intuition and the earlier linear analysis, Fig. 10
from the nonlinearanalysisshows no symmetryof the cost about the
line of zero separation angle. In fact, there are many cases where
the results deviate from the linear analysis dramatically. For ex-
ample, refer to Fig. 10, and consider the case where µ2 D 100 deg,
µ4 D ¡100 deg, and t f D 1. In this case, the total cost for s1 to ren-
dezvouswith s2 is 10.475,whereas the total cost to rendezvouswith
s4 is only 1.869. It is not always true, however, that a rendezvous
with s2 always costs more than a rendezvous with s4 . For a smaller
time t f D 0:75 with the same separationangles µ2 and µ4, it is found
that the cost for s1 to rendezvouswith s2 is 1.881, but the cost for s1

to rendezvous with s4 is 4.041.

Initial and Terminal Coastings
The preceding analysisdid not consider any initial or � nal coast-

ings. To this end, let f .¿ / denote the coef� cient of jµ2j in Eq. (15),
that is,

f .¿ / D
p

5 ¡ 8 cos ¿ C 3 cos2 ¿

j8 ¡ 3¿ sin ¿ ¡ 8 cos ¿ j
(16)

It can be shown that (as a function of the transfer time ¿ ) f .¿/
possessessimilar characteristicswith the 1V vs t f curve in Fig. 12.
Therefore, the optimal terminal coastingcan be calculatedthe same
way as for the nonlinear case. Furthermore, the optimal terminal
coasting period is the same for all cases with the same time of � ight
t f , regardless of the separation angle. This is because the transfer
time and the separation angle are decoupled in Eq. (15).

The analysis using the nonlinear equations suggests a differ-
ent scenario. As seen in Fig. 10, the local minima corresponding
to two distinct separation angles occur at different transfer times.
Figures 10 and 12 show that a terminal coasting may dramatically
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Table 1 Comparison between the rendezvous costs of satellite 1
with satellites 2 and 4

Coasting allowed

Rendezvous 2 Rendezvous 4
Coasting not allowed

Coasting Coasting
t f Rendezvous 2 Rendezvous 4 time Cost time Cost

1.0 10.475 1.869 0.25 1.881 N/A 1.869
0.75 1.881 4.041 N/A 1.881 N/A 4.041
2.0 3.313 1.116 0.36 0.684 0.72 0.914
3.5 0.625 0.694 0.78 0.428 0.21 0.358

decrease the rendezvouscost for some cases. Let us revisit the case
where t f D 1, µ2 D 100 deg, and µ4 D ¡100 deg. Without permitting
terminal coasting, a rendezvous with s2 results in a 1V D 10:475,
and a rendezvous with s4 results in a 1V D 1:869. However, with a
terminal coastingof t f c D 0:25, the amount of 1V for a rendezvous
with s2 decreases to 1.881; this is very close to 1.869, the 1V re-
quiredto rendezvouswith s4, whichcannotbe decreasedby allowing
terminal coasting.

There is still no clear trend whether a rendezvous with s2 or a
rendezvous with s4 costs less. Thus far, we have shown that for
the case when µ2 D 100 deg, µ4 D ¡100 deg, and t f D 0:75 a ren-
dezvouswith s4 costsmore than a rendezvouswith s2. None of these
two costs can be decreasedby allowing terminal coasting. If t f D 2,
however, and without terminal coasting, a rendezvous with s2 re-
quires 1V D 3:313, and a rendezvouswith s4 requires1V D 1:116.
For both cases, the cost can be decreased by a � nal coasting. From
Fig. 10, the coasting periods for a rendezvous with s2 and s4 can
be calculated as t f c D 0:36 and t f c D 0:72, respectively. As a re-
sult of these terminal coastings, a rendezvous with s2 requires a
1V D 0:684, which is less than the cost for a rendezvous with s4

(which in this case decreases to 1V D 0:914 due to coasting).How-
ever, if the total time of travel is t f D 3:5, then,andwithouta terminal
coasting, a rendezvouswith s2 costs 0.625 and a rendezvouswith s4

costs 0.694. Introducinga terminal coasting of t f c D 0:78 decreases
the cost of s2 to 1V D 0:428. This is more than the cost required to
rendezvous with s4 , which is 1V D 0:358 with a terminal coasting
of t f c D 0:21. These results are summarized in Table 1.

Rendezvous with Two Preceding Satellites
We now turn our attention to the following question, also arising

from the scenario depicted in Fig. 13. For the sake of simplicity, we
assume that µ3 · 180 deg. Given a transfer time t f , the objectiveis to
determine the best rendezvousscenario for s1, that is, whether a ren-
dezvous with s2 or a rendezvouswith s3 will require a smaller 1V .
The intuitive answer is that a rendezvous with s2 is better because
s3 is farther away from s1 than s2 and, hence, it costs more. This is
again consistentwith Eq. (15) from the linear analysis.However, as
is shown next, this intuition from the linear analysis is not always
correct. To see this, let us consider the case when t f D 1:85. It is
clear from Fig. 10 that the cost monotonically increases with the
initial separationangle in the interval µ0 2 [0; 180] deg. That is, for
this particular t f , it costs more for s1 to rendezvous with s3 than to
rendezvous with s2 . However, for the case when t f D 1:28, the cost
monotonically increases with µ0 in the interval µ0 2 [0; 19:192] deg
and decreasesmonotonically in the interval [19.192,180] deg. That
is, when µ2 ¸ 19:192 deg and t f D 1:28, the cost for s1 to rendezvous
with s3 is always less than the cost for s1 to rendezvous with s2 .

The preceding observations do not consider any terminal coast-
ing. With terminal coasting permitted, it is seen that in most cases,
and for the same time of travel, the larger the separation angle the
larger the cost. However, it is not dif� cult to � nd cases where ren-
dezvous with a satellite farther away costs less than with one close
by. For example, let us consider the case when t f D 1:42. For sep-
aration angles µ0 < 115 deg, we can see from Fig. 10 that the cost
monotonically increases with µ0 if terminal coasting is permitted.
However, when µ0 > 115 deg and if terminal coasting is permitted,
the cost monotonically decreases with µ0 (although terminal coast-
ing here does not help decrease the cost). This observation is again
inconsistent with the results from the linear analysis.

The discrepancy between the linear and nonlinear analysis sug-
gests limitations of the applicability of the classical linear C–W
equations when used in rendezvous problems. The C–W equations
are based on the assumption that the orbit of the target vehicle and
the transfer orbit of the chaser vehicle are not far apart from a ref-
erence circular orbit (in the order of several kilometers radially).
In addition, due to the presence of secular terms in the solutions to
the C–W equations,11 these equations are more suitable for trans-
fers with short time span. Despite these shortcomings, the C–W
equations have found success in many proximity rendezvous and
docking applications.However, as shown in this study, caution has
to be exercised when applying the C–W equations to general ren-
dezvousproblems,evenwhen both the chaserand the targetvehicles
are in the same circular orbit. This is because in most rendezvous
scenarios the resulting transfer orbits are ellipses,which do not nec-
essarily stay in the vicinity of the circular orbit.

Conclusions
We have studied the minimum-1V , � xed-time, two-impulse

rendezvous problem between two spacecraft moving along two
coplanar circular orbits in the same direction. A � xed-time trans-
fer problem between two points � xed on the two orbits is solved
using the solution of the multiple-revolution Lambert problem. A
solution procedure that involves the introduction of an auxiliary
transfer problemis found, which greatly facilitates the calculations.
The characteristicsof the auxiliary transfer problem are thoroughly
explored and are used to narrow down the 2Nmax C 1 solution can-
didates for the optimal � xed-time � xed-endpoint transfer problem
to at most two. When this procedure is used, the cost of the origi-
nal moving-target rendezvous problem without initial and terminal
coasting is obtained for all cases with different separation angles
and times of travel. A contour plot of the cost is obtained as a func-
tion of the separation angle and the transfer time. This contour plot
along with a sliding rule helps one � nd the optimal initial and ter-
minal coasting periods and, thus, yields solutions to the original
rendezvousproblem. It is found that, for moving-target rendezvous
problems with both the chaser and target vehicles in the same cir-
cular orbit, the reliance on the contour plot to calculate the optimal
transfer orbit is eliminated. For problems where the chaser and tar-
get are in differentcircularorbits, the contourplot is needed only for
rendezvousscenariosthat cannotbe achievedby theHohmanntrans-
fer. Several examples demonstrate our procedure. These examples
also show that a linear analysis may lead to erroneous conclusions.

Appendix: Derivation of d¢V/da
In this Appendix, we give the derivation of d1V=da that can be

used to determine amin . The expression for 1V is given in Eqs. (3)
and (4). The velocities at P1 and P2 on the transfer orbit are given
by9

v1 D
p

2. C ¹=r1/; v2 D
p

2. C ¹=r2/ (A1)

where D ¡¹=.2a/ is the energyof the transferorbit.The elevation
angles Á1 and Á2 are given by

Á1 D tan¡1 e sin f1

1 C e cos f1
; Á2 D tan¡1 e sin f1

1 C e cos f1

where e is the eccentricityof the transfer orbit and f1 and f2 are the
true anomalies at P1 and P2 on the transfer orbit, which are given in
the following equations:

e D
µ

1 ¡
4.s ¡ r1/.s ¡ r2/

d2
sin2

µ
® C ¯

2

¶¶ 1
2

(A2)

f1 D cos¡1

µ
1

e

³
p

r1
¡ 1

´¶
D cos¡1

µ
a.1 ¡ e2/ ¡ r1

er1

¶
(A3)

f2 D cos¡1

µ
1

e

³
p

r2
¡ 1

´¶
D cos¡1

µ
a.1 ¡ e2/ ¡ r2

er2

¶
(A4)



SHEN AND TSIOTRAS 61

It can be veri� ed that 1V is only a function of a, provided that r1,
r2, and µ or d are given. Thus, the derivativeof 1V with respect to
a is given by

d1V

da
D

d1V1

da
C

d1V2

da
(A5)

From Eq. (4), we have

d1V1

da
D

@1V1

@v1

dv1

da
C

@1V1

@Á1

dÁ1

da

where

@1V1

@v1
D

2v1 ¡ 2v1c cos Á1

2
p

v2
1 C v2

1c ¡ 2v1v1c cos Á1

D
v1 ¡ v1c cos Á1

1V1

dv1

da
D

@v1

@

d
da

D
1
2

2
v1

µ
¡

¹

2

³
¡

1
a2

´¶
D

¹

2a2v1

@1V1

@Á1
D

2v1v1c sinÁ1

2
p

v2
1 C v2

1c ¡ 2v1v1c cos Á1

D
v1v1c sin Á1

1V1

and dÁ1=da can be obtained as follows:
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In Eq. (A6),
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In Eq. (A7)
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The expression for d1V2=da can be obtained similarly.
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