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This work aims to solve the problem of relative navigation for space rendezvous and proximity operations
using a monocular camera in a numerically efficient manner. It is assumed that the target spacecraft has a
special pattern to aid the task of relative pose estimation, and that the chaser spacecraft uses a monocular
camera as the primary visual sensor. In this sense, the problem falls under the category of cooperative relative
navigation in orbit. While existing systems for cooperative localization with fiducial markers allow full six-
degrees-of-freedom pose estimation, the majority of them are not suitable for in-space cooperative navigation
(especially when involving a small-size chaser spacecraft), due to their computational cost. Moreover, most
existing fiducial-based localization methods are designed for ground-based applications with limited range
(e.g., ground robotics, augmented reality), and their performance deteriorates under large-scale changes, such
as those encountered in space applications. Using an adaptive visual algorithm, we propose an accurate and
numerically efficient approach for real-time vision-based relative navigation, especially designed for space
robotics applications. The proposed method achieves low computational cost and high accuracy and robustness
via the following innovations: first, an adaptive visual pattern detection scheme based on the estimated relative
pose is proposed, which improves both the efficiency of detection and the accuracy of pose estimates; second,
a parametric blob detector called Box-LoG is used, which is computationally efficient; and third, a fast and
robust algorithm is introduced, which jointly solves the data association and pose estimation problems. In
addition to having an accuracy comparable to state-of-the-art cooperative localization algorithms, our method
demonstrates a significant improvement in speed and robustness for scenarios with large range changes. A
vision-based closed-loop experiment using the Autonomous Spacecraft Testing of Robotic Operations in Space
(ASTROS) testbed demonstrates the performance benefits of the proposed approach. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

Satellite proximity operations are deemed as an enabling
technology that can revolutionize future space operations.

The ability to autonomously circumnavigate a target satel-
lite or an asteroid and determine its relative motion is a
necessary ingredient to make tasks such as servicing, health-
monitoring, surveillance, and inspection in orbit or for deep
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space missions routine (Rekleitis et al., 2007; Sun, Hess, Xu,
& Schilling, 2014). Due to the large distances involved, hu-
man intervention is often not a suitable or timely option.
Subsequently, satellite robotic operations require a large de-
gree of autonomy, accuracy, and robustness (Flückiger &
Utz, 2014). While relative pose (i.e., position and attitude)
estimation can be made easier and more accurate with the
use of external aids (ground-based signals or target satellite
radionavigation) or active means (e.g., LiDARs), the same
task is more challenging when passive sensors (e.g., vision
cameras) have to be used, or when the onboard compu-
tational resources of the chaser spacecraft are limited. The
latter is typically the case with small chaser satellites. In
fact, several space applications [formation flight, persistent
space situational awareness (SSA)] call for small satellites
to be used in lieu of a larger, monolithic satellite, as is the
current practice. Algorithm development for reliable vision-
based relative navigation that is suitable for real-time im-
plementation on such small satellites is currently an open
problem.

The motivation behind the proposed work arises from
the need for an in-space localization system that achieves
good numerical efficiency and also provides highly accurate
and robust solutions to the relative pose estimation problem
for small satellites with limited onboard power and com-
putational resources. Previously, several techniques have
been proposed to solve the relative pose estimation prob-
lem between two spacecraft in orbit. These techniques ei-
ther emphasize the sensory data used [global positioning
system(GPS) in conjunction with inertial measurment unit
(IMU) data, LiDAR sensing data, etc.], or use additional
aids, such as ground station aided relative navigation (Di-
Matteo, Florakis, Weichbrod, & Milam, 2009; Gaylor &
Lightsey, 2003; Kasai, Oda, & Suzuki, 1999; Ruel & Luu,
2010; Ruel, Luu, & Berube, 2011). Their performance may
suffer when applied to persistent pose tracking in space
over long durations (e.g., IMUs experience drift). LiDAR
sensors can be used to provide high accuracy, but LiDAR
sensors require a lot of power to operate. An alternative
to LiDAR sensors is the use of passive visual sensors that
take advantage of the natural light from the Sun to illu-
minate the target. While the use of passive visual sensors
also comes with a unique set of challenges (high contrast
in space, continuously and rapidly changing illuminating
conditions, especially in low Earth orbit, etc.), recent de-
velopments in visual localization suggest that vision-based
relative pose estimation may be a feasible alternative for
relative navigation in space. Since vision sensors have be-
come more accurate and smaller, and have low power con-
sumption, they are especially suitable for space applications
where the onboard resources (power, computational hard-
ware) are limited and where relative pose maneuvering oc-
curs over long time scales.

Our work falls under the class of vision-enabled coop-
erative satellite proximity operations (Fehse, 2003). In the

cooperative satellite proximity operations scenario, the ob-
jective is to achieve relative navigation with respect to the
target satellite, whose motion is not known but can be in-
ferred by observing a known target pattern attached on
the target satellite main body. Although it shares a similar
objective with cooperative navigation in other robotic ap-
plications, the in-space scenario has particular challenges in
the following aspects: (a) it must be efficient both in terms
of computation and memory, due to the limited onboard
resources; (b) it must be robust with respect to large-scale
changes in the environment and the unknown status of the
target (e.g., target can be in or out of the camera field of
view); (c) it requires high accuracy for relative localization;
and (d) a high update frequency is required for better closed-
loop performance with a pose-tracking controller.

To address the above challenges, this paper proposes
a novel closed-loop cooperative navigation approach espe-
cially designed for space applications involving small satel-
lites with limited resources. The overall structure of the pro-
posed approach is depicted in Figure 1. The main forward
loop implements the camera localization system, which is
the main focus of this paper. Note that camera localization
is relative to a target whose motion in inertial space may
be unknown. The outer loop is utilized to feed back the
measured relative pose to an inertia-free pose-tracking con-
troller based on dual quaternions (Filipe & Tsiotras, 2014).
The overall system is experimentally validated using the
five-degrees-of-freedom (5-DOF) Autonomous Spacecraft
Testing of Robotic Operations in Space (ASTROS) facility
at the School of Aerospace Engineering of the Georgia Insti-
tute of Technology. The ASTROS is a realistic experimental
platform for testing spacecraft attitude control and similar
space proximity operations in a 1g environment. More de-
tails about the capabilities of the ASTROS can be found in
Cho, Jung, & Tsiotras (2009) and Tsiotras (2014).

A key contribution of this work is the feedback loop for-
mulation inside the localization system (see Figure 1). The
optimized homography is fed to a homography predictor
based on a constant motion model. The predicted homogra-
phy is then decomposed to extract the rotation and scaling
effects of the perspective transformation for the next im-
age frame. This is used as prior information to adapt the
Box-LoG detector to be used in the next localization itera-
tion. As shown in Figure 1, the camera localization system
is structured as a closed-loop system whose intermediate
output, the homography from the last frame, is fed back
in order to adapt the parameters of the detector. After ini-
tialization, and for each captured image from the onboard
camera, the proposed Box-LoG detector (see Section 3) is
adapted to compensate the perspective transformation be-
tween the camera and the target. A subsequent pattern de-
tection step generates the integral image from the raw im-
age, and it convolves the result with a Box-LoG kernel via
a set of Dirac delta functions. The use of an integral image
along with the Dirac delta functions provides much lower
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Figure 1. Overall schematic of the proposed cooperative navigation system. The system consists of two main feedback loops:
one inside the camera localization subsystem, and another as part of the feedback control loop using an inertia-free pose-tracking
controller based on dual quaternions from Filipe & Tsiotras (2014). This paper focuses on the localization subsystem, which is
independent from the control subsystem. The forward loop of the localization subsystem processes each captured image in real
time. The steps of the localization subsystem are as follows: detection of the target with an integral image and Box-LoG kernel;
target acquisition; once target is acquired, the relative pose is estimated by jointly solving the data-association and pose estimation
problem, and the solution is subsequently optimized via smoothing. In the feedback loop, the predicted homography is fed back
to adapt the detector parameters to facilitate detection in the next image frame.

computational complexity compared to the traditional con-
volution with the original image. The Box-LoG detector de-
termines whether a target is present, and if so, the next step
jointly solves the data-association and relative pose estima-
tion problems via robust point-set registration with Gaus-
sian mixture model (GMM) generators. The registration is
efficiently optimized over the set of homography maps, and
the camera pose is extracted from the optimized homogra-
phy. The final estimated pose is the output of a smoothing
step.

The proposed algorithm addresses some of the chal-
lenges of a cooperative spacecraft rendezvous discussed
earlier, by incorporating the following advantages: (a) com-
putation and memory efficiency: both the computational
and memory complexity are of linear order in terms of the
image size; (b) robustness: the ability to deal with the (par-
tial) out-of-view status of the pattern and the adaptivity of
distance changes via the multiscale selection of the pattern,
as demonstrated in the experiments; (c) high localization
accuracy: the algorithm achieves the same level of accuracy
as other state-of-the-art methods, i.e., AprilTag (Olson,
2011); (d) high update frequency: high update frequency
is demonstrated with modest hardware requirements
and good overall performance when the algorithm is
used in a closed loop with an inertia-free pose-tracking
controller based on dual quaternions from Filipe & Tsiotras
(2014).

This work builds upon our previous work on cooper-
ative navigation, reported in Zhang, Vela, Tsiotras, & Cho
(2014), by adding the following specific contributions: First,
the method in Zhang et al. (2014) is extended to achieve real-
time performance with limited-capability computational
hardware. Second, the original Box-LoG kernel is improved
with homography prediction and perspective compensa-
tion, both of which improve detection and estimation per-

formance under severe perspective transformations. Third,
the controlled closed-loop system is validated through a
relative attitude regulation experiment with respect to a
moving target using a realistic experimental test platform.
Finally, an extensive comparison both in terms of theoret-
ical analysis and using experimental results is performed
against a state-of-the-art cooperative (fiducial) localization
method. It should be noted that although the focus of this
work is space robotic applications, the same algorithms
can be helpful in cooperative, relative navigation for other
robotics applications as well, e.g., autonomous underwater
vehicles (AUVs) and unmanned aerial vehicles (UAVs).

The rest of the paper is structured as follows. Prior
related work is discussed in the next section. Section 3
describes in detail the proposed detector, along with the
designed target pattern used for cooperative relative navi-
gation. Section 4 outlines the proposed joint pose estimation
and data association solution to this problem. Section 5
briefly discusses the smoothing of the estimated relative
states. Section 6 covers four sets of experiments: Section 6.1
and Section 6.3 validate the performance of the algorithm
using synthetic and field experiments, respectively; Sec-
tion 6.4 presents the results from closed-loop experiments
performed in conjunction with an adaptive pose tracking
controller, under the scenario of relative attitude regulation
of the chaser spacecraft. A comparison against an existing
state-of-the-art method is presented in Section 6.2. We
finally conclude the paper in Section 7 with a summary of
contributions and some suggestions for future work.

2. RELATED WORK

The problem of localization and mapping using a camera
has been investigated extensively in various fields, in-
cluding space robotics, AUVs, UAVs, etc. In this section,
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we first provide the reader with a brief literature review
of the subject of localization and mapping, emphasizing
existing methods most closely related to our problem and
the proposed solution approach. Note that although this
work focuses on a vision-only system, systems utilizing
other sensing methodologies have also been developed
for autonomous space rendezvous. For example, the auto-
mated transfer vehicle (ATV) achieves localization with a
videometer emitting pulsed laser beams, which are further
reflected by retroflectors on the target to form unique light
patterns (Fehse, 2003). The Engineering Test Satellite #7
(ETS-VII) from the National Space Development Agency
of Japan (NASDA) successfully performed autonomous
cooperative rendezvous and docking using RGPS (beyond
500 m from the target), a laser radar (between 2 and 520
m), and a charge-coupled device (CCD) camera (within
2 m) (Oda, 2001). A similar sensor, also using lasers, is
the advanced video guidance sensor (AVGS) developed
by NASA, which was used in the Demonstration of Au-
tonomous Rendezvous Technologies (DART) and DARPA’s
Orbital Express programs. AVGS is an enhanced version
of the earlier video guidance sensor (VGS), also developed
by NASA in 1997, and flown and tested during STS-87 and
STS-95 missions (Hintze et al., 2007; Howard and Bryan,
2007).

The first question when designing a vision-only local-
ization system for space robotics applications is the selection
between a monocular and a stereo vision system. Stereo sys-
tems directly provide depth information, which makes pose
estimation much easier. Despite the cost of an additional
camera, when the target is close, the large epipolar disparity
provides high localization accuracy at a low computational
cost; however, when the target is farther away, stereo vision
does not seem to offer any significant advantage due to the
small disparity. As a result, stereo-based localization and
mapping techniques have been proposed and extensively
used in close proximity space robotics applications (Xu,
Liang, Li, Liu, & Wang, 2009b; Xu, Liang, Li, & Xu, 2010)
and underwater remotely operated vehicles (ROVs) (Ja-
siobedzki, Se, Bondy, & Jakola, 2008). Howard and Bryan
(2007) reported that AVGS also utilized a stereo-vision sys-
tem. The two images from the stereo-vision system were
used for identifying a known pattern, the retroreflectors,
via image subtraction. The Prisma mission conducted by
the Centre National d’Etudes Spatiales (CNES) used a sim-
ilar approach but with a LED pattern on the target, for au-
tonomous rendezvous with a 50 m–10 km range (Delpech,
Berges, Djalal, Guidotti, & Christy, 2012). The Synchro-
nized Position Hold Engage Reorient Experimental Satel-
lites (SPHERES) from MIT also utilizes a stereo-vision sys-
tem for cooperative navigation using visual odometry tech-
niques (Tweddle, 2013). Although the visual pattern is not
prestored in the memory of the chaser satellite, a set of tex-
tured stickers attached to the target is needed to provide
enough visual texture.

Although preferable for most robotics applications,
stereo systems are also more expensive, consume more
power, and require precise calibration, compared to
monocular systems. Alternative, cheaper approaches tend
to use monocular cameras, trading hardware complexity
for software complexity. When a stereo system is replaced
with a monocular vision system, depth information is
lost. Subsequently, relative pose needs to be estimated by
tracking landmarks in the environment over consecutive
frames. Posterior optimization is also often needed to
improve the initial pose estimates. Three problems must be
resolved in order to achieve accurate pose estimation using
a monocular camera system: (a) feature/landmark detec-
tion; (b) data association and pose estimation; and (c) pose
filtering.

During the detection phase, the salient features of
the target are widely used as detection landmarks, espe-
cially in uncooperative scenarios. Typical features include
geometric structures such corners (Shi & Tomasi, 1994),
blobs (Lindeberg, 1998), or more sophisticated features
such as SIFT (Lowe, 2004), SURF (Bay, Ess, Tuytelaars, &
Van Gool, 2008), and more recently MROGH (Fan, Wu, &
Hu, 2012), among others. However, in some space applica-
tions the environment may not have sufficient salient fea-
tures. Moreover, uncooperative methods have scale (depth)
ambiguity due to the camera projection transformation.
Thus, cooperative vision-based relative navigation methods
have been proposed, which assume that some form of a pri-
ori knowledge about the target is known. This information is
usually the existence of a known pattern on the observed ob-
ject. Such patterns include special shapes (Saripalli, Mont-
gomery, & Sukhatme, 2003), or especially designed pat-
terns such as self-similar landmarks (Negre, Pradalier, &
Dunbabin, 2008), Haar rectangular features (Maire, Prasser,
Dunbabin, & Dawson, 2009), two-dimensional (2D) bar code
style patterns (Olson, 2011), ring structures (Velasquez et al.,
2009), etc. Detection of these patterns may be computa-
tionally costly (Negre et al., 2008), or not robust to large-
scale changes (Cho et al., 2013; Olson, 2011; Saripalli, Mont-
gomery, & Sukhatme, 2003; Velasquez et al., 2009), or it may
not provide accurate 6-DOF pose estimation (Maire et al.,
2009).

Regarding the data association and pose estimation
steps, pose estimation with given corresponding features is
widely considered to be a solved problem (Hartley & Zisser-
man, 2000), while data association remains a key problem.
Conventionally, data association is solved by matching the
feature descriptors under some mapping criterion (Neira &
Tardos, 2001) and using a robust statistical framework such
as RANSAC (Fischler & Bolles, 1981). However, these tech-
niques rely on the discriminatory character of the features.
Moreover, methods utilizing distinct features require expen-
sive feature matching steps, usually based on image patch
matching or feature descriptor matching. For data associa-
tion without distinct features, some techniques have been
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proposed based on robust point-set matching (Cho et al.,
2013; Wong & Geffard, 2010) or image registration (Kara-
sev, Serrano, Vela, & Tannenbaum, 2011). These techniques
are especially useful for cooperative cases in which the fea-
tures from the target pattern are all similar, such as fiducial
dots. Moreover, such approaches avoid expensive matching
of descriptors or raw image patch matching, thus reducing
the computational overhead.

Typically, each component in a typical monocular
vision-based relative pose estimation pipeline operates in
an open-loop fashion, with the output of one stage in the
pipeline feeding on to the next stage input. There is no feed-
back of information from a downstream stage to an earlier
stage. One of the innovations of the work in this paper is that
the proposed processing pipeline includes an information
feedback loop, whereby the pose estimates are fed back to
the detection step in the pipeline in order to improve target
pattern detection reliability, which then impacts future pose
estimates.

Among the various existing visual localization system
designs, the most relevant to our work are those using
fiducial-based 6-DOF localization. Fiducial systems use ar-
tificial patterns to keep track of the relative camera/target
movement as well as to distinguish between different tar-
gets. Although fiducial-based systems usually involve a
payload decoding as the last step, all the other steps aim
to estimate the 6-DOF camera relative pose history, and
thus share the same goal as our work. ARToolkit (Kato &
Billinghurst, 1999) and ARTag (Fiala, 2005) are two popu-
lar choices for fiducial-based localization, which are widely
used in augmented reality applications. ARToolkit detects
the target tag by binary thresholding of the image, thus ren-
dering detection sensitive to illumination changes or occlu-
sion. While ARTag and ARToolkitPlus (Wagner, Reitmayr,
Mulloni, Drummond, & Schmalstieg, 2008) improve detec-
tion robustness with image gradients, these methods are
mainly designed for augmented reality applications within
a bounded environment, and hence detection is not reli-
able over longer distances. AprilTag (Olson, 2011) has be-
come a prevalent method for 6-DOF fiducial-based simul-
taneous localization and mapping (SLAM). This algorithm
is designed to be robust and reliable over long distances,
while maintaining high accuracy in terms of pose estima-
tion. AprilTag detects the target tag by first computing
the image gradient, then clustering the gradient and fit-
ting line segments, and lastly extracting the four-sided re-
gions using a depth-first search. With the quad, the camera
poses are further estimated via computing the homography
matrix of the encoded points. The approach outperforms
previous fiducial-based systems (Olson, 2011) in many as-
pects related to the proximity operations scenario. Based
on these nice properties, AprilTag is used in this paper to
compare against numerical efficiency and accuracy with our
approach.

3. BOX-LOG DETECTOR AND TARGET PATTERN
CHOICES

Relying on a monocular visual sensor for feedback requires
algorithms that are invariant or adaptive to imaging vari-
ation caused by the unknown, time-varying relative pose
between the chase and target satellites. For the scenario
considered here, the pattern detection algorithm needs to be
invariant to relative orientation about the optical axis, insen-
sitive to the distance from the target, and somewhat robust
to the perspective distortion caused by angled views of the
pattern. The pattern itself should provide sufficient informa-
tion to estimate relative pose over several distance scales,
including sufficiently close proximity operations, during
which only partial views of the pattern may be available.
Together, the pattern and detection algorithms should lead
to a computationally efficient solution given the hardware
limitations of the onboard space electronics. The simplest
pattern element fitting these requirements and resulting in
an equally simple detection algorithm is a blob (a filled cir-
cle). This section details a computationally efficient blob de-
tector and the associated pattern, consisting of nested blob
pattern elements, that are designed specifically to work at
multiple scales (and hence multiple orders of distance).

3.1. Efficient Detection with the Box-LoG Kernel

Blobs are simple features with mathematically appealing
structure across spatial scales (Lindeberg, 1998). Given an
image, blob detection involves analysis of the image Hes-
sian (second-order derivative tensor), with one detection
method relying on the determinant of the Hessian and an-
other relying on the trace of the Hessian (Lindeberg, 1998).
Both strategies work well and are optimal for circular blob-
like structures, however the simplest of the two is the trace
of the Hessian. Feature detection is often combined with
a smoothing step and (spatial scale) normalization leading
to the Laplacian of Gaussian (LoG) detector, which applies
a normalized and smoothed Laplacian operator � to a 2D
field. The LoG convolution kernel is defined as

�G = σ 2
(

∂2G

∂x2
+ ∂2G

∂y2

)
= x2 + y2 − 2σ 2

2πσ 4
e

− (x2+y2)
2σ2 , (1)

where σ is a function of the blob radius r to detect, σ =
r/

√
2. For an image I , the operation involves a 2D discrete

convolution with the LoG kernel, where the domain of the
LoG kernel in Eq. (1) is x, y ∈ [−RLoG, RLoG] ⊂ Z, typically
with RLoG = �3σ� + 1 to avoid shift artifacts. Appropriately
sized blobs in an image I give large magnitude values in
the convolved image �G ∗ I .

Although more complex, the determinant of the Hes-
sian has been popularized by the SURF descriptor (Bay,
Ess, Tuytelaars, & Van Gool, 2008), which employs approx-
imations to the determinant of the Hessian by piecewise
constant discrete derivatives in order to achieve efficient
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blob feature detection. To obtain further computational ef-
ficiency when applying the detector at multiple scales, the
SURF feature detection algorithm employs integral images
based on the identity

J = g ∗ I = (g
′′
) ∗

(∫∫
I

)
(2)

for any image I convolved with a 2D kernel g (Simard,
Bottou, Haffner, & LeCun, 1999). Thus the approach when
applied to piecewise-constant convolution kernels gives
convolution algorithms with linear runtime complexity (in
terms of the image size).

Utilizing a piecewise constant trace of the Hessian ap-
proximation has a lower computational cost, with marginal
difference in the output, when compared to the determi-
nant of the Hessian approximation. To ensure that the dif-
ference is minimal, the piecewise constant terms must be de-
signed to match the equivalent LoG response. Toward that
end, consider an approximation of the LoG kernel �G(x, y),
where x, y ∈ [−RLoG, RLoG] with three box filters such that

�G(x, y) ≈ g(x, y) ≡ a1H (x, y, R1) + a2H (x, y, R2)

+ a3H (x, y, RLoG), (3)

where a1, a2, a3 are the coefficients for each box filter to be
determined, and H (x, y, R) is the square Heaviside step
function given by

H (x, y, R) =
{

1 if x ∈ [−R, R] ∧ y ∈ [−R, R],
0 otherwise.

(4)

To match the response of the LoG kernel for an ideal blob,
the approximate version should satisfy the equations∑ ∑

x,y∈[−R1,R1]

�G =
∑ ∑

x,y∈[−R1,R1]

g = (a1 + a2 + a3)R2
1, (5a)

∑ ∑
x,y∈[−R2,R2]

�G =
∑∑

x,y∈[−R2,R2]

g = a1R
2
1 + (a2 + a3)R2

2, (5b)

∑ ∑
x,y∈[−RLoG,RLoG]

�G =
∑ ∑

x,y∈[−RLoG,RLoG]

g = a1R
2
1

+ a2R
2
2 + a3R

2
LoG = 0. (5c)

The last equality is zero because the LoG kernel has
zero-mean. The system of equations is linear in the coeffi-
cients a1, a2, a3, given values of R1, R2, and RLoG. Its solution
is given by

⎛
⎜⎝

a1

a2

a3

⎞
⎟⎠ =

⎛
⎜⎝

R2
1 R2

1 R2
1

R2
1 R2

2 R2
2

R2
1 R2

2 R2
LoG

⎞
⎟⎠

−1⎛
⎜⎝

∑ ∑
[−R1,R1]g∑ ∑
[−R2,R2]g∑ ∑ ∑

[−RLoG,RLoG]g

⎞
⎟⎠ . (6)

Since RLoG is a function of σ , only the values R1 and
R2 need to be specified to arrive at the solution. Empiri-
cal results show that when R1 and R2 satisfy the relations
(R1 + R2)/2 = r and R2 = 2.5R1, the approximate LoG gives
good detection analogous to the continuous LoG. Solving
for R1 and R2 yields R1 = � 4

7 r�, R2 = 2[r] − � 4
7 r�, so that the

coefficients are completely specified by the detection radius
r .

For a given value of r , let the associated Box-LoG ker-
nel be defined by the approximate LoG kernel determined
by Eqs. (3) and (6). An example of a LoG kernel and its
Box-LoG approximation are depicted in Figure 2. The Box-
LoG has several computational advantages over existing
approximations. For instance, since computing the trace of
a matrix is a simpler operation than computing its deter-
minant and, in addition, the Box-LoG does not require the
calculation of mixed second-order derivatives, there will be
fewer evaluations of the integral image, compared to Bay,
Ess, Tuytelaars, & Van Gool (2008).

The discrete version of the integral image is defined to
be

S(x, y) =
∑
x′≤x

∑
y′≤y

I (x ′, y ′). (7)

The second derivative of Box-LoG consists of a linear com-
bination of eight Dirac delta functions, leading to eight
evaluations of S for the Box-LoG computation J = g ∗ I , as
follows:

J (x, y) =
1∑

i=0

1∑
j=0

(−1)i+j (a1 − a2)

× S
(
x + (−1)iR1 , y + (−1)jR1

)
+(−1)i+j (a2 − a3)S

(
x + (−1)iR2 , y + (−1)jR2

)
.

(8)

After computing the response image J for a discrete quan-
tity of radius scales (octaves in the computer vision par-
lance), the blob detection process then thresholds the re-
sponse magnitudes followed by nonmaximum suppression
(dark blobs give positive extrema and light blobs give neg-
ative extrema).

3.2. Landmark Pattern Design

The use of circular pattern elements (e.g., blobs) provides
rotational invariance about the optical axis and relative in-
sensitivity to viewpoint deviations from the optical axis dur-
ing Box-LoG detection. What remains is to define a pattern
consisting of blobs that fulfills the remaining requirements.
Converting the remaining specification into a list of desired
properties for the target pattern results in the following list:

i) pattern elements at multiple scales, for robustness to
scale changes;
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Figure 2. A LoG (left) with σ = 14.1421 and corresponding Box-LoG (right) kernels. Note that the direction of the z-axis is reversed
for better illustration.
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Figure 3. Three rectangular layers of the BoxLoG in Figure 2. Height of the outer layer (left) is 1.0967 × 10−4 with RLoG = 44;
middle layer (middle) is −2.4868 × 10−5 with R2 = 21; inner layer (right) is −8.7524 × 10−4 with R1 = 13.

ii) coplanarity, for rapid pose estimation through homo-
graphic geometry;

iii) sufficient number of pattern elements, for well-posed
pose estimation; and

iv) an asymmetric and noncollinear topology, to avoid de-
generacy and pose ambiguity due to rotations or per-
spective foreshortening.

A pattern element or marker feature that achieves the
first specification consists of nested blobs at different scales
and complementary contrasts (dark on light versus light on
dark). As shown in Figure 4, the marker design is such that
the circle radius at one blob scale is 4.5 times greater than
that of the next nested smaller scale. This factor ensures
that the nested blobs can be arranged such that a properly
adapted Box-LoG filter centers exactly on a blob without
getting response interference from a neighboring blob scale.
When combined with the multiscale blob detector from Sec-
tion 3.1, the blobs at a given scale can be robustly tracked
until the next scale is identified (about two octaves later
and with the opposite contrast). Further, the blob markers
at the three different scales provide three detection modes

determined by the relative distance between the target and
the camera. During the experiments described in Section 6,
the detection system switches the target blobs from the cur-
rent scale to the next smaller scale when the image radius
of the current scale becomes larger than 10 pixel units, ex-
cept for the smallest scale. The possible magnitude change
with a fixed lens camera is determined by both the pat-
tern design and the camera intrinsic parameters. Because
the scaling factor of the nested blobs is 4.5, the system sup-
ports range changes of three magnitude of 4.5, i.e., Z(1),
4.5Z(1), and 20.25Z(1), where Z(1) is the largest relative dis-
tance supported when the smallest-scale blobs are used. The
actual value of Z(1) is determined by the absolute size of the
pattern and the camera intrinsic parameters (especially the
focal length).

To fulfill the last three properties, the pattern should
have, at a minimum, three noncollinear pattern elements
on a planar surface (for homography-based pose estima-
tion). To be robust to partial occlusions or to pattern el-
ements leaving the image frame, at least five markers are
used (Nistér, 2004) and arranged asymmetrically. Moreover,
each marker should be at least one diameter in distance
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(a) Chosen pattern element (b) Candidate pattern

Figure 4. Pattern element and landmark pattern for cooperative tracking.

away from other markers to avoid false positive detections
(in the area between two markers). A pattern with these
characteristics is shown in Figure 4(b). It consists of ten pat-
tern elements randomly scattered on a square area, each
rotated at a random angle.1 During the initial pattern detec-
tion phase, when more than 4/5 of the pattern is detected,
then the pattern is considered to be acquired. During track-
ing, the Box-LoG detection radius is specified according to
the relative pose between the chase and target satellites.
When the relative distance is large, the larger markers are
set to be detected. As the camera gets closer to the target, the
smaller nested markers are set to be detected. The following
section describes the active adaptation process used in or-
der to optimize the visual processing pipeline and improve
the relative pose feedback to the pose tracking controller.

Note that in this work, severe illumination changes are
not considered. Mild illumination changes are mitigated by
the complementary contrast of the nested blobs.

3.3. Adaptive Compensation to Perspective
Imaging Distortion

The image formed by a circular marker as seen through a
(perspective) camera depends on the intrinsic camera pa-
rameters, the marker’s actual radius on the tag, and the
camera-to-marker distance. When the marker’s actual ra-
dius is fixed, there is an inverse linear relationship between
the image radius and the camera-to-marker distance. When
the vector normal to the planar pattern is not aligned with
the camera’s optical axis, the bloblike image is warped by
a perspective transformation. Under a severe perspective
transformation, the square-shape Box-LoG kernel may fail
to detect the pattern. Relative pose information available
during the closed-loop engagement scenario can be used
to actively modify the parameters of the Box-Log detection

1The pattern and quantity of pattern elements is a design choice.

strategy, as well as to preprocess the image for optimal de-
tection.

The main parameter of the Box-LoG algorithm is the
expected detection radius. During tracking, the radius is
known from the initial pattern detection phase (which cycles
through the various radii until the target is acquired). Thus,
as part of the processing pipeline, the Box-LoG kernel radius
is adapted via feedback of the estimated target position from
the previous frame (lower box of Figure 1), based on the
inverse distance relationship

rk+1 = λ√
x̃2

k + ỹ2
k + z̃2

k

, (9)

where λ is a constant determined by the target marker’s
world radius (a known constant) and the intrinsic camera
parameters, (x̃k, ỹk, z̃k) is the relative position of the camera
with respect to the target center in the kth frame, and rk+1 is
the detection radius estimate for the (k + 1)th frame.

Compensation for perspective warping effects is typ-
ically achieved by dewarping the image according to the
inverse of the perspective transformation. Computationally
this involves generating the warp function for each pixel
and then using interpolation on the image to apply the
warp. However, such a method is expensive both in terms
of the number of required computations and memory. To
efficiently tackle this problem, we propose to approximate
the perspective transformation by a computationally cheap
integer-based image rotation operation, followed by a
modification of the Box-LoG so as to always be of rect-
angular shape. Together, these two steps compensate for
the perspective warp while minimizing the computational
cost.

The rotated image is efficiently generated by remap-
ping the set of horizontal lines of the original image to
the set of pixelized, integer-based parallel lines of the ro-
tated image, so that the two sets differ by the rotation angle
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θ . The pixel positions along each remapped line are deter-
mined by Bresenham’s line drawing algorithm (Bresenham,
1965). Pixels in the remapped image that do not originate
in the sensed image are set to default background values.
The computational complexity of the rotation operation is
linear with respect to the image area, both in terms of the
number of computations involved and memory.

The Box-LoG kernel applied to the rotated image is
further modified by changing the height-to-width ratio κ

of the kernel. When κ �= 1, each level of the Box-LoG is of
rectangular shape instead of square shape, specifically

g(x, y) ≡ a1Hrect(x, y, Rx
1 , R

y

1 ) + a2Hrect(x, y, Rx
2 , R

y

2 )

+ a3Hrect(x, y, Rx
LoG, R

y

LoG), (10)

where a1, a2, a3 are solved from Eq. (6) and Hrect(x, y, Rx, Ry)
is the rectangular Heaviside step function given by

Hrect(x, y, Rx, Ry) =
{

1 if x ∈ [−Rx,Rx] ∧ y ∈ [−Ry, Ry],
0 otherwise.

(11)

The shape of Box-LoG is then adapted according
to κ such that Rx

1 /R
y

1 = Rx
2 /R

y

2 = Rx
LoG/R

y

LoG = κ . When
κ > 1, Rx

LoG = �3rk+1/
√

2� + 1, Rx
1 = � 4

7 rk+1�, Rx
2 = 2[rk+1] −

� 4
7 rk+1�, and when κ < 1, R

y

LoG = �3rk+1/
√

2� + 1, R
y

1 =
� 4

7 rk+1�, Ry

2 = 2[rk+1] − � 4
7 rk+1�.

The rotation angle θ and Box-LoG rectangular ratio κ

are obtained from the predicted homography Ĥk+1 for the
(k + 1)th frame under a constant transformation model:

Ĥk+1 = Ĥk→(k+1)Hk = H(k−1)→kHk = HkH
−1
k−1Hk, (12)

where H(k−1)→k is the homography mapping points from
(k − 1)th image to kth image. The second equality in Eq.
(12) is due to the constant velocity model. Let the estimate
in Eq. (12) be written as follows:

Ĥk+1 =
(

A b

01×2 1

)
(13)

for some matrix A ∈ R
2×2 and b ∈ R

2. The rotation angle
and rectangular ratio are extracted via the singular value
decomposition (SVD) of A,

A = UA	AV T
A , (14)

where UA, VA ∈ R
2×2 are unitary matrices and 	A ∈ R

2×2 is
a diagonal matrix. Note that the SVD of an 2 × 2 matrix can
be computed in closed form. The matrix UA in (14) is the ro-
tation transformation and 	A is the scaling transformation.
Thus

θ = acos (UA 1,1) and κ = 	A 1,1

	A 2,2
. (15)

In practice, θ need not be computed since the image bound-
aries are transformed using the (rotation) matrix UA. Those

transformed coordinates then define the parallel lines to fol-
low. With the adapted Box-LoG kernel, the integral image of
the derotated image is convolved with the Dirac delta func-
tions, and any blobs with the targeted radii in the image are
detected. A nonmaximum suppression is then performed to
refine these detected areas, and subpixel detection results
are generated by computing the center of mass in each of the
nonmaximum suppressed areas. The original image coordi-
nates are obtained by rotating the final detected positions.

Figure 5 illustrates the results of performing a Box-LoG
detection with perspective compensation. The input image
in Figure 5(a) is under a perspective transformation whose
effective homography is

H =
⎛
⎝ 0.7507 0.3752 0

0.0801 0.5708 93.8600
0 0 1

⎞
⎠ . (16)

By decomposing the matrix A of the homography matrix
via SVD, the rotation and scaling matrices are computed as
follows:

UA =
( −0.8835 −0.4684

−0.4684 0.8835

)
, 	A =

(
0.9218 0

0 0.4322

)
,

(17)

which means the image needs to be rotated clockwise by
152.07 deg. The rotated image via Bresenham’s line itera-
tion is depicted in Figure 5(b), where the image has been
expanded to fit the rotated image area and the unmapped
pixels have been filled in with white. The original image is
853 × 569 pixels while the rotated image is 1, 020 × 902 pix-
els. Convolution is performed using the κ-adapted Box-LoG
to generate the response seen in Figure 5(c). The detected
blobs’ subpixel positions are extracted and rotated back to
the original orientation as per Figure 5(d).

The detection algorithm is summarized in Algorithm 1,
along with the corresponding computational complexity for
each step. The dominant steps are the image rotation, image
integral, and fast convolution with the Dirac delta functions.
Because all of these steps are of linear order with respect to
the image size, the total complexity of the detection algo-
rithm is also of linear order with respect to the image size.

4. JOINT PATTERN TRACKING AND POSE
ESTIMATION

Pose estimation occurs between consecutive frames using
the pixel locations of the detected markers. To be robust
to false-positive and true-negatives, rather than imposing
or seeking one-to-one point correspondences between two
consecutive images, this section describes a homography-
seeking robust point-set registration algorithm. The algo-
rithm attempts to align the two point sets without imposing
explicit correspondences. The final alignment provides the
correspondences, and hence the required pattern tracking.
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Figure 5. Perspective compensation process within the Box-LoG detector for a target pattern under perspective transformation.

4.1. Homography Map

Denote the markers’ (homogeneous) locations in the pre-
vious image frame as vi ∈ R

2, the markers’ (homogeneous)
locations on the current image frame as ui ∈ R

2, for i =
1, . . . , nm, and let the (homogeneous) 3D positions X i ∈ R

3

of the markers on the pattern plane be given, such that
πTXi = 0, where π = (ζT, 1)T , ζ ∈ R

3, for i = 1, . . . , nm,
where nm is the number of markers and ζ is the normal

to the pattern plane. For simplicity, let the previous cam-
era pose be the identity pose, i.e., having camera projection
matrix Pv = [I | 0].

Assume that the camera moves rigidly from the previ-
ous to the current frame, and hence its motion is given by
the rigid transformation

gu
v =

(
R T

0 1

)
, (18)
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where R is the rotation and T is the translation of the cam-
era between the two frames. The camera projection on the
current frame is then given by

Pu = [R | T ]. (19)

Since v = [I |0]X , the back-projecting ray of v is Xv =
(vT, ρ)T, where ρ is the distance of Xv to the camera center
and, moreover, Xv lies on plane π , i.e., πT Xv = 0. Com-
bining these expressions yields Xv = (vT,−ζTv)T . If v, u
correspond to the same 3D points in the world frame, i.e., if
Xu = Xv , then

u = Pu Xu = [R|T ]Xv = [R|T ](vT, −ζTv)T

= (R − T ζT)v � Hv. (20)

Since the two views are of points in the same plane, the
previous equation shows that the homography map relates
corresponding points between consecutive frames (i.e., it
maps vi to ui) (Hartley & Zisserman, 2000). Note from Eq.
(20) that the homography map is completely characterized
by the transformation from the previous pose to the current
pose and by the plane’s normal vector.

When the point correspondences and the camera in-
trinsic matrix are known, the homography, and ultimately
the rigid motion transformation matrix gu

v , is computable.
The computation of the transformation matrix from the ho-
mography matrix utilizes the constraint that R is a unitary
matrix and thus R3 = R1 ⊗ R2, where Ri is the ith column of
the rotation matrix (Xu, Kuipers, & Murarka, 2009a). Con-
versely, when the homography is known, then the points
can be placed into correspondence and tracked. The prob-
lem arises when neither of them is known, and the point
sets have extra or missing elements (due to false positive
or true negative detections). To handle these uncertainties,
the next section jointly solves the pose estimation and point
tracking problems using robust point-set registration.

4.2. Robust Point-set Registration

In robust point-set registration, each image point set U =
{ui}|U|

i=1 and V = {vj }|V|
j=1 of two consecutive images of po-

tentially different cardinality generates a Gaussian mixture
model (GMM), the first of which is also transformed by an
unknown homography map H . Point-set registration is per-
formed by minimizing the L2 distance of the GMMs (Jian
& Vemuri, 2005, 2011). Normally, the minimization is per-
formed over the space of rigid or affine transformations
(plus possibly a parametrized model of nonaffine deforma-
tions). However, in this work the minimization is performed
over the space of homographic maps.

Recall that the GMM generator for a set of points X =
{xi}|X|

i=1 is

� (x ; X) = 1
|X|

|X|∑
i=1

N (x ; xi , 	), (21)

where |X| is the cardinality of the set X, and N (· ; xi , 	)
is the multivariate normal distribution with mean xi and
(constant) covariance 	 (here a diagonal matrix with equal
variances). When the homography map is included in the
GMM generator as a parameter, then

� (x ; X,H ) = 1
|X|

|X|∑
i=1

N
(

x ; Axi + b, A	AT
)
, (22)

given that the homography map of an image point x ∈ R
2

is H (x) = Ax + b. Given two points sets U and V, and a
homography map H , the registration error is defined by the
L2 distance of the generated GMMs as

dist(� (· ; U, H ) , � (· ; V)) �
∫

(� (x ; U, H ) − � (x ; V))2 dx.

(23)
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The multivariate Gaussian distribution obeys the iden-
tity∫

N (x ; μ1, 	1)N (x ; μ2, 	2) dx = N (0 ; μ1 − μ2, 	1 + 	2).

(24)

As a result, dist(� (· ; U, H ) , � (· ; V)) can be computed in
closed form as follows:

dist(� (· ; U, H ) ,� (· ; V))

= 1
|U|2

|U|∑
i=1

|U|∑
j=1

N
(

0 ; A(ui − uj ), 2A	AT
)

−2
1

|U||V|
|U|∑
i=1

|V|∑
j=1

N
(

0 ; H (ui) − vj , A	AT + 	
)

+ 1
|V|2

|V|∑
i=1

|V|∑
j=1

N (
0 ; vi − vj , 2	

)
. (25)

The homography is obtained by minimizing
dist(� (· ; U, H ) , � (· ; V)) over H ,

H = arg min
H

dist(� (· ; U, H ) , � (· ; V)). (26)

After finding H , two points ui and vj are considered to be
in correspondence if they have minimal distance compared
to all other possible correspondences, and the minimizing
distance is below a given threshold. Minimization of Eq.
(25) is performed iteratively through gradient descent. Note
that the last term in Eq. (25) is constant, having no effect
on the optimization, and thus it can be removed from the
computations.

5. SMOOTHING THE POSE ESTIMATES

While the pose estimates are optimized for the current ob-
servations conditioned on the previous observations (Sec-
tion 4.2), they are not optimized temporally over all observa-
tions (e.g., they are not filtered). The reason why smoothing
may be preferable to filtering is beyond the scope of this pa-
per. The interested readers can refer to Strasdat, Montiel, &
Davison (2012). For vision-based measurements, temporal
smoothing is performed by minimizing the image reprojec-
tion errors, given the set of pose estimates and homographic
mappings to date.

Denote by Gt � {gτ }τ≤t the set of camera poses up to
time instant t and by Zt � {ξ τ }τ≤t the collection of measure-
ments up to time t , where ξ t consists of the points {ui,t }nm

i=1,
where ui,t denotes the measurement of ui at time t . Let
Lt � {lατ (·)}τ≤t be the set of target pattern landmarks up to
time instant t , where αt (·) is a time-dependent association
function that matches a measurement index to a landmark
index at time t (this function is instantiated when the pat-
tern is detected and maintained during marker tracking).

Define the measurement function h(g, l) to be the perspec-
tive camera projection, mapping a 3D point l of the target
pattern landmark to a 2D image coordinate at camera pose
g. Given a measurement and landmark association, the im-
age reprojection error for measurement index i at time t is

εi,t = h(gt , lαt (i)) − ui,t . (27)

Assuming Gaussian measurement noise, the distribution of
the measurement given the landmark positions is

P
(
ui,t |gt , lαt (i)

) ∝ exp
(

−1
2
‖εi,t‖2

	

)
, (28)

where 	 is the covariance matrix of pixel noise as in Sec-
tion 4.2. Let now � � (Gt ,Lt ) denote the collection of the
unknown camera poses and landmarks observed up to time
t , and model the system using a factor graph (Kschischang,
Frey, & Loeliger, 2001). In our case, no odometry informa-
tion is available because the target’s motion is unknown
with respect to the inertial frame. Therefore, there are no
factors encoding the prediction model. Using the factoriza-
tion property of factor graphs, the joint probability of the
random variables � is (Dellaert & Kaess, 2006)

P (�) ∝
(∏

t

ϕt (θ t )

)⎛
⎝∏

t,j

ψt,j (θ t , θ j )

⎞
⎠ , (29)

where the t index runs over the variables in Gt , the j index
runs over the variables in Lt , the potentials ϕt (θ t ) encode
the prior estimate at θ t ∈ �, and the pairwise potentials
ψt,j (θ t , θ j ) encode information between two factors (here, a
camera pose and a landmark). Using this information, the
potentials are

ϕt (θ t ) ∝ P (gt ), (30)

ψt,j (θ t , θ j ) ∝ P (u
α−1

t (j ),t |gt , lj ). (31)

For the second set of potentials, ψt,j (θ t , θ j ), the potential
(and hence factor graph edge) does not exist when the in-
verse is not defined for a given (t, j ) (i.e., the landmark was
not seen). The maximum a posteriori (MAP) estimate is

�̂ = arg max
�

P (�|Zt ) = arg max
�

P (�,Zt )

= arg min
�

(− log P (�,Zt )). (32)

Since the information is arriving sequentially in time, the in-
cremental smoothing method (Kaess, Ranganathan, & Del-
laert, 2008; Kaess et al., 2012) is used for optimizing the
pose estimates. We use the GTSAM library (Dellaert, 2012),
written by the authors of the above references, to imple-
ment the incremental smoothing step. The bandwidth of
sensing we seek is a frequency equal to or greater than 10
Hz for smooth closed-loop control (Filipe & Tsiotras, 2014).
This bandwidth is also consistent with the bandwidth of the
track mode in AVGS (Hintze et al., 2007).

Journal of Field Robotics DOI 10.1002/rob



G. Zhang et al.: Cooperative Relative Navigation for Space Rendezvous and Proximity Operations • 13

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

(mm)

(m
m

)

(a) Dimension of the field for testing (b) Setup of the platform and the target

(c) ViconTM setup

Figure 6. Experimental testbed. Part (a) depicts the actual dimensions of the testing arena, where the blue lines are the boundary
of the area in which the ASTROS can reach. Part (b) shows a picture of the experimental platform. The target is attached to the wall
and the ASTROS can move freely on the floor. Part (c) illustrates the ViconTM setup, with the marker cameras (green), platform
frame (red), target pattern frame (blue), and field floor (orange).

6. EXPERIMENTS AND DISCUSSION

This section evaluates the processing pipeline described in
the previous sections, and depicted in Figure 1, on both
synthetic and actual relative motion scenarios. Accuracy
is evaluated for both position and orientation separately.
Position accuracy is measured in terms of a percentage using
the relative norm of the relative position error. Specifically,
let X̃ be the estimated camera position, X be the ground-
truth camera position, and XT be the center of the target,
all in the world-frame. The position accuracy used is then
100‖X̃ − X‖2/‖X − XT ‖2. The orientation accuracy is given
by the error of the estimated camera orientation computed
via the norm of the logarithm on SO(3) converted to degrees.

Specifically, if R̃ is the estimated orientation and R is the
ground-truth orientation, then the error is

ESO(3) = 180
π

∥∥∥(
logSO(3)(R̃

TR)
)∨∥∥∥ , (33)

where the “unhat” operation (·)∨ maps a 3 × 3 skew-
symmetric matrix to a vector.

Experimental validation is performed on the 5-DOF
spacecraft simulator testbed [Autonomous Spacecraft Test-
ing of Robotic Operations in Space (ASTROS)] at Georgia
Tech, which is depicted in Figure 6. The spacecraft [seen
in Figure 6(b)] has a lower stage (the pedestal) and an up-
per stage (main spacecraft bus). The lower stage consists
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Figure 7. Simulink model implementation of the closed-loop system. The “platform” block includes the whole camera localization
system, which is regarded as a measurement source for camera relative poses.

of four high-pressure air storage vessels, three linear air-
bearing pads, a hemispherical air-bearing cup (connecting
the lower and upper stages), along with dedicated elec-
tronics and power supply. When placed on the flat epoxy
floor, of dimensions approximately 14 ft × 14 ft, with the air
pads activated, the spacecraft experiences almost friction-
free conditions. The main structure of the ASTROS is the
upper stage, whose operational characteristics can be found
in Cho et al. (2009). The upper stage represents a typical
spacecraft “bus” and is made of a two-level brass structure
that is supported on a hemispherical air bearing allowing
rotation of the upper stage with respect to the supporting
pedestal about all three axes (±30 deg about the x and y

axes and a full rotation about the z axis).
For image capturing, a CCD camera (TMS-730p by Pul-

nix) mounted on the test bed is connected to a PC-104 Me-
teor II-Morphis frame grabber (MOR+/2VD/J2K by Ma-
trox Imaging) with a digitizer resolution of 640 × 480. For
onboard image processing, there is a PC-104-Plus computer
running Ubuntu 10.04, with a 1.6 GHz Pentium M CPU,
1 GB of RAM, and a 64 GB Compact Flash drive. All vision
code is implemented in C++ without the latest SIMD op-
timizations due to the limitations of the onboard CPU. A
six-camera ViconTM system captures the ground-truth pose
of the upper stage of the platform, which is related to the
camera frame by a rigid transformation estimated as part of
system calibration, and the target pattern pose.

During closed-loop operation, a second onboard com-
puter runs the controller. This computer is an ADLink
NuPRO-775 Series PC with an Intel Pentium III 750 MHz
CPU, 128 MB DRAM, and 128 MB disk-on-chip. The two
onboard computers communicate via UDP protocol. The
controller is implemented as a Simulink model, shown
in Figure 7, and then is uploaded to the platform using
MATLAB’s xPC Target environment. Three Variable-Speed
Control-Moment Gyroscopes (VSCMG) are used to control
the attitude of the platform (Cho et al., 2009). A VSCMG
can function either as a reaction wheel or as a control mo-

ment gyro; the attitude of the platform can be controlled by
changing the angular speed of the wheel inside the gimbal
of the VSCMG or by rotating the gimbal itself. The control
torque calculated by the controller is allocated between the
three VSCMGs following the approach in Yoon & Tsiotras
(2002). A set of 12 thrusters provides translational motion.

6.1. Synthetic Image Experiments of Camera
Localization

We first validated our algorithm using synthetic image se-
quences. The benefits of synthetic experiments are as fol-
lows: first, the experiments are fully controlled with accu-
rate ground-truth camera trajectories and camera intrinsic
parameters; second, in the synthetic environment we can
test scenarios involving camera movements that cannot be
tested in field tests due to the degree-of-freedom restrictions
(no translation along the vertical axis) of the platform. In the
experiments, a 3D virtual reality environment with the de-
signed target is first simulated. Then, a simulated camera
moves along a designated trajectory capturing images of
the target according to a pinhole camera projection model.
The focal length of the simulated camera is 1,388 mm and
the resolution is 1,082×722 pixels. The algorithm was tested
on synthetic images and the results were evaluated. In this
experiment, there is no distortion in the camera projection
and no noise in the camera movement.

Four trajectories were simulated. The trajectories and
the (measurement) camera poses for each simulation are
shown in the first row of Figure 8. Each simulated trajec-
tory consists of motion primitives (straight motion, camera
rotation, circular motion, etc.) that a normal engagement
scenario might consist of. Some of these motion primitives
have different perspective imaging properties that influence
the relative position and orientation estimates in different
ways. In the second scenario, the camera performed a pure
rotation from 0 to 360 deg counterclockwise with respect to
its optical axis with constant angular velocity. Most motions
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Figure 8. Synthetic experiment results. Column 1: simulated trajectories (units: mm) and camera poses. Column 2: RMS of relative
position error versus time for the estimated states. Column 3: orientation error norm versus time for the estimated states.
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Figure 9. Frame rates of the AprilTags algorithm and the proposed algorithm on the testbed, under different relative distances.
Both the mean values and the standard deviations of frame rates in all instances are shown. The statistics of each instance is
computed over a sequence of more than 300 frames.

also involve large perspective changes over the course of the
trajectory, which also tests the (adaptive) pattern detection
algorithm.

In Figure 8, the second and third columns contain the
graphs of the relative position accuracy (percentage) and
the orientation error (degrees); lower is better in both cases.
After the smoothing step, both estimates have good accu-
racy: the smoothed relative position estimates are all within
3% relative error, and relative orientation error is less than
0.2 deg. These results demonstrate that the proposed algo-
rithm can detect the pattern, estimate the relative poses ac-
curately, and adapt the detection scale accordingly.

6.2. Comparison with an Existing Fiducial Marker
System

The prevailing approaches to tag-based (e.g., planar known
patch marker) localization are edge- or line-based and of-
ten encode marker identity information as part of the tag
(called the data payload) (Fiala, 2005; Olson, 2011; Wag-
ner, Reitmayr, Mulloni, Drummond, & Schmalstieg, 2008).
They have been used for relative pose estimation (Olson
et al., 2012) and global localization (Lorenz et al., 2012).
This section includes a comparison of the proposed target
pattern detection with AprilTag (Olson, 2011). AprilTag is
a visual fiducial system for 6-DOF camera localization. It
will serve as the baseline algorithm for comparison given
that it has been comprehensively validated against other
fiducial systems including ARToolkitPlus (Wagner et al.,
2008) and ARTag (Fiala, 2005), and it was shown to be

preferable in terms of localization accuracy, robustness, pro-
cessing frame-rate, etc. (Olson, 2011). Although ARToolkit-
Plus has good performance, especially in terms of frame-
rate processing, it does not provide high localization ac-
curacy across a large range of distances; it also has poor
orientation estimation (in noiseless synthetic scenarios). In
contrast, AprilTag provides accurate relative pose across a
large range of distances and orientations.

For compatibility with the experimental platform code-
base, the C++ version of AprilTag provided by the MIT
CSAIL lab was used (http://people.csail.mit.edu/kaess/
apriltags/). For a fair comparison, the payload decoding
(tag ID) step was disabled. Tags of comparable sizes were
printed. Furthermore, the onboard PC settings, the hard-
ware configuration, the visual environment of the experi-
ment, and the relative poses between the platform and the
target were all fixed during the experiments. The images
were captured with a resolution of 640 × 480 pixels. The
time for capturing one frame is 0.005 360 ± 0.000 291 s, i.e.,
the frame rate for only image capturing is 187.0605 ± 9.517
fps. Scoring involved measuring the frame rate of the tag
detection and localization procedures, as well as comparing
the relative localization against the ViconTM ground truth.
The experiment involved testing the fiducial marker sys-
tems at differing relative distances.

The results of the frame rates are plotted in Figure 9,
where the mean and standard deviation versus distance
(more than 300 images were taken per distance point) are
shown. The results for the relative translation errors and
absolute orientation errors versus distance are plotted in
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Figure 10. The errors in translation and orientation of the proposed algorithm and AprilTags algorithm, respectively, from the
testbed experiments. Both the mean values and the standard deviations of errors in all instances are shown.

Figures 10(a) and 10(b). Both methods share very similar
localization accuracy, most likely due to the similarity be-
tween the two homography-based localization strategies.
However, the value of performing simple blob detection
over edge detection followed by edge linking is evident in
the achievable frame rates. The proposed method achieves
a frame rate that is approximately five to six times faster
than that of AprilTag, across the different distances tested.
The reason for the improved performance of our method is
mainly due to the fact that the computationally dominant
steps, i.e., image rotation, image integration, and Dirac con-
volution, are invariant to the tag distance. AprilTag, on the
other hand, is more expensive due to a potentially larger
number of linear structures from the environment, all of
which must be checked. Examining the AprilTag algorithm,
the inclusion of low-pass, Gaussian filtering at a cost of
O(nmNM), where (n × m) is the size of the filter kernel, al-
ready incurs a computational overhead that is higher than
the main parts of the Box-LoG detection algorithm. The
graph-based gradient clustering and quad (four-sided re-
gions) extraction via depth-first search are more expensive
than the previous steps (Olson, 2011), which leads to the
reported frame-rate.

Additional advantages of the proposed method against
other competing methods is the lower limit of working dis-
tance during tracking. The pattern detection steps for April-
Tag, ARTag, and ARToolkitPlus all depend on extracting the
full boundary of the tag. These methods would fail to pick
up the tag as the camera-tag relative distance drops and
portions of the tag leave the field-of-view. The proposed
blob pattern approach keeps track of the target until there

are fewer than three blobs captured. This advantage of our
method is particularly important to some proximity opera-
tions such as docking, where multiple distance scales would
have to be traversed during the docking procedure.

Given that the latency of the AprilTag is too high to
support closed-loop operation, it will not be evaluated in
the subsequent sections. The controller is designed in con-
tinuous time, and the performance drops significantly if the
measurement frequency is lower than 10 Hz. This fact high-
lights the importance of high computational efficiency in the
camera localization algorithm. The proposed tag and detec-
tion algorithm is distinguished from the existing tags by its
low latency and high localization accuracy across multiple
distance scales.

6.3. Open-loop Relative Pose Estimation
Experiments

Prior to testing the closed-loop system, experiments com-
parable to the simulated system were carried out to test the
empirical localization performance of the visual-processing
and pose filtering pipeline, as well as the active tag de-
tection system. Two scenarios were tested. In the first sce-
nario, the platform camera follows the (green) trajectory
shown in Figure 14(a), which includes translation, rotation,
and loss of the target pattern. In the time between poses
No. 37 and No. 38 there are three camera image measure-
ments for which the pattern is out of the field of view of
the camera, meaning that the pattern is not imaged. In the
second experiment, the target pattern is tilted up about 60
deg (y-axis) to test the algorithm’s performance under large
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Figure 11. Under different relative distances, blobs of different sizes are automatically selected by the system as the detection
target. Left: when the camera is far away from the pattern, the largest sized blobs are selected. Right: when the camera is closer
to the target, smaller sized blobs are selected. The selection is according to the predicted radius [see Eq. (9)] (the blobs with rk+1

closest to 10-pixel are selected). This simple strategy enables multiscale tracking without much additional computation.

Figure 12. Detection results of the second field experiment. In this experiment, the medium sized blobs are automatically selected
as the target markers during the whole experiment.

perspective transformations. The trajectory is recorded as
the green line shown in Figure 14(b). For the first half of
the trajectory (from frames 1 to 12), the upper stage of the
platform is fixed, while for the second half (from frame 12
on) the upper stage of the platform undergoes unknown
rotation between camera measurements.

At the beginning of each experiment, the camera is
relatively far away from the target. The largest size blobs are
automatically selected by the algorithm for detection. As the
camera approaches the target, the system switches to detect
the blobs of medium scale. The detection results from these
two phases are illustrated in Figure 11. When the pattern
is acquired, joint data-association and pose estimation are
performed. Figure 13 shows a data-association result, in
which the detection from the current frame is associated
with the previous frame. For both experiments, the final
pose estimates are depicted by the camera objects shown
in Figures 14(a) and 14(b). Comparing the estimated states
from the proposed method to the ground-truth states for
both experiments leads to the error plots in Figures 15(a)–
16(b).

Figure 13. Data association result from two consecutive
frames. The red crosses are the target blob positions from the
previous frame, while the green dots are the transformed loca-
tions of the current frame. The blue line segments stand for the
correspondences between the two detected point sets. Note that
for clearer illustration, not all the correspondences are plotted,
but the data-association results across the whole experiment
have been examined to be correct.
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Figure 14. Estimated trajectories of the the open-loop experiments. Depicted are the ground-truth trajectory of the camera (green
line with stars at the actual positions), the target marker positions (red stars), and the final estimated camera poses (camera objects).

Figure 15. Experiment 1: Plot of position and orientation error versus frame.

In the first experiment, the relative errors of the
smoothed position estimations are all smaller than 2.8%.
The angle deviation between the final estimate rotation ma-
trices and the ground-truth matrices are within 4˜ deg. For
the second experiment, the errors of the smoothed pose es-
timates are below 3.5% (position) and 3.5 deg (orientation).
Both experiments confirm the ability of the system to de-
tect and adaptively track the target pattern, as well as to
estimate relative pose using the known planar geometry of
the pattern elements. In addition, it can be observed that for

the position errors, when the camera is closer to the pattern,
the relative position errors become smaller. Moreover, com-
pared to the results of the first field experiment under the
same relative distance range, the overall errors of these ex-
periments do not increase significantly, which indicates that
the perspective image warping due to the placement of the
pattern does not affect the performance significantly. Over-
all, the position and rotation errors are low enough to be
used for closed-loop operation with confidence, illustrating
the accuracy and robustness of the proposed algorithm.
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Figure 16. Experiment 2: Plot of position and orientation error versus frame.

6.4. Closed-loop Relative Attitude Regulation

To validate the performance of the camera localization sys-
tem in a closed-loop, an experiment was run on the AS-
TROS platform in combination with the inertia-free pose-
tracking controller based on dual quaternions from Filipe
& Tsiotras (2014). The controller guarantees almost global
asymptotic stability2 of the pose-tracking error without re-
quiring knowledge of the mass and inertia matrix of the
platform. Only 3-DOF rotational motion was tested in a
closed loop, due to the availability of the actuators at that
time. The inputs to the controller are the relative attitude
and the relative angular velocity between the platform and
the target, with the relative attitude measured using the
vision-based localization pipeline. During the experiment,
the average time between pose measurements was 0.081 27 s
(average pose update rate of 12.30 Hz). The angular veloc-
ity of the platform with respect to the inertial frame was
measured at 100 Hz with the platform’s three-axis rate-gyro
(a Humphrey RG02-3227-1 with noise standard deviation of
0.027 deg/s and bias not larger than 2 deg/s). These velocity
measurements are filtered by a fourth-order discrete-time
Butterworth filter. Since the angular velocity of the target
with respect to the inertial frame is not measurable, the
controller assumes it is zero and uses the rate-gyro angular
velocity measurement as the measurement estimate for the
angular velocity between the platform and the target (target
motion is effectively a disturbance).

The measurements of the vector part of the quater-
nion and angular velocity between the platform and the
target were merged in a quaternion multiplicative extended
Kalman filter (Q-MEKF) (Lefferts, Markley, & Shuster, 1982).
The Q-MEKF is a continuous-discrete Kalman filter (the
state and its covariance matrix are propagated continuously
between discrete-time measurements). The discrete-time
measurements need not be equally spaced in time, mak-

2Almost global asymptotic stability is stability over an open and
dense set. It is the best one can achieve with a continuous controller
for orientation, because the group of rotation matrices SO(3) is a
compact manifold (Bhat & Bernstein, 2000).

ing irregular or intermittent measurements easy to handle.
Moreover, this structure facilitates the integration of sen-
sors with different update rates. The states of the Q-MEKF
are the quaternion describing the rotation between the plat-
form and the target frame, and the bias of the rate-gyro. The
attitude and angular velocity of the platform with respect
to the target estimated by the Q-MEKF are fed back to the
controller.

In the sequel, S denotes the platform frame, T denotes
the target frame, and D denotes the target’s desired frame.
During the first 20 s, no control commands are issued and
the Q-MEKF is allowed to converge. Afterward, the refer-
ence attitude is given by ψD/T ≡ −2 deg, θD/T ≡ 8 deg, and
φD/T ≡ −90 deg, where ψD/T, θD/T, φD/T are the three Euler
angles in aerospace sequence.

The upper stage is levitated at around 16 s. At approxi-
mately 42 s after the beginning of the experiment, the target
is slowly rotated, leading to a decrease of approximately
3 deg in ψS/T and θS/T. At approximately 68 s after the be-
ginning of the experiment, the target is slowly rotated back
to its original orientation, leading to an increase of approxi-
mately 3 deg in ψS/T and θS/T. Finally, at approximately 92 s
after the beginning of the experiment, the target is rotated
again, leading again to a decrease of approximately 3 deg in
ψS/T and θS/T. The third Euler angle remains approximately
constant throughout the experiment.

Figure 17 compares the desired attitude and angular
velocity of the S-frame with respect to the T-frame (con-
stant in this experiment) with an estimate of the state of
the platform (given by the outputs of the Q-MEKF). The
error between them is presented in Figure 18. After each
change in the target orientation, each desired Euler angle is
matched within ±2 deg and each desired angular velocity
coordinate is matched within ±1 deg/s. This is the same
tracking error obtained from previous experiments on the
same platform and with the same controller, but with a
Crossbow AHRS400CC-100 IMU instead of the camera lo-
calization system and rate-gyro, which shows that the error
stems primarily from actuator limitations.
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Figure 17. Data from the attitude-regulation experiment: desired attitude (ψD/T, θD/T, φD/T) and angular velocity (pD
D/T, qD

D/T, rD
D/T),

versus attitude (ψ̂S/T, θ̂S/T, φ̂S/T) and angular velocity (p̂S
S/T, q̂S

S/T, r̂S
S/T) estimated by Q-MEKF. The three vertical lines at 42, 68, and

92 s, respectively, indicate the starting time of the target movements.

Figure 18. Data from the attitude-regulation experiment: attitude (ψD/T, θD/T, φD/T) and angular velocity (pS
S/D, qS

S/D, rS
S/D) regula-

tion error. The three vertical lines at 42, 68, and 92 s, respectively, indicate the starting time of the target movements.
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7. CONCLUSIONS

This paper presents a numerically efficient approach for
monocular vision-only relative pose estimation in a co-
operative space proximity operations scenario. A cooper-
ative scenario in this context is defined as one in which
there is a known pattern on the target spacecraft but the
target spacecraft motion is unknown. The target pattern,
consisting of nested, complementary, contrasting circular
blobs, is placed asymmetrically, and it has been designed
specifically to aid detection and localization. The proposed
detection strategy employs integer computations where
possible, incorporates efficient approximations to costly
convolution kernels, and actively employs the closed-loop
state estimates to adaptively optimize target detection and
localization. Marker tracking and frame-to-frame relative
pose measurement is done simultaneously by performing
point-set registration using a homography-parametrized
GMM representation for the detected markers.

The performance of the proposed algorithm has been
validated on a 5-DOF spacecraft platform capable of sim-
ulating realistic spacecraft motion in a 1g environment.
Open-loop localization test results using the platform
demonstrated balanced computational efficiency with good
relative pose estimation accuracy. Experiments were also
conducted in order to compare the proposed algorithm
with AprilTag, a state-of-the-art fiducial-based localiza-
tion algorithm. These experiments demonstrated a large
speedup of the proposed algorithm compared to April-
Tag. A closed-loop relative attitude regulation experiment
was also performed, which showed that the regulation error
rates matched the open-loop estimation error rates, thereby
validating the overall controlled active vision system. The
algorithm is particularly useful for cooperative navigation
between small-size spacecraft, which may have limited on-
board power and computation capabilities.

Specifically, compared to existing work, the novel im-
provements of this work are as follows:

� It provides a solution with low computation and mem-
ory complexity and good localization accuracy. The al-
gorithm offers about ×6 speedup in terms of frame
rate when compared to AprilTag. This improvement is
achieved by the novel elements incorporated in the al-
gorithm, including the Box-LoG detector with efficient
perspective compensation, the joint data-association and
pose estimation, and the feedback framework with ho-
mography prediction. The low complexity further helps
in improving the update frequency and lowering latency.

� A novel design for cooperative rendezvous using a pat-
tern consisting of a multiscale blob array, combined with
the proposed image processing algorithm, provides ro-
bustness against large-scale changes for maneuvers in
a space environment involving a target with unknown
motion status.

Future work includes improving the existing algorithm
to accommodate severe illumination changes, typical in
space imaging applications. These illumination changes re-
sult in large contrast and intensity changes on a single im-
age, which are detrimental to detection accuracy. Another
problem left for future investigation is target detection in
a cluttered environment. Possible clutter in space includes
the Earth in the background, components of the spacecraft
(e.g., antennas, solar panels), etc. Background subtraction
with more robust target detection algorithms is needed to
address the cluttering problem.
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