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Abstract

Tracking control laws are developed for a rigid spacecraft using both thrusters and

momentum wheels. The model studied comprises a rigid body with external thrusters

and with rigid axisymmetric wheels controlled by axial torques. Modified Rodrigues

parameters (MRPs) are used to describe the kinematics. The thruster torques and the

axial motor torques are computed to track given attitude motions, using the angular

velocity error and MRP error to develop linear and nonlinear control laws. Three

different controllers are developed. The first controller uses thruster torques based on

a bang-bang control law, while momentum wheels are used to correct tracking errors.
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The second controller is similar, but is designed to use the thruster torques in such a

way that the momentum wheels are not used at all unless there are initial condition

errors. The third controller uses linear feedback for the wheels and nonlinear feedback

for the thrusters. In all three cases, the controllers are shown rigorously to result in

globally asymptotically stable closed-loop systems.

Introduction

The problem of reorienting a satellite has been studied by numerous authors, and

much of the relevant material is contained in the monograph by Junkins and Turner

[1]. Many researchers have considered only external torques, such as would be pro-

vided by thrusters or magnetic torquers; Ref. [2] gives a detailed literature review,

and develops external torque control laws similar to those developed herein. Internal

torques are also used in many spacecraft, both for attitude control, and for rotational

maneuvers; Ref. [3] gives references and develops simple control laws for large-angle

rotational maneuvers. In Ref. [4], we applied a similar approach to the problem of

simultaneous energy storage and attitude control using flywheels.

In some highly maneuverable spacecraft, one may consider incorporating both

thrusters and momentum wheels as attitude control actuators. Thrusters typically

provide higher control authority than momentum wheels, and hence are useful for

providing the torque for rapid reorientation maneuvers. However, thrusters typically

do not have fine-resolution throttling capability and are therefore not as useful for

precision control. Another disadvantage of thrusters is their dependence on expend-
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able propellant. Momentum wheels have lower control authority, but are capable of

finer control, and have the distinct advantage of using electrical energy. However,

to achieve large torques with momentum wheels requires large angular accelerations

which in turn requires high power. When large torques are required and thrusters

are not admissible (for example, to avoid plume impingement or exhaust accumu-

lation on sensitive optics), control moment gyros are typically used. However, in

non-sensitive applications, the combination of thrusters and momentum wheels could

be a valuable alternative to expensive control moment gyros. These arguments indi-

cate that the combination of thrusters and momentum wheels might be effective for

spacecraft that occasionally perform large-angle maneuvers and that have fine point-

ing requirements. The thrusters would provide the primary maneuver torque, while

the momentum wheels provide the fine control to remove initial condition errors.

In this paper, we develop three different controllers that incorporate both inter-

nal and external torques. These controllers are logical extensions to the controllers

developed in Ref. [2], and are shown to render the complete system dynamics and

kinematics globally asymptotically stable. We begin by establishing the system model

and appropriate rotational equations of motion. We also introduce a virtual reference

frame whose motion the spacecraft attitude is required to track. The attitude motion

of the virtual reference frame is due to a reference torque, which is computed offline

and used as a feedforward element in the control laws. The rotational kinematics are

described using Modified Rodrigues Parameters (MRPs) [5]. We introduce a Lya-
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punov function which has been previously introduced in Ref. [2] and also used in

Ref. [6]. The Lyapunov function is used to establish the stability of the three con-

trollers, which each allocate the thruster and momentum wheel control differently.

We illustrate the effectiveness of the controllers with a series of numerical examples.

System Model

We consider a rigid spacecraft B with N rigid and axisymmetric, balanced mo-

mentum wheels, Wi, i = 1, · · · , N , and three thrusters capable of providing torques

about the principal axes. LetN denote the inertial frame, and B denote a body frame

with origin at the center of mass of the system B +
∑N

i=1
Wi. The desired trajectory

to be tracked is generated by a “virtual” spacecraft with the same inertia properties

as the rigid spacecraft. Let R denote the reference frame which is fixed at the center

of mass of this virtual spacecraft.

The purpose of the controller is to make the body frame B asymptotically track

the reference frame R. In addition, in the absence of any disturbances and any errors

in the initial conditions, the tracking controller should keep B and R aligned at all

times.

Dynamics

Let I be the moment of inertia of the system, including the wheels and thrusters,

and let Isi, i = 1, 2, · · · , N denote the axial moments of inertia of the momentum

wheels. Defining the matrix Is = diag{Is1, · · · , IsN}, we have the dynamics of the
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system described by [1]

ḣB = h×

BJ−1(hB −Aha) + ge (1)

ḣa = ga (2)

where hB is the system angular momentum vector in frame B given by

hB = IωB +AIsωs (3)

In Eqs. (1–3), ha is the N × 1 matrix of the axial angular momenta of the wheels, ge

is the 3×1 matrix of external torques applied by the thrusters, ga is the N×1 matrix

of the internal axial torques applied by the platform to the momentum wheels, A is

the 3×N matrix containing the axial unit vectors of the N momentum wheels, and

J is a positive definite, inertia-like matrix defined as

J = I−AIsA
T (4)

From Eqs. (3) and (4) the angular velocity of frame B can be written as

ωB = J−1(hB −Aha) (5)

and the axial angular momenta of the momentum wheels can be written as

ha = IsA
T
ωB + Isωs (6)

where ωs = (ωs1, ωs2, · · · , ωsN)
T is anN×1 vector denoting the axial angular velocities

of the momentum wheels with respect to the body.
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Kinematics

Modified Rodrigues Parameters (MRPs) [5] are used to describe the kinematics of

the attitude motion. The MRPs are defined as

σ = ê tan(Φ/4) (7)

where ê is the unit vector along the Euler principal axis, and Φ is the Euler principal

rotation angle [2]. The differential equations of the kinematics in terms of the MRPs

are

σ̇ = G(σ)ω (8)

where

G(σ) =
1

2

(

1+ σ× + σσT −
1 + σT

σ

2
1

)

(9)

and 1 is the 3× 3 identity matrix. Therefore, the kinematics of the body frame can

be written as

σ̇B = G(σB)ωB (10)

Suppose a reference motion is designed and, at the design stage, only the thrusters

provide control torques, while the momentum wheels are non-rotating (i.e., ωsi =

0, i = 1, 2, · · · , N). In this case, from Eq. (3), hB = IωB. With the reference frame

denoted by R, the reference motion is assumed to be

ḣR = h×

RI−1hR + gR (11)

where hR = IωR and ωR is the angular velocity of the virtual body in frame R. Note

that if the wheels are non-rotating and ge = gR then Eqs. (1) and (11) are identical.
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Thus, Eq. (11) describes the dynamics of the attitude motion of a “virtual” spacecraft

with the same inertia properties as the real spacecraft. This virtual spacecraft is used

to generate the desired (nominal or optimal) trajectory to be tracked. Hence, gR in

Eq. (11) is the desired nominal control torque which, if applied to the real spacecraft

with the same initial conditions and with the wheels fixed with respect to the platform,

would generate the desired trajectory.

The kinematics of frame R is given by

σ̇R = G(σR)ωR (12)

where σR denote the MRPs of frame R with respect to the inertial frame N.

We define the tracking error of the angular velocity expressed in frame B as

δω = ωB −CB
R (δσ)ωR (13)

where CB
R(δσ) is the rotation matrix from the reference frame R to the body frame

B, and δσ is the kinematics error between frames B and R defined by

CB
R(δσ) = CB

N(σB)C
R
N(σR)

T (14)

From Eqs. (8) and (13), the differential equation for the error kinematics takes the

form

δσ̇ = G(δσ)δω (15)

From Eq. (11), we have

ω̇R = I−1h×

RI−1hR + I−1gR (16)
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thus

JCB
R(δσ)ω̇R = JCB

R(δσ)I
−1h×

RI−1hR + JCB
R(δσ)I

−1gR (17)

According to the definition of the tracking error of the angular velocity in Eq. (13),

we define the tracking error of the angular momentum expressed in frame B as

δh = hB − JCB
R(δσ)ωR

= IωB +AIsωs − JCB
R(δσ)ωR

= J(ωB −CB
R(δσ)ωR)

+A(Isωs + IsA
T
ωB) (18)

and using Eq. (6) we find that

δh = Jδω+Aha (19)

From Eq. (18) we develop the error dynamics as

δḣ = ḣB − J
dCB

R(δσ)

dt
ωR − JCB

R(δσ)ω̇R

= ḣB − Jω×

Bδω− JCB
R(δσ)ω̇R

= h×

BJ−1(hB −Aha) + ge − Jω×

Bδω

−JCB
R(δσ)ω̇R (20)

where JCB
R(δσ)ω̇R is given in Eq. (17). Here we have used the fact that

dCB
R(δσ)

dt
ωR = ω

×

Bδω (21)

We give a brief proof of this fact in the Appendix.
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The objective of the control laws developed in the sequel is to make the error

dynamics of δσ and δω vanish asymptotically.

Tracking Controllers

In this section, we develop a combined control scheme to track rigid spacecraft attitude

motions using both thrusters and momentum wheels. The thrusters may act as the

feedforward portion of the controller while the momentum wheels implement the

feedback portion of the controller. Alternatively, in case the thrusters can generate

continuous control profiles, one may choose to implement the feedforward plus the

nonlinear feedback portion of the control law through the thrusters. In this case,

the controller for the momentum wheels implements a linear feedback control law

in terms of the angular velocity and attitude errors. Both of these implementation

schemes globally asymptotically stabilize the tracking error.

Consider the following candidate Lyapunov function [2]

V =
1

2
δωTKδω+ 2k2 ln(1 + δσT δσ)

=
1

2
(δh−Aha)

TJ−1KJ−1(δh−Aha)

+2k2 ln(1 + δσT δσ) (22)

where K = KT > 0, and k2 > 0. This function is positive definite and radially

unbounded [7] in terms of the tracking errors δω and δσ. Calculation of the derivative

of V along the error kinematics and dynamics, Eqs. (15) and (20), yields

V̇ = ( ˙δh−Aḣa)
TJ−1KJ−1(δh−Aha)
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+4k2

δσTG(δσ)

1 + δσT δσ
δω

= ( ˙δh−Aḣa)
TJ−1Kδω+ k2δσ

T δω (23)

Choosing K = J, we obtain

V̇ = δωT ( ˙δh−Aḣa + k2δσ)

= δωT
[

h×

BJ−1(hB −Aha) + ge − Jω×

Bδω

−JCB
R(δσ)I

−1h×

RI−1hR − JCB
R(δσ)I

−1gR

−Aga + k2δσ] (24)

We must select control torques ga and ge such that V̇ < 0 whenever δω 6= 0 and

δσ 6= 0. Clearly there may be many possibilities, and in the next three subsections,

we develop three different controllers based on Eq. (24).

Controller I

In case the thrusters are of the on-off type, they may not be able to implement a

continuously varying control profile (unless a pulse-width pulse-modulation scheme is

used) and thus, we assume that gR is a bang-bang command. In this case we choose

the thrusters to perform the designed nominal control gR; i.e.,

ge = gR (25)

and the momentum wheels are used to correct for the tracking errors. The nominal

control, gR is computed off-line using EZopt.
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From Eq. (24), letting the feedback control law for the momentum wheels satisfy

Aga = h×

BJ−1(hB −Aha) + gR − Jω×

Bδω

−JCB
R(δσ)I

−1h×

RI−1hR − JCB
R(δσ)I

−1gR

+k1δω+ k2δσ (26)

yields

V̇ = −k1δω
T δω ≤ 0 (27)

where k1 > 0. This result implies that the tracking trajectories are bounded and

furthermore,

lim
t→∞

δω(t) = 0 (28)

From Eqs. (19), (20) and (26), we have

Jδω̇ = δḣ−Aḣa

= −k1δω− k2δσ (29)

Thus,

lim
t→∞

J δω̇ = −k2 lim
t→∞

δσ. (30)

Because limt→∞ δω = 0, we conclude that limt→∞ δσ cannot be a constant except zero.

However, from Eqs. (15) and (28), limt→∞ δσ̇ = 0. Hence limt→∞ δσ is a constant.

Therefore,

lim
t→∞

δσ = 0. (31)
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From LaSalle’s Theorem [7], the tracking error dynamics and kinematics with the

feedback control law (26) are shown to be globally asymptotically stable.

In the absence of any initial condition errors, i.e., δω(0) = δσ(0) = 0, the control

law in Eqs. (25) and (26) ensures perfect tracking; i.e., ωB(t) = ωR(t) and σB(t) =

σR(t) for all t ≥ 0.

Controller II

Equations (25) and (26) show that Controller I is such that if initially ωB(0) = ωR(0)

and σB(0) = σR(0) and, in addition, ωs(0) = 0, then hB(t) = hR(t) for all t ≥ 0. In

particular, the equality hB(t) = hR(t) implies that AIsωs(t) = 0 for all t ≥ 0 and

the momentum wheels can be commanded to remain stationary with respect to the

platform.

An alternative control implementation is to choose the control law so that, in the

absence of initial condition errors, and if the total axial rotor momentum is initially

zero, ha(0) = 0, then it remains zero during the maneuver; i.e., ha(t) = 0 for all t ≥ 0.

In this case, hB = JωB and we can therefore assume that the reference dynamics is

given by

ḣR = h×

RJ−1hR + gR (32)

where hR = JωR. Choosing the same Lyapunov function, the thruster control law as

ge = JCB
R(δσ)J

−1gR (33)
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and the momentum wheel control law

Aga = h×

BJ−1(hB −Aha)− Jω×

Bδω

−JCB
R(δσ)J

−1h×

RJ−1hR

+k1δω+ k2δσ (34)

we obtain Eq. (27). This control leads to the same expression for V̇ as in Controller I.

Therefore, using similar arguments as for Controller I, one can show that this control

law achieves global asymptotic stability for the tracking error dynamics.

Note that in the absence of any initial condition errors, δσ(0) = δω(0) = 0, and

if ha(0) = 0, the control law in Eqs. (33) and (34) guarantees that δσ(t) = δω(t) = 0

for all t ≥ 0 and the control law becomes

ge = gR (35)

and

Aga = h×

BJ−1(hB −Aha)− h×

RJ−1hR = (Aha)
×
ωR (36)

The last equation, along with Eq. (2) implies that if ha(0) = 0, then ga = 0 and

hence, ha(t) = 0, for all t ≥ 0.

Controller III

An alternative way to implement the control law is to enforce a linear feedback control

law for the wheels:

Aga = k1δω+ k2δσ (37)
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Then one needs to choose the thruster control law as

ge = −h×

BJ−1(hB −Aha) + Jω×

Bδω+ JCB
R(δσ)ω̇R (38)

where ω̇R is given either from Eq. (11) or from Eq. (32). In the first case, we have

hR = IωR whereas in the second case we have hR = JωR.

The Lyapunov function in Eq. (22) can be used to show that this control law

renders the error system (δω, δσ) globally asymptotically stable, again with the same

expression for V̇ as in the previous two controllers.

Remark: A word of caution in the implementation of the previous controllers

should be mentioned at this point. Since the MRPs used for the attitude kinematics

define a three-dimensional set of parameters, they will encounter a singular orienta-

tion, which for the MRPs case is at an eigenaxis rotation of 360◦. When describing

the attitude error δσ this singularity does not create any problems, since closed-loop

stability subsumes existence of solutions for all t ≥ 0. Hence the attitude error cannot

have finite escape times (see Ref. [7]). For the general tracking case, however, the

reference attitude could easily exceed Φ = 360 deg. In such a case, one can then use

the dual or shadow set of MRPs [5] to by-pass any attitude singularities. One of the

nice features of the dual set is that they obey the same differential equation, (8–9).

Therefore, their use merely amounts to “resetting” the attitude state whenever the

parameters leave their region of validity; for details see Refs. [2, 5]. Alternatively, a

non-singular global set, such as the Euler parameters, can be used for the reference

and actual attitude descriptions, while still using the MRPs for the attitude error.
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The control laws proposed in this paper will still remain the same in this case, modulo

a transformation of the reference and actual attitude from the Euler parameter set

to the MRP set.

Numerical Examples

To illustrate the effectiveness of these control laws, we apply them to track a trajectory

of a minimum-time rest-to-rest maneuver. Three momentum wheels are used to

provide the feedback control. They are aligned with the principal axes and their axial

moments of inertia are given by Is = diag{0.01, 0.01, 0.01} kgm2. The spacecraft

moment of inertia matrix is I = diag {200, 150, 175} kgm2. The nominal control gR,

which is known to be bang-bang [1], is designed to drive the spacecraft from an initial

attitude, σR(0) = (0.10, 0.20, 0.30), which can be represented in 3-2-1 Euler angles as

(42◦, 20◦, 78◦), to a position aligned with the inertial frame; i.e., σ(tf ) = (0, 0, 0). We

assume that the actual initial attitude of the body frame is σB(0) = (0.11, 0.15, 0.28),

which can be expressed in 3-2-1 Euler angles as (37◦, 13◦, 69◦).

We present results for all three controllers in Figs. 1–7. In all cases, the gains are

k1 = 54 and k2 = 47. These gains are selected so that all three controllers provide

performance which is similar to that provided by the ideal bang-bang control with

no initial condition errors. We compute the bang-bang control thrust profiles off-line

using the EZopt Optimal Control Toolkit [8]. In practice, a real-time approach for

computing the reference thrust profiles would be required.

Figure 1 shows the time histories of δω and δσ for all three controllers, which
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are identical. The plots in Fig. 1 show that the angular velocity and attitude errors

are driven asymptotically to zero. Figures 2 and 3 show the time history of the con-

trols when the thrusters perform the nominal bang-bang control gR and the control

law for the momentum wheels is given by Eq. (26); i.e., Controller I is used. The

thrusters provide the ideal time-optimal control, while the momentum wheels pro-

vide the piecewise smooth torques to eliminate tracking errors caused by the initial

condition errors.

Figures 4 and 6 illustrate the time history of the control inputs for Controller II,

where the thrusters perform the control law in Eq. (33) and the momentum wheels

perform the linear feedback control law in Eq. (34), with reference input generated by

Eq. (32). The thruster torque profile is similar, but not identical, to the bang-bang

control shown in Fig. 2. The differences are due to the attitude error feedback that

is incorporated into Eq. (33). Since the thruster torque profile is similar to the bang-

bang control of Fig. 2, in Fig. 4 we plot the difference between the actual torque and

the reference torque; i.e., we plot δge = ge − gR.

Figures 5 and 7 illustrate the time history of the control inputs for Controller III,

where the thrusters perform the control law in Eq. (38) and the momentum wheels

perform the linear feedback control law in Eq. (37), with reference input generated

by Eq. (11). These controls are similar to those for Controller II. As in Fig. 4, Fig. 5

shows the difference between the actual torque and the reference torque. Note also

that the momentum wheel controls for Controllers II and III are smooth, in contrast
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with the momentum wheel control for Controller I. However, the disadvantage of

Controllers II and III is that the thrusters must provide variable thrust levels.

Conclusions

Control laws are developed to combine the external and internal torques provided

by thrusters and momentum wheels for tracking prescribed large-angle rotational

maneuvers. The control laws are based on the nonlinear equations of motion for

the spacecraft angular momentum and the modified Rodrigues parameters, and are

designed to be globally asymptotically stable in tracking prescribed rigid body ma-

neuvers. Since thrusters generally are not capable of providing continuously varying

torques, one approach to rotational maneuvers is to use the thrusters for bang-bang

control to provide the coarse maneuver, and to use the momentum wheels as con-

tinuous controllers to provide the necessary corrections. In case the thrusters are

capable of providing continuously varying torques, alternative control laws can be

used, including one in which the wheel torque control is linear.

Appendix

Here we give a brief proof of Eq. (21). It is well known in analytical dynamics [9]

that

ĊB
N = −ω

×

BCB
N , and ĊR

N = −ω
×

RCR
N (39)

so

dCB
R

dt
=

d[CB
NCN

R ]

dt
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= ĊB
NCN

R +CB
NĊN

R

= −ω×

BCB
NCN

R +CB
N [−ω

×

RCR
N ]

T

= −ω×

BCB
NCN

R +CB
N [−ω

×

RCR
BCB

N ]
T

= −ω×

BCB
NCN

R +CB
N [C

B
N ]

TCB
Rω

×

R

= −ω×

BCB
R +CB

Rω
×

R (40)

Thus

dCB
R

dt
ωR = −ω×

BCB
RωR

= −ω×

B[ωB − δω]

= ω
×

Bδω (41)

which concludes the proof.
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Figure Captions

Fig. 1. Time histories of δω and δσ for all three controllers

Fig. 2. Nominal bang-bang control performed by thrusters for Controller I

Fig. 3. Feedback control performed by momentum wheels for Controller I

Fig. 4. Difference between control performed by thrusters for Controller II and

the reference torque

Fig. 5. Difference between control performed by thrusters for Controller III

and the reference torque

Fig. 6. Feedback control performed by momentum wheels for Controller II

Fig. 7. Feedback control performed by momentum wheels for Controller III
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Figure 1: Time histories of δω and δσ for all three controllers
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Figure 2: Nominal bang-bang control performed by thrusters for Controller I

23



0 5 10 15 20 25 30
−0.5

0

0.5
 A

g a1
 (N

m
)

0 5 10 15 20 25 30
−5

0

5

 A
g a2

 (N
m

)

0 5 10 15 20 25 30
−0.5

0

0.5

 A
g a3

 (N
m

)

 t (sec)

Figure 3: Feedback control performed by momentum wheels for Controller I
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reference torque
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Figure 5: Difference between control performed by thrusters for Controller III and

the reference torque

26



0 5 10 15 20 25 30
−1

0

1
 A

g a1
(N

m
)

0 5 10 15 20 25 30
−5

0

5

 A
g a2

(N
m

)

0 5 10 15 20 25 30
−0.5

0

0.5

 A
g a3

(N
m

)

 t  (sec)

Figure 6: Feedback control performed by momentum wheels for Controller II
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Figure 7: Feedback control performed by momentum wheels for Controller III
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