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Abstract— This paper studies the decision making problem
of autonomous vehicles in traffic. We model the interaction
between an autonomous vehicle and the environment as
a stochastic Markov decision process (MDP) and consider
the driving style of an experienced driver as the target to
be learned. The road geometry is taken into consideration
in the MDP model in order to incorporate more diverse
driving styles. By designing the reward function of the MDP,
the desired, driving behavior of the autonomous vehicle
is obtained using reinforcement learning. Simulated results
demonstrate the desired driving behaviors of an autonomous
vehicle.

Keywords: Reinforcement learning, decision making, au-
tonomous vehicle, Markov decision process.

I. INTRODUCTION

Autonomous vehicles are expected to significantly im-
prove traffic congestion, reduce collisions and resulting
injuries, enhance mobility for the elderly and the dis-
abled, and reduce the need for parking space in cities [1].
The planning strategy of an autonomous vehicle consists
of three tasks, which include: mission planning, where
the vehicle solves a routing problem in order to com-
plete a task; decision making, where the vehicle chooses
an appropriate action for the next time step from an
available action set; and path planning, where the vehicle
plans its future trajectory as a function of space or time
[2]–[5]. This paper focuses on the problem of decision
making for autonomous vehicles in traffic. Specifically,
we wish to reproduce the decision making of an expert
driver, that is, we wish to duplicate the optimal driving
strategy involving several typical driver actions such as
lane-shifting, lane and speed maintaining, accelerating
and braking, by also considering the stochastic driving
behaviors of the other vehicles in traffic.

One of the first autonomous vehicle was developed by
Carnegie Mellon University’s Navlab in 1988, and it was
able to achieve lane-following using camera images [6].
Navlab completed the first autonomous coast-to-coast
trip across the United States in 1995, traveling 2,849
miles between Pittsburgh and San Diego at an average
speed of 63.8 mph [7]. Another important milestone in
the self-driving vehicle technology was the DARPA Grand
Challenge, which was held three times between 2004
and 2007 [8]. In these races the vehicles were required
to drive autonomously in an off-road course (2004 and
2005) or an urban area course (2007) without any human
intervention. Those tests showed that fully autonomous
off-road driving and fully autonomous urban driving are

technologically possible. Since then, many commercial
companies, startups, and research organizations have
launched their own development of autonomous vehicles.

In order to generate a smooth path for an autonomous
vehicle, Choi et al. [9], [10] presented a series of path
planning algorithms based on Bézier curves. The planned
paths have continuous curvature and satisfy the road
boundary constraints. Ulbrich and Maurer [11] used a
partial observable Markov decision process (POMDP) to
model the decision making for lane changes, and imple-
mented a two-step algorithm in real-time to obtain the
optimal action for an autonomous vehicle in an urban
driving task. Kuwata et al. [4] proposed a real-time path
planning algorithm based on Rapidly-exploring Random
Trees (RRTs). This algorithm was implemented on an
autonomous vehicle which completed a 60 mile simu-
lated military supply mission in the 2007 DARPA Urban
Challenge. A more extensive survey on path planning for
autonomous vehicles can be found in [8], [12].

Other techniques using ideas from artificial intelli-
gence (AI) have also been developed to solve planning
problems. These include supervised learning [13], deep
learning [14] and reinforcement learning [15]. Lange et
al. [16] used a deep neural encoder to extract feature rep-
resentations from the raw visual input of camera images
for a racing vehicle, and successfully learned the optimal
control actions (i.e., steering, accelerating and braking)
using reinforcement learning. The control performance
was even better than an experienced human driver. The
approach in [16] concentrated on improving the driving
performance of a single vehicle without considering the
traffic. Shalev-Schwartz et al. [2] took the traffic into
consideration and divided the planning problem into
two phases. They first modeled the state transition of
the traffic using a deep neural network, such that they
could apply supervised learning to predict the near future
states of the system. Subsequently, they used a recurrent
neural network to model the trajectory and learn the
optimal driving policy of the autonomous vehicle. This
approach does not rely on any Markovian assumption,
and hence it is considered to be robust to the stochastic
behavior of the environment. The learning procedure was
validated using both an adaptive cruise control task and
a roundabout merging task.

This paper proposes a new MDP model to represent
the stochastic behaviors of the environmental vehicles in
highway traffic. This model differs from previous similar



MDP models [17], [18] in the sense that we take the
road geometry into consideration in order to compare
and analyze different driving strategies during cornering.
Another advantage is that the model is easily scalable to
have more vehicles and more lanes in traffic. Unlike the
MDP models of [19] and [18] that need to discretize the
velocity of each vehicle in traffic (which leads to problems
with a large state space), we remove the velocities of the
vehicles from the MDP model and consider them only in
the perception layer or in the control layer.

The rest of the paper is organized as follows: Section II
introduces the traffic model using a stochastic MDP. Sec-
tion III designs the reward function and solves the MDP
problem using Q-learning, and Section IV implements the
RL algorithm, and analyzes the results. Finally, Section V
summarizes the results of this study.

II. TRAFFIC MODELING

In this section we use a Markov decision process (MDP)
[20] to model the interaction between the autonomous
vehicle and the surrounding vehicles in traffic. In the
following sections we use RL to solve this MDP problem
for the optimal policy that achieves the desired driving
behaviors. We start with a brief overview of MDPs.

A. Markov Decision Process

Markov decision processes (MDPs) are used in a wide
area of applications such as robotics, economics, manu-
facturing and automatic control. An MDP is a mathemat-
ical framework that probabilistically models the interac-
tion between an agent and the environment, pioneered
by the work of Bellman [20]. The agent is assumed to be
a learner or decision maker, who interacts with the en-
vironment [15]. It receives a reward and a representation
of the environment’s state at each time step, and exerts
an action on the environment that may change its future
state.

A typical MDP is represented using a 6-tuple
(S, A,T ,γ,D,R), where S is a (finite) set of possible states
that represent a dynamic environment, A is a (finite) set
of available actions that the agent can select at a certain
state 1, T is the state transition probability matrix that
provides the probability of the system transition between
every pair of the states, γ ∈ [0,1) is the discount rate
that guarantees the convergence of total returns, D is the
initial-state distribution, and R is the reward function that
specifies the reward gained at a specific state by taking a
certain action.

The core problem of an MDP is to find a policy π

for the agent, where the policy π : S → A specifies the
action to take at the current state st . The goal is to
find the optimal policy π∗ that maximizes the cumulative

1Without loss of generality we will assume that all actions are available
in each state.

discounted reward over an infinite horizon:

π∗ = argmax
π

E
[ ∞∑

t=0
γt R(st ,π(st ))

]
, (1)

where the term R(st ,π(st )) represents the reward the
agent receives by taking an action determined by policy
π at the present state st .

B. System Modeling

The MDP to be used to model the traffic is based on
the following observations. Consider a typical scenario of
traffic in a multi-lane road, as shown in Figure 1. Each
vehicle moves in the middle of each lane with the average
speed of the traffic flow.

Fig. 1: The traffic on multi-lane road.

Let us now consider the driving behavior of the blue
vehicle in the middle of the red rectangular shown in Fig-
ure 1. There are several actions the blue vehicle can take.
For instance, it can maintain its current speed, accelerate
or brake to occupy the vacant positions ahead of it or
behind it, or move to the left or to the right lane if there
is no chance for a collision. Assuming that each driver
intends to maximize a certain reward function, if one can
obtain the reward function of an “expert/experienced”
driver, one should be able to reproduce this expert driver’s
behaviors using reinforcement learning techniques [15].

In the following, we designate the vehicle we want
to control as the host vehicle (HV), and all remaining
vehicles in traffic as the environmental vehicles (EVs).
We assume that the drivers of different vehicles do not
communicate with one another, and also that the vehicles
do not share data with each other. Hence, the MDP
system has only a single actively controlled agent. The
available action set for each vehicle in traffic is given
by A , {“maintain”, “accelerate”, “brake”,“left-turn”, “right-
turn”}.

1) State Definition: By considering the positions of the
HV, and the number and positions of the EVs around the
HV, we define the state of the MDP as shown in Figure 2.
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Fig. 2: The cells and the definition of the state: 1© 9-cell
internal-lane state, 2© 6-cell left-boundary state and 3©
6-cell right-boundary state

In Figure 2, we use the white dashed lines to divide
the road into small cells and use the green vehicle to
denote the HV. The states of the MDP represent either of
the three conditions shown in Figure 2: 1) the HV is in
the middle lane of the road, where we use nine cells to
represent the state, and 2) and 3) where the HV is next
to the road boundaries and we use six cells to represent
the current state. Taking all possible combinations into
account, the number of the internal-lane states is 28 =
256, and the number of the left(right)-boundary states
is 25 = 32. Hence the total number of the states of the
MDP is 256+2×32 = 320. Note that the approach can be
easily extended to highways with any number of lanes
and vehicles 2.

Figure 3 shows a possible overtaking behavior of the
HV (green car) during a left-turn corner. The HV driver
may prefer overtaking the pink car in front from the
left rather than from the right. In order to investigate
the effect of the road geometry on the observed driving
behaviors of different drivers, in this work we take the
road curvature into account and consider three kinds of
roads, namely, left-turn, right-turn, and straight roads.
The total number of the states is therefore 320×3 = 960.
It is worth mentioning that, although we only consider
three kinds of road geometries, one can, similarly, divide
the road characteristics into more classes, as needed. For
instance, one could also take into account different slopes
of the roads, such as downhill, uphill, flat roads etc.

Fig. 3: Overtaking during cornering.

2The traffic model is also possible to be used for modeling urban
traffic by adjusting the state definition. For instance, the cell size may
be defined to change with the size of each EV and its velocity relative
to the HV.

2) State Transitions: We want to model the state tran-
sition process by mimicking the traffic in real world sce-
narios. To this end, we make the following assumptions:
1) the number of lanes n is free and greater than equal to
two (n ≥ 2), 2) the number of EVs N is free but no larger
than eight, given the cell geometry of Figure 2 (0 ≤ N ≤ 8),
3) the EVs have their own policies that may be different
from the HV, 4) the EVs take a random action, 5) no
collision arises from the actions of the EVs, and 6) each
vehicle takes a single action at each time step.

The state transition procedure from the current state st

to the next state st+1 is given in two steps: First, the HV
observes the current state st and selects an action π(st )
following its current policy. Second, the EVs respond to
the action of the HV, and take an action following their
own policies in a random sequence. The new positions
of the HV and the EVs around the HV define the next
state st+1. This state transition process is demonstrated
in Figure 4.

1 2

Fig. 4: State transition process.

The current state st is defined using the nine cells in
the red rectangular on the left graph in Figure 4. Based
on st , the HV may brake or switch to the right lane
but these actions will result in an collision. The available
safe actions of the HV are maintaining, accelerating and
switching to the left lane. For instance, suppose that the
HV accelerates and occupies the cell in front of it. As a
consequence, the red rectangular also moves since the
EVs surrounding the HV change. Next, all EVs respond
to the action of the HV and take an action following a
certain policy in a random order. The next state st+1 is
obtained after all vehicles complete their actions (see the
red rectangular on the right graph in Figure 4).

III. REINFORCEMENT LEARNING

In this section we design the reward function and
use reinforcement learning techniques to solve the MDP
problem to determine the optimal policy.

A. Reward Function

A widely used approach to design the reward function
is to represent it as a function of some manually chosen
features. These features depend on the action of the
agent and the state of the environment. We use a linear



combination of the features to represent the reward
function [21]–[25]:

R(s, a) = wTΦ(s, a), (2)

where w is the weight vector, and Φ(s, a) is the feature
vector with each component representing a single feature
point in the state-action space. Possible choices of feature
points may be the binary values indicating whether a
certain argument is true or not. In this work we define
the features in Φ(s, a) as follows:

1) Action features. The driver may prefer taking certain
actions than others if he receives a higher reward from
these actions.

2) Position of the HV. It indicates whether the HV
is driving next to the road boundaries. The driver may
prefer to drive in different lanes, depending on the road
geometry.

3) Overtaking strategy. This feature is used to achieve
different overtaking behaviors during cornering. The
driver may have a preference in regards to overtaking the
front car either from the left or from the right.

4) Tailgating. The value of this feature is “true” if the
HV is behind an EV and “false” otherwise.

5) Collision incident. Collision occurs if the HV and a
EV appear in the same cell.

One can design the weight vector w to encourage
or discourage certain features using the given reward
function, and then use reinforcement learning to learn
the corresponding optimal policy by maximizing the total
reward. Another idea is to design the reward function
using a parameterized function approximator such as a
Gaussian process [24], [25] or a DNN [26]. The parameters
of the function approximator are hard to design manually
since they may not be directly related to features that
have clear physical meaning, and hence they can only be
learned from data. This approach is called inverse optimal
control or inverse reinforcement learning [27]. Due to the
lack of the space, in this paper we do not investigate
further the inverse reinforcement learning approach for
decision making.

B. Q-Learning

Q-learning is a typical model-free RL algorithm. It was
first introduced in Watkins’s PhD thesis in 1989 [28].
Different variants of Q-learning were developed to solve
various reinforcement learning problems [29]–[31].

The Q-learning algorithm works directly on the state-
action value Qπ(st , at ), which represents the expected
discounted cumulative reward starting at state st , taking
action at and then following policy π, afterwards. The
update law of the Q values can be expressed as follows
[15], [28],

Q(st , at ) ←Q(st , at )+α
(
Rt +γ max

at+1∈A
Q(st+1, at+1)−Q(st , at )

)
,

(3)

where α ∈ [0,1] is the learning rate (step size), which
determines how much the newly acquired information
overrides the current Q values, and γ ∈ [0,1) is the
discount rate, which describes the importance of future
rewards for the agent.

The Q-learning algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Q-Learning Algorithm

Input: S, A, α, γ, ε, R
Output: Q∗, π∗

1: Q ←Q0
2: Q(sfinal, ·) ← 0
3: Converge ← False
4: while not Converge do
5: s ← s0
6: EpisodeOver ← False
7: while not EpisodeOver do
8: a ← max

a∈A
Q(s, a) (i.e., ε-greedy)

9: s′ ← state after taking action a
10: if s′ ∈ sfinal then
11: EpisodeOver ← True
12: else
13: Q(s, a) ←Q(s, a)+α

(
R(s, a)+γmax

a∈A
Q(s′, a)−Q(s, a)

)
14: s ← s′
15: if Q converges then
16: Converge ← True
17: Q∗ ←Q
18: π∗(s) = max

a∈A
Q∗(s, a)

IV. RESULTS AND ANALYSIS

In this section we implement the previous RL algorithm
on the proposed traffic model and analyze the results.

We show two different driving behaviors using RL,
namely, overtaking and tailgating. To this end, we use
the features defined in Section III and design the weights
w1 and w2 to achieve the two desired driving behaviors,
respectively. The weights are provided in Table I.

The desired driving behavior by designing w1 is to
show overtaking, which can be described as follows:
1) The HV accelerates to occupy the front cell if it is
available; 2) The HV maintains its velocity if there is an
EV in front of it and no overtaking is possible; 3) The
HV overtakes the front EV if only one side is available
for overtaking, by lane-shifting first and then accelerating
and maintaining constant speed; 4) The HV overtakes the
front EV from the inner side of the corner if both the left
and right sides are available; 5) The HV does not change
lane unless for overtaking; 6) The HV does not brake to
occupy the rear cell. 7) No collision is allowed.

The desired driving behavior by designing w2 is to
demonstrate tailgating, which can be described as fol-
lows: 1) The HV maintains its velocity if there is an EV
in front of it; 2) The HV accelerates to occupy the front
cell if it is available and no tailgating occurs by changing
lanes; 3) The HV changes lane to tailgate an EV if there
is no EV in front of it; 4) The HV prefers to tailgate the
vehicle in the lane closer to the inner curb of the road



TABLE I: The selected features and the weights for rein-
forcement learning.

Φ(s, a) w1 Interpretation w2 Interpretation
maintain 0 NA 0 NA
accelerate 0.075 Prefer accelerating 0.05 Prefer accelerating

brake -0.625 Avoid braking -0.5 Avoid braking
left-turn -0.05 Reduce lane-shifting -0.025 Reduce lane-shifting

right-turn -0.05 Reduce lane-shifting -0.025 Reduce lane-shifting
HV position 0 NA 0 NA

overtake 0.05 Prefer inner overtaking 0.025 Prefer inner tailgating
tailgate 0 NA 0.225 Prefer tailgating

collision -0.15 Avoid collision -0.15 Avoid collision

in a corner; 5) The HV does not change lanes unless for
tailgating; 6) The HV does not brake to occupy the rear
cell; 7) No collision is allowed.
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Fig. 5: The convergence performance of the policy π.

We implemented the Q-learning in Algorithm 1 to
learn the optimal policies using both w1 and w2 with
learning rate α = 0.75, discount rate γ = 0.5, and ε =
0.08 for the ε-greedy principle (Line 8 of Algorithm 1).
Figure 5 shows the convergence of the policies π∗

1 and π∗
2

corresponding to w1 and w2, respectively. In both cases,
it takes less than five minutes to obtain the results shown
in Figure 5 on a dual-core 2.27 GHz Intel Xeon processor
running 64-bit Windows 10 Enterprise operating system
and programmed using Python 3.6.

Fig. 6: Overtaking scenarios by implementing π∗
1 .

Next, we implemented the policies π∗
1 and π∗

2 in simu-

lation, and show the overtaking and tailgating behaviors
in Figures 6-7, respectively 3.

The first row of Figure 6 shows a scenario where there
is a vacant space in front of the HV (green). The HV
accelerates to occupy the front space and then maintains
its distance behind the yellow vehicle. The second row
shows a scenario where there is one vehicle in front of
the HV and both the left and right lanes are available for
the HV to overtake the front vehicle. Since the road is
straight, the HV is free to use either the left or the right
lane to complete the overtaking task. One sees from this
figure that the HV first switches to the left lane, and then
accelerates to overtake the front yellow vehicle, which
switches to the right lane, until meeting the blue vehicle
in the front. The third scenario shows one vehicle (red) in
front of the HV, but the right lane of the HV is occupied
by another vehicle (pink). The HV can only use the left
lane to overtake the front vehicle. The last scenario shows
another driving scenario during cornering, which has one
vehicle (cyan) in front of the HV and both the left and
right lanes of the HV are available to use for overtaking.
The HV first switches to the right lane, which is closer to
the inner curb of the corner, and then tries to overtake the
cyan vehicle by accelerating. All these driving behaviors in
the simulation using π∗

1 agree with the desired behaviors.

Fig. 7: The tailgating in simulation by implementing π̂2.

Figure 7 shows four driving scenarios. The first row
shows a driving scenario having a vacant space in front
of the HV, and the HV cannot tailgate any EV by changing
lanes. The HV accelerates to occupy the space behind the
grey vehicle in front of it. The second driving scenario
shows that the HV changes the lane to the left to tailgate
the red vehicle. The third driving scenario is similar to the
second, but it shows a driving behavior during cornering.

3Movies for both overtaking and tailgating by implementing π̂∗1 and
π̂∗2 are available at: https://www.youtube.com/watch?v=I3ecd9DXmBQ
and https://www.youtube.com/watch?v=lVZcRR-Q2PE



The last driving scenario shows that there are two EVs in
front of the HV in the neighboring lanes. By designing
w2 we have constructed a policy π∗

2 to tailgate the EV
closer to the inner curb in a corner. One sees that the
HV changes to the left lane to tailgate the grey vehicle in
a left-turn corner. All these driving behaviors agree with
the desired tailgating behaviors.

V. CONCLUSION

We use a stochastic Markov decision process to model
the traffic, and achieve desired driving behaviors using
reinforcement learning. The definition of the state and
the MDP model are flexible and can be used to model
traffic with any number of lanes and any number of EVs.
We also take the road geometry into consideration such
that the driving policy may change depending on the
road curvature. By designing the driver’s reward function,
we are able to show typical driving behaviors such as
overtaking and tailgating, using the Q-learning algorithm
to learn the corresponding optimal policies. We have
demonstrated these policies using a road with five lanes
and with each EV implementing a random policy.

Future work will focus on refining the traffic model for
vehicles of different sizes and types (e.g., trucks, buses)
having, perhaps, different velocities. Another interesting
future research topic would be to incorporate explicit or
implicit communication between the host vehicle and the
surrounding vehicles in traffic.
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