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Abstract— Numerical optimization has been used as an
extension of vehicle dynamics simulation in order to repro-
duce trajectories and driving techniques used by expert race
drivers and investigate the effects of several vehicle param-
eters in the stability limit operation of the vehicle. In this
work we investigate how different race-driving techniques
may be reproduced by considering different optimization
cost functions. We introduce a bicycle model with suspension
dynamics and study the role of the longitudinal load transfer
in limit vehicle operation, i.e., when the tires operate at
the adhesion limit. Finally we demonstrate that for certain
vehicle configurations the optimal trajectory may include
large slip angles (drifting), which matches the techniques
used by rally-race drivers.

I. I NTRODUCTION

Modelling for simulation and control of automotive
systems has been a subject of intense research in the
literature [1], [2], [3]. This research has led to several
methodologies for simulating vehicle dynamics in order
to evaluate the performance of vehicles, develop new
systems to enhance safety and performance, as well as
to automate several tasks during driving.

Expert race-car drivers operate the vehicles at the limits
of their stability envelope, which makes the role of the
different vehicle parameters involved extremely difficult
to investigate solely by means of numerical simulation.
To this end, numerical optimization techniques have been
used in the literature in order to reproduce trajectories
and driving techniques similar to those of expert race
car drivers. In [4] the numerical solution of theoptimal
time problem for a car driving through a segment of the
Suzuka F1 circuit has been presented. An accurate 3D
description of the road is used which even includes bank.
The car model used is over-simplified however, as the
vehicle is regarded as a particle. Another approach for
the numerical optimization problem is presented in [5].
The constraint of the road is included as an additional
term in the cost function, while a comprehensive 4-wheel
car model, including nonlinear tire friction, load transfer,
aerodynamic forces and driveline constraints is used. In
[6] the authors have solved a similar optimization problem
as in [5] using an equally rich car model and a more
efficient optimization algorithm. In addition, the role of
yaw inertia was studied in that reference. In [7] the
authors presented the optimal time solution for the Suzuka
and Barcelona F1 circuits and studied the influence of
vehicle mass to the optimal trajectory.

A common factor of all the work in the literature to

date is that race driving is assumed to be equivalent to
driving in minimum time through the whole path. This
is true in cases such as F1 time trials, where drivers
have driven through the whole circuit several times before
the final race, trying to optimize their path in order to
achieve the best overall lap time. Similarly, in rally racing
the driver again has to follow a path in minimum time.
However, in off-terrain rally-races extensive trials do not
necessarily take place, and the driver is expected to react
in unpredictable and changing environments during the
actual race. This is in contrast to the controlled environ-
ment of F1 circuit races. Rally-race drivers typically drive
through trajectories that will allow them to react faster to
any unpredictable hazard or road formation. For instance,
tight corners are typically negotiated in such a way that
the car is already aligned to the following road segment
well before the exit of the corner, thus allowing the driver
to plan ahead sooner. This often means that the driver
induces drifting. In case when a straight path follows the
corner, the driver is able to fully accelerate the car while
still in the corner, thus maximizing the velocity at the exit
of the corner.

In this work we reproduce several race-driving be-
haviors by considering several cases of cost functions
in the numerical optimization scheme. In the following
we introduce a half-car (bicycle) model with suspension
dynamics. The problem of driving through a90 deg
corner is formulated as a problem in optimal control. We
consider two cases for the optimization cost. In the first
case we minimize time of travel (in accordance to the
literature), and in the second we maximize the velocity
of the car at the exit of the corner. Each scenario is
calculated twice, with and without suspension dynamics
in order to analyze the effects of the dynamic longitudinal
normal load transfer. Finally we present a maneuver with
maximum exit velocity from a corner with a different ve-
hicle configuration, using reduced lateral tire friction and
weight balance of a neutral-steering vehicle. The optimal
solution includes large slip angles which resembles the
way rally-race drivers perform.

II. DYNAMICS OF A HALF-CAR MODEL

In this work vehicle dynamics are modelled using the
typical assumptions for a half-car model [1], [2], [3].
Non-linear tire characteristics are taken into consideration
by the use of Pacejka’s “Magic Formula” tire model
[8]. Suspension dynamics are typically neglected in the



literature, especially when F1 cars with stiff suspensions
are considered [6], [7]. In commercial passenger vehicles
and especially off-road vehicles “softer” suspensions are
used for passenger comfort and chassis longevity. In this
paper we include the dynamics of the suspension system
in our vehicle modelling, which allows a more realistic
expression for the longitudinal normal load transfer com-
pared to the approximation in [6], [7]. Most importantly,
it allows us to investigate the role of the suspension
parameters in limit operation of the vehicle.

A. Equations of Motion

The equations of motion of the half-car model, shown
in Fig. 1, are given below.
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Fig. 1. Bicycle Model

mẍ = fFx cos(ψ + δ) − fFy sin(ψ + δ)

+ fRx cos ψ − fRy sinψ (1)

mÿ = fFx sin(ψ + δ) + fFy cos(ψ + δ)

+ fRx sin ψ + fRy cos ψ (2)

Izψ̈ = (fFy cos δ + fFx sin δ) `F − fRy`R (3)

Iiω̇i = Ti − fixr (i = F,R). (4)

In the above equationsm is the vehicle’s mass,Iz is the
polar moment of inertia of the vehicle,Ii (i = F,R)
are the moments of inertia of the front and rear wheels
about the axis of rotation respectively,r is the radius of
each wheel, andx andy are the cartesian coordinates of
the C.G. in the inertial frame of reference.ψ is the yaw
angle of the vehicle andωi (i = F,R) is the angular
rate of the front and rear wheel respectively. Byfji

(j = x, y, i = F,R) we denote the longitudinal and
lateral friction of the front and rear wheels, respectively.
In this model the inputs are the driving/braking torques
TF and TR at the front and rear wheels respectively,
and δ is the steering angle of the front wheel. Engine,
transmission and brake dynamics have been neglected. We
have assumed that the longitudinal control inputs of the
vehicle are the two independent torques on each wheel.
However, in reality the control inputs for an automobile
is the acceleration pedal and the brake pedal. Thus, the
input torques of each wheel are coupled. On the other
hand, several race driving techniques, such as “hand-
brake cornering” (braking of the rear axle only) and “left
foot braking” (simultaneous use of brakes and gas pedal
varying the torque balance between front and rear axles),

do allow some independence on the longitudinal control
of each axle [9].

B. Tire Friction

Tire friction forces are calculated using Pacejka’s
“Magic Formula” model. This is a static, slip-based,
tire friction model for combined longitudinal and lateral
motion of the tire [8]. The friction forces in this model
are calculated as follows. First, we define the “total slip”
of the wheel as follows

si =
√

s2

ix + s2

iy (i = F,R), (5)

wheresix is the longitudinal andsiy is the lateral slip of
the i wheel. We then calculate the friction force for the
“total slip” using the “Magic Formula”

Fi = FizD sin(Catan(Bsi)) (i = F,R). (6)

Finally, the longitudinal and lateral friction forces are
given by

fij = cj

sij

si

Fi (i = F,R and j = x, y), (7)

where the factorcj is incorporated in cases of tires with
different friction limits along the longitudinal and lateral
directions. In casecx = cy = 1 the total tire friction
force lies within a circle in thefix – fiy plane, while for
cx 6= cy the force lies within an ellipse.
The self-aligning torqueMz is neglected, as it is typically
done in the literature [5], [6], [7].

C. Suspension Dynamics

Let z be the vertical displacement of the center of
gravity of the vehicle andθ the pitch angle of the
suspended mass as in Fig. 2. The dynamics of the vertical
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Fig. 2. Suspension Dynamics

and pitching motion of the suspended mass are described
by the following equations.

mz̈ = fFz + fRz − mg (8)

Iy θ̈ = fRz`R cos θ − fFz`F cos θ

− ΣfRx

(

h + z
)

− ΣfFx

(

h + z
)

, (9)

where,Iy is the moment of inertia of the vehicle about
the center of gravity and they body axis. By h we
denote the vertical distance of the C.G. from the ground
in an equilibrium state wherez = 0. By fiz (i = F,R)
we denote the normal load forces at the front and rear
axle respectively and byΣfix (i = F,R) we denote the



projection of the total friction force of each wheel on the
x longitudinal body axis. In addition,

ΣfRx = fRx and ΣfFx = fFx cos δ − fFy sin δ. (10)

Given the vertical displacement of the C.G.z, and the
pitch angleθ, and their rates of change, the normal load
of each wheel is given by

fFz = mg
`R

`F + `R

− KF ∆zF − CF
˙∆zF , (11)

fRz = mg
`F

`F + `R

− KR∆zR − CR
˙∆zR, (12)

where

∆zR = z + `R sin θ, ∆zF = z − `F sin θ,
˙∆zR = ż + `R cos θ θ̇, ˙∆zF = ż − `F cos θ θ̇.

III. O PTIMAL CONTROL FORMULATION

In this section we formulate the problems of minimum
time and maximum exit velocity through a corner of a
vehicle as problems in optimal control. We consider a
90 deg corner, which the vehicle has to negotiate (Fig. 3).
The system dynamics have been derived in the previous
sections and are given by equations (1)-(??), (8) and (9).
In order to formulate the optimal control problem, it is
necessary to define the cost function to be optimized,
and specify all state/control constraints and boundary
conditions.

A. Cost Function

For the time minimization problem the cost function is
given by

J = tf . (13)

For the exit velocity maximization problem the cost
function is given by

J = −
√

ẋ2

f + ẏ2

f . (14)

B. State and Control Constraints

The state constraint for the90 deg corner is shown in
Fig. 3 and can be described by the following inequality

8 ≤
√

x2 + y2 ≤ 10 when x ≥ 0 and y ≥ 0. (15)

The state constraint above applies to the C.G. of the
vehicle. Two straight segments of5m each have been
added before and after the corner so that the car enters
the corner after travelling straight, and exits the corner in
a posture that will lead again to straight travel.

The control inputs are the accelerating/braking torques
TF and TR of each axle and the steering angleδ. In
order to take into consideration the limited power that is
provided by the engine, transmission and braking systems,
as well as the physical limits of the steering mechanism,
we choose the following control constraints

−1000Nm ≤ Ti ≤ 1000Nm (i = F,R), (16)

−0.7 rad ≤ δ ≤ 0.7 rad. (17)
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Fig. 3. State constraint for the90◦ corner

C. Boundary Conditions

The boundary conditions are summarized in Table I.
These conditions guarantee that the vehicle travels straight
before and after the corner, i.e., there is zero lateral
velocity, yaw velocity and slip angleβ at t = 0 and
t = tf . The initial and final position of the car is within
the width of the road. The final time and the longitudinal
velocity at tf are left free. The suspension statesz, ż, θ
and θ̇ initially take their equilibrium values and are left
free at final time. The initial longitudinal velocity is fixed,
in order to minimize the number of free variables and
make convergence easier. In the case of time minimization
we chooseẋ = 10 m/sec, while in the case of exit
velocity we choosėx = 8 m/sec. In both cases we have
chosen the highest values of initial velocities that allow
convergence of the optimization algorithm. Initial values
for ωi (i = F,R), are such that zero slip is produced
initially while the final values are left free.

TABLE I

BOUNDARY CONDITIONS

Position Attitude Velocities Suspension
x0 = −5 ψ0 = 0 ẏ0 = 0 z0 = 0

8 ≤ y0 ≤ 10 ψf = −π
2

ẋf = 0 ż0 = 0
8 ≤ xf ≤ 10 ψ̇0 = 0 θ0 = 0

yf = −5 ψ̇f = 0 θ̇0 = 0

D. Optimization Algorithm

The optimal control problem is solved numerically
using EZOPT, a direct optimization software available
by Analytical Mechanics Associates Inc., which uses
collocation to transcribe an optimal control problem to a
nonlinear programming problem. It provides a gateway to
NPSOL, a nonlinear optimization program (for details see
[10]). The optimization algorithm involves discretization
of the independent variable (time). The control inputs
are approximated with constant functions for each time
interval. The user is required to provide the system’s
dynamics, the cost to be optimized, state constraints,
boundary conditions and an initial guess for the optimal
control inputs and states time history. The convergence of
the algorithm depends on the complexity of the problem
and the accuracy of the initial guess.

We have chosen time to be the independent variable
resulting in an optimal control problem of free “final
time”. In [5], [6] and [7] time is replaced by travelled



distance as the independent variable resulting in a fixed
“final time” optimal control problem, which is easier to
converge numerically to a solution. However this change
of variable results in a singularity when the vehicle travels
with large slip angles. While such a scenario is never
encountered in F1 racing, it is very common in rally-
racing where drivers often drift through corners at large
slip angles. This justifies the choice of the independent
variable in this work.

IV. N UMERICAL OPTIMIZATION RESULTS

In this section we discuss the numerical solution (tra-
jectory, states and control inputs) of the optimal cornering
problem for minimum time of travel and maximum exit
velocity. Two extreme cases for the vertical position of
the C.G. are taken into consideration (h = 1m and
h = 0m) for each case of the optimization cost in order to
investigate the effects of the suspension dynamics and lon-
gitudinal load transfer. In the caseh = 0m the suspension
dynamics are not included in the overall vehicle dynamics
and no load transfer occurs. The longitudinal position of
the C.G. is chosen to be slightly towards the rear of the
vehicle, resulting in a slight over-steering (more agile but
unstable configuration) vehicle. The tire friction capacity
is equal along the longitudinal and lateral directions, i.e.,
the tire friction force lies within a friction circle.

A. Minimum Time Case

Figures 4, 5, 6 and 7 completely describe the optimal
solution for the minimum time problem. Figure 4 shows
the time histories of each state of the system provided di-
rectly from the optimization algorithm. Figure 5(i) shows
the optimal control inputs. Figure 5(ii) shows the magni-
tude of the velocity vector versus time, the acceleration
of the vehicle with respect to the inertial frame along the
longitudinal body axis and the radius of the trajectory.
The longitudinal acceleration along with the height of
the center of gravity is the cause for the longitudinal
normal load transfer; acceleration of the vehicle causes
load transfer from the front axle to the rear (this may
be verified by observing the longitudinal acceleration
and normal load plots of Fig. 5(ii), (iii) and (iv)). The
radius of trajectory is calculated using the formula for
the centripetal force,Fc = mv2/R.

In Fig. 6 we have the longitudinal, lateral and total
friction coefficients of the front and rear tires (with a tire
saturation level of0.7), and finally in Fig. 5(iii) and (iv)
we have the time history of the longitudinal and lateral
components of the friction forces in the front and rear
tires. Finally in Fig. 7 we present the trajectories for the
optimal time problem, for both cases ofh = 1m and
h = 0.

1) Trajectory: The trajectory in the case of time min-
imization (Fig. 5(ii) and 7) consists of a circular arc of
(almost) constant radius (0.5 sec ≤ t ≤ 1.8 sec), through
which the vehicle performs a steady-state cornering (ψ̈ ≈
0, δ̇ ≈ 0) as defined in [2] and [3], and two transients
(t ≤ 0.5 sec and 1.8 sec ≤ t) since the boundary
conditions enforce that the vehicle enters and exits the

corner travelling straight. The bigger the radius of the
trajectory the higher is the velocity that the vehicle can
drive through the corner for a given maximum centrifugal
force (determined by the tire friction limits).

However, observing Figs 4 and 7 we notice that the
vehicle doesnot enter or exit the corner at the limit of
the state constraint. This means that there may exist a
trajectory of bigger radius. This trajectory would allow
the car to drive through the corner with higher speed,
but the distance travelled would also be greater. Such a
trajectory may not necessarily minimize time.

In conclusion, the optimal trajectory in the case of time
minimization tends to a single circular arc with such a ra-
dius that compromises between the highest possible travel
speed and the shortest distance travelled. No significant
differences can be observed between the trajectory with
h = 1m and the one withh = 0m (Fig. 7), and thus no
conclusions about the role of suspension dynamics and
load transfer may be derived taking into account only the
shape of the trajectory.

2) Control History and Response: Figure 5 shows the
control input history. We observe that the steering angle
δ has initially a negative value, up tot ≈ 1 sec. This
creates immediately a lateral friction force on the front
wheel (see Fig. 5(iii)). This initial lateral friction serves
two purposes. The first is that it operates as a centrifugal
force for the vehicle, and the second is that it initiates the
yawing motion of the car. This yawing motion results in
a lateral motion of the rear wheel of the vehicle; thus,
a lateral slip and lateral friction (which contributes to
the total centripetal force) is also generated at the rear
wheel. We observe that the steering angle is gradually
reduced, and actually at aroundt = 2 sec it changes its
sign (“opposite lock”). This is done in order to decelerate
the yawing motion and eventually eliminate it altogether
by the time the car exits the corner. We observe that there
is some overshoot about the desired final yaw angle and
the steering angle changes again its sign at the end.

We also observe that the input torque of the rear
wheel is initially (t < 1sec) such that a braking friction
force is generated in order to regulate the speed of the
car to a value that makes it possible for the car to
follow the optimal trajectory. Recall that the trajectory
gradually increases its curvature and thus the maximum
possible velocity through the trajectory is decreasing. The
longitudinal slip of the front wheel generates an acceler-
ating friction force which compensates for the braking
component of the front wheel lateral friction force. The
situation where the front wheel is accelerating while the
rear wheel is braking is possible via a simultaneous use
of handbrake and throttle. This is a standard maneuver
performed by expert race drivers of off-road vehicles [9].

Notice from Fig. 6 that the total friction generated
by the front tire is equal to the tire’s force capacity. In
case the front tire is not saturated by lateral force, an
accelerating longitudinal force is generated to make use
of the total force capacity of the tire. As far as the friction
generated by the rear tire, observing Fig. 6 we notice
that it is also most of the times equal to its maximum.



Nonetheless, we observe that the friction of the rear tire
is not maximum att ≥ 2.25sec. Since the car is at the
exit of the corner, one would expect that there should be
maximum acceleration. However, at this point the front
wheel is saturated with lateral friction in order to stop
the yawing motion. More acceleration (whichis available
since the driven rear tire is not saturated) would require
more effort from the front tire to stop the yawing motion;
such an effort in this case isnot available, however.

Although we were not able to distinguish any differ-
ences in the two trajectories in Fig. 7, it is clear from
Fig. 5(ii) that the radius of the trajectory forh = 0m
is smaller from the one forh = 1m except from the
first 0.5 sec that the opposite holds. The magnitude of the
velocity, again from Fig. 5(ii) is also in accordance to the
difference in radius, since higher velocities are possible
for higher values of trajectory radii. In fact, for the case of
h = 0m we observe an initial acceleration from the initial
speed and then deceleration in the first0.5 sec. From then
on the velocity and trajectory radius are higher for the
h = 1m case.
In theh = 1m case, where the suspension dynamics and
load transfer effects are active, the initial accelerationis
avoided because this would result in load transfer from
the front axle to the rear axle, making the front wheel
(which initiates cornering) produce less friction force.
The front wheel is “more important” at the beginning
of cornering, because it is the one initiating centripetal
forces and yawing moments. The rear wheel becomes
“more important” at the exit of the corner because it
provides yaw damping. In bothh = 1m and h = 0m
cases we have deceleration until the apex of the corner
end then acceleration towards the exit. In theh = 1m
case acceleration results in normal load transfer to the
rear wheel, and thus greater yaw damping by the rear
wheel, together with less effort from the front wheel to
stop the yawing motion. In theh = 0m case there is no
change in the normal load distribution to front and rear
axles. The front wheel is saturated with lateral friction in
order to stop the yawing motion, which does not allow
higher travel speed. The only way for the vehicle in the
h = 0m case to compensate for this loss of speed at the
exit is to gain some time at the entry (first0.5 sec).

The fact that in theh = 1m case the trajectory radius
is higher aftert = 0.5 sec results in less steering angleδ
as we can see in Fig. 5 (i). We also observe more torque
applied to the rear wheel and less to the front toward the
exit of the corner. This is related to the fact that the load
transfer makes the rear wheel “heavier” (and respectively
the front wheel “lighter”), implying that higher torque is
needed to accelerate it.

B. Maximum Exit Velocity Case

In this section we investigate the maximum exit veloc-
ity solution. For brevity we omit the suspension dynamics
and only consider theh = 0m case. In Fig. 8 we
present the optimal control inputs and the trajectory of the
vehicle for the new optimization cost. The exit velocity
is about13m/sec, while in the minimum time case that
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Fig. 4. Minimum time solution, states
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Fig. 5. Minimum time solution, inputs, absolute velocity, longitudinal
acceleration, trajectory radius and wheel forces

was11.5m/sec. The travel time is now3.4 sec while in
the minimum time case that was2.49 sec.

The trajectory in the case of exit velocity maximization
is different and more complex compared to the case
of time minimization. Since time is not minimized, the
distance travelled does not need to be minimal, allowing
the trajectory to reach the outer boundary of the corner
and then aim at the inner boundary close to the exit. This
results in a maximum radius trajectory at the exit of the
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Fig. 7. Minimum time solution, trajectories

corner. As a result, the vehicle can accelerate while still
in the corner, thus maximizing its exit velocity.

We also notice a pattern of an initially short turn to the
opposite direction of the corner (call it the transitional part
of the trajectory). Here, the car doesnot travel initially
along the outer boundary of the corner. Instead, the initial
position is clearly inside the road boundary and a turn to
the opposite direction of the corner is necessary for the
vehicle to reach the outer edge of the road. This allows
yaw acceleration to develop and make the transit to the
last part of the trajectory (the part of big radius) smoother,
without the need of a large deceleration. In other words, if
the car was travelling straight along the outer edge of the
road until the point that the final segment of the trajectory
starts, a sharp turn would be necessary, as well as a hard
deceleration in order to negotiate the impeding sharp turn.

Finally, we present the results of yet another optimiza-
tion scenario shown in Fig. 9, which corresponds to the
exit velocity maximization case (h = 0m) with a different
vehicle configuration. For this scenario we have chosen
a neutral-steering weight balance (50% on the front axle
and50% on the rear). We have also chosen reduced lateral
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Fig. 9. Drifting through a corner.

tire friction incorporating a friction ellipse, which is more
realistic than the friction circle ([3]). The new weight
balance configuration (along with equal tire characteristics
for front and rear axles) implies that saturation of the
front and rear wheels with lateral friction will occur
simultaneously [3]. Thus, large vehicle slip angles are not
accompanied by uncontrollable oversteer or understeer,
where path following capacity is lost, and result in a stable
vehicle drift (see Fig. 9, for2.3 sec ≤ t ≤ 3.8 sec).

V. CONCLUSIONS

In this paper we have investigated how one may repro-
duce race driving behaviors using numerical optimization
techniques. All types of car races are not the same, and
driving through each segment of the circuit in the shortest
time is not always the best strategy. Any motor-sports
fun can distinguish between the smooth trajectories and
small slip angles used in F1 driving in contrast to the
more complex trajectories and drifting techniques in rally-
race driving. We have shown that both behaviors may
be reproduced by considering an optimization scheme, as
long as the cost function is chosen in accordance to the
specific needs of each type of race. A half-car model with
suspension dynamics was used to investigate the effects
of longitudinal normal load transfer in the limit operation
of the vehicle.
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