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1. INTRODUCTION

Refueling is an important aspect of on-orbit servicing oper-

ations, because of the immense benefits that can be obtained

by extending the useful lifetime of the spacecraft, by increasing

the flexibility of space missions, and by reducing the overall

cost of space operations. The conventional notion about

on-orbit refueling of a system of multiple satellites is to have

a dedicated refueling spacecraft visit the satellites, and impart

fuel to them. Alternatively, in the absence of an external refuel-

ing spacecraft, satellites with a large amount of fuel may

exchange fuel with fuel-deficient satellites, so that, at the end

of the process, all satellites have at least the required amount

of fuel. This is known as the Peer-to-Peer (P2P) refueling strat-

egy, (Shen and Tsiotras, 2005). The P2P strategy is an integral

part of the mixed refueling strategy, during which the dedicated

refueling spacecraft only refuels part (at least half ) of the

satellites, which in turn distribute the fuel to the remaining sat-

ellites via P2P refueling. In terms of the fuel expended during

all orbital transfers taking place during a refueling process, the

mixed refueling strategy is better than the conventional strat-

egy, particularly as the number of satellites in the constellation

increases and the time to complete the refueling decreases

(Dutta and Tsiotras, 2006).

In this paper, we focus on the P2P strategy, as described in

Dutta and Tsiotras (2008). Given are n satellites distributed

over n slots in a circular orbit. Each satellite is denoted as

either fuel-deficient, or fuel-sufficient. This depends on

whether the satellite has at least the minimum required

amount of fuel. The idea put forward in Dutta and Tsiotras

(2008) is that the satellites can redistribute the fuel among

themselves by engaging in fuel exchange in pairs. For each

pair, a satellite moves (performs an orbital transfer) to rendez-

vous with another satellite, exchanges fuel, and returns back to

any available slot. We say that a pair of satellites is feasible

when (i) the pair consists of a fuel-sufficient satellite and a fuel-

deficient satellite, and (ii) the amount of fuel carried by the two

satellites of the pair can be redistributed among them in a way
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such that each satellite of the pair has at least the required

amount of fuel at the end of the refueling process. We

assume that the satellites can only engage in a non-cooperative

rendezvous, that is, only one of the satellites in a feasible pair is

active and initiates the orbital transfer necessary to rendezvous.

Associated with a feasible pair of satellites is also a set of

orbital slots where the active satellite can return to. The goal

of the P2P refueling problem is to decide which satellites pair

up for feasible fuel exchanges, and which positions the active

satellites return to, in order to minimize fuel costs. Note that

an active satellite can return to any vacant orbital slot, and

not necessarily to its original slot. We call this problem the

Egalitarian-P2P (E-P2P) refueling strategy, see Dutta and

Tsiotras (2008).

The purpose of this note is twofold: First, to establish the

computational complexity of the E-P2P refueling problem,

and second, to show that the size of the instances that occur

in practice allow using a state-of-the-art integer programming

solver to solve these instances to optimality.

2. PROBLEM STATEMENT

Let us consider a system of n satellites, distributed over n slots in a

circular orbit. For the sake of simplicity, we consider that satellite

si occupies the slot fi, for all i [ f1; 2; . . . ; ng. The task of redis-

tributing fuel is now accomplished by considering maneuvers of

the satellites that we represent by an ordered triple (i, j, k): this

means that satellite si at position fi moves to rendezvous with sat-

ellite sj at position fj, and after undergoing a fuel exchange, sat-

ellite si moves to position fk (while satellite sj stays at position

fj). Clearly, we only take into account those triples that

contain a feasible pair of satellites. Observe that the maneuvering

satellite can be fuel-sufficient (in which case this satellite will

donate fuel to its companion) or fuel-deficient (in which case

the satellite will receive fuel from its companion). There is a

given cost-coefficient c(i, j, k) associated with each triple.

These cost-coefficients correspond to the amount of fuel

expended during the orbital transfers. Notice that c(i, j, k)

depends on a number of aspects, such as the angle of separation

of the satellites, the mass and engine of the maneuvering satellite,

etc. Notice also that it might happen that the amount of fuel of the

two satellites making up the feasible pair is not sufficient for the

moving satellite to reach some position fk with enough fuel to be

sufficient. In that case, the coefficient c(i, j, k) simply takes on a

large value. We come back to this issue of fuel cost extensively

further in this section. The goal is to find triples (i, j, k) such that:

(i) each satellite is in at most one triple,

(ii) each satellite that is fuel-deficient is in at least one triple

with a fuel-sufficient satellite,

(iii) at the end of the refueling process, each position is occu-

pied by exactly one satellite, and

(iv) the total fuel costs are minimal.

The above is a mathematical statement of the E-P2P refueling

problem, and a set of triples that satisfies (i), (ii), and (iii) is said

to be a feasible solution to the problem. Clearly, for a solution

to exist, the number of fuel-deficient satellites should not

exceed the number of fuel-sufficient satellites.

Recall that we allow explicitly for a satellite to end its move-

ment in a position that is different from its starting position.

Clearly, one could restrict the solutions to be such that the start-

ing and ending slots are identical, that is, fi ¼ fk. Although

this would make the problem easy to solve (see Section 3), it

has been illustrated that this might lead to suboptimal solutions,

i.e., solutions with a larger than necessary fuel cost (Dutta and

Tsiotras, 2008).

Let us consider a triple (i, j, k) and the associated cost c(i, j,

k). The movement of the active satellite si consists of two trips:

the forward trip, when it moves from its position fi to another

position fj harboring satellite sj, and the return trip, where sat-

ellite si travels from position fj to position fk. Let pi
ij denote the

fuel expended by the satellite si when it transfers from slot fi to

slot fj. The fuel consumed by satellite i in the first part can then

be expressed as (see Dutta and Tsiotras (2008)):

pi
ij ¼ ðmsi þ f�i Þð1� e�DVij=g0IspiÞ; ð1Þ

where msi refers to the mass of the permanent structure of sat-

ellite si ð1 � i � nÞ (fuel not included), f�i refers to the initial

amount of fuel present in satellite si, Ispi refers to the specific

impulse of the engine of satellite si, DVij is the velocity

change required to transfer from orbital slot fi to slot fj, for

each ordered pair of positions fi and fj, ð1 � i; j � nÞ, and

g0 is a constant denoting the acceleration due to gravity at the

Earth’s surface.

In order to express the fuel consumption of an active satellite

si in the second part of its maneuver, we need to know how

much fuel is present in satellite si after the exchange. This quan-

tity is chosen such that the amount of fuel present in the active

satellite at the completion of its return to position fk is the

minimum amount needed in order to keep itself operational

for the remaining lifetime of the satellite. (This follows from

the fact that there is no point in moving fuel (mass) which is

not needed.) Now, by letting pi
jk stand for the fuel consumption

of satellite si when traveling from position fj to position fk, we

can write down the following equation:

pi
jk ¼ ðmsi þ f

i
þ pi

jkÞð1� e�DV jk=g0IspiÞ; ð2Þ

where f
i
refers to the amount of fuel required for satellite si after

it has reached its position following the exchange.

Solving this equation for pi
jk gives:

pi
jk ¼ ðmsi þ f

i
ÞðeDV jk=g0Ispi � 1Þ: ð3Þ
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Summing equations (1) and (3), we derive an explicit

expression for the cost-coefficients c(i, j, k):

cði; j; kÞ ¼ pi
ij þ pi

jk ¼ msiðeDV jk=g0Ispi � e�DVij=g0IspiÞ

þ f�i ð1� e�DVij=g0IspiÞ þ f
i
ðeDV jk=g0Ispi � 1Þ: ð4Þ

The problem of E-P2P refueling seeks to find the set of feas-

ible triples which minimize the total fuel cost. In order to

analyze the computational complexity of the problem, we

now describe precisely what constitutes the input to

the E-P2P refueling decision problem. For each satellite si

(i [ f1; 2; . . . ; ngÞ the associated data of the problem are

msi; f
�
i ; Ispi, and f

i
. For each pair of positions fi;fj where

i; j [ f1; 2; . . . ; ng, the associated input data is DVij, the total

velocity change required to go from position fi to position

fj. Finally, L is an integer, denoting an upper bound on the

total fuel cost of a solution.

Given this input, the decision version of the E-P2P refueling

problem seeks to find the answer to the following question:

Does there exist a feasible set of triples such that the sum-

mation of the total fuel costs (as expressed by (4)) does not

exceed L?

3. THE COMPLEXITY OF SATELLITE PEER-TO-PEER
REFUELING PROBLEM

Computational complexity is a field that attempts to establish

the hardness of optimization problems. We refer to Garey and

Johnson (1979) for a classical introduction.

In this section we prove that the E-P2P refueling problem is

NP-hard, by exhibiting a reduction from a special 3-

dimensional assignment problem, i.e. the 3-dimensional axial

assignment problem with decomposable costs (3AP-DC),

which was introduced in, and proven to be NP-hard by

Burkard et al. (1996). This implies that it is unlikely (unless

P ¼ NP) that a polynomial time algorithm for this problem

exists.

Problem: [3-dimensional assignment with decomposable

coefficients (3AP-DC)]

Input: 3q nonnegative numbers ai, bi and ci, for

i ¼ 1; 2; . . . ; q and an integer K.

Question: do there exist two permutations

p : f1; 2; . . . ; qg 7! f1; 2; . . . ; qg and s : f1; 2; . . . ; qg 7!
f1; 2; . . . ; qg such that

Pq
i¼1 aibpðiÞcsðiÞ � K?

We now show that the E-P2P is at least as hard as the

3AP-DC. To this end, we build an instance of the E-P2P

problem that consists of q fuel-sufficient satellites (indexed by

i ¼ 1; 2; . . . ; q), as well as q fuel-deficient satellites (indexed by

i ¼ qþ 1; qþ 2; . . . ; 2q). Hence n :¼ 2q. We now specify all

input parameters (see Section 2), using the symbol M for

some large value. For each satellite si ði ¼ 1; . . . ; nÞ, we set:

f�i :¼ M; Ispi :¼ 1:

For each fuel-sufficient satellite si ði ¼ 1; 2; . . . ; qÞ, we set:

f
i
:¼ 0; msi :¼ ai:

For each fuel-deficient satellite si ði ¼ qþ 1; qþ 2; . . . ; 2qÞ,
we set:

f
i
:¼ M þ 1; msi :¼ M:

For each pair of positions ðfi;fjÞ where position fi harbors

a fuel-sufficient satellite ð1 � i � qÞ, and position fj harbors a

fuel-deficient satellite ðqþ 1 � j � 2qÞ, we set

DVij :¼ 0; and DV ji :¼ g0lnðbjci þ 1Þ: ð5Þ

Finally, we set L :¼ K.

This completes the description of the instance of the E-P2P

refueling problem. Notice that we have allowed for non-

symmetric DVij values.

We now argue that there exists a 1-to-1 correspondence

between yes-instances of 3AP-DC and the E-P2P refueling

problem. Suppose that the instance of 3AP-DC admits a yes-

answer, i.e., there exist permutations p and s such thatPq
i¼1 aibpðiÞcsðiÞ � K. Then we simply copy that solution to

the E-P2P refueling problem: fuel-sufficient satellite si

(1 � i � q) moves to fuel-deficient satellite sqþpðiÞ, and after-

wards returns to position fsðiÞ. The costs of these movements

follow from substituting the values given above in (4),

leading to

cði; j; kÞ ¼ msiðeDV jk=g0Ispi � e�DVij=g0IspiÞ

þ f�i ð1� e�DVij=g0IspiÞ þ f
i
ðeDV jk=g0Ispi � 1Þ

¼ aiðelnðbpðiÞþqcsðiÞþ1Þ � 1Þ ¼ aibpðiÞcsðiÞ:

Hence, if there exist permutations p and s such thatPq
i¼1 aibpðiÞcsðiÞ � K, then there exists a solution with cost

bounded by L for the E-P2P refueling problem.

Suppose now that the instance of the E-P2P problem has a

solution with a cost no more than L. Notice that the fuel-

deficient satellites cannot move due to their large mass

msi ¼ M; moving any fuel deficient satellite would lead to

costs exceeding L. Thus, we can define the permutation p by

inspecting which fuel sufficient satellite si visits which fuel

deficient satellite spðiÞ where pðiÞ :¼ j� q, and we can find

the permutation s by verifying to which position fsðiÞ :¼ fk

each satellite si returns. The resulting solution to 3AP-DC

will have cost no more than K. All this leads to:

Theorem 1 The Egalitarian Peer-to-Peer refueling problem

is NP-hard.

Clearly, the difficulty of the E-P2P problem changes when we

restrict the solutions such that each satellite si must return to its
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original position fi, ð1 � i � nÞ. The costs then simplify to:

cði; j; iÞ ¼ pi
ij þ pi

ji ¼ msiðeDV ji=g0Ispi � e�DVij=g0IspiÞ

þ f�i ð1� e�DVij=g0IspiÞ þ f
i
ðeDV ji=g0Ispi � 1Þ;

and no longer depend on k. Hence, by modeling the resulting

problem as an assignment problem (see, for example, Shen and

Tsiotras (2005); Dutta and Tsiotras (2006)) with costs

dði; jÞ ¼ minðcði; j; iÞ; cð j; i; jÞÞ between the fuel sufficient satel-

lites si and the fuel deficient satellites sj, it is clear that efficient

algorithms exist (see Burkard et al. (2009)) for this special case

of the problem.

4. COMPUTATIONAL RESULTS USING AN INTEGER
PROGRAMMING FORMULATION

Let us now write down an integer programming model for the

E-P2P refueling problem. To simplify notation, we use FD (FS)

to denote the set of indices of fuel-deficient (fuel-sufficient)

satellites. We let S ; FD < FS stand for the set of all satellites.

We use a decision variable

xijk :¼ 1
if satellite si moves to satellite sj

and ends up in position fk;
0 otherwise:

8<
:

Recall that we only define variables for those triples that

contain a feasible pair, and whose corresponding maneuver is

called feasible in Dutta and Tsiotras (2008); for instance, vari-

ables of the form xijj do not exist.

We therefore have the following optimization problem for

solving the E-P2P problem:

min
X

i;j[S

Xn

k¼1
cði; j; kÞxijk ð6Þ

s:t:
X

j[FS

X
k

xjik þ
X

j[FS

X
k

xijk ¼ 1

for all i [ FD
ð7Þ

X
j[FD

X
k

xijk þ
X

j[FD

X
k

x jik � 1

for all i [ FS
ð8Þ

X
i[S

X
j[S

xijk �
X

j[S

X
‘[S

xkj‘ � 0 for all k ð9Þ

xijk [ f0; 1g for all i; j; k: ð10Þ

Notice that:

. The cost-coefficients in the objective function (6) are defined

by (4),
. Constraints (7) express that each fuel-deficient satellite is in

one triple with a fuel-sufficient satellite,
. Constraints (8) express that each fuel-sufficient satellite is in

at most one triple,
. Constraints (9) express that each position can harbor at most

one satellite; indeed, if some satellite ends up in position fk,

then the satellite starting at that position must have moved,
. In case the number of fuel-deficient satellites equals the

number of fuel-sufficient satellites, the resulting constraints

become exactly those from an axial three-index assignment

problem (with the cost-coefficients displaying a specific

structure; see Spieksma (2000) for an overview of other poss-

ible structures).

The model (6)–(10) was implemented in ILOG OPL

Development Studio 5.2, and run on a personal computer

with a 2.20 GHz Intel Core 2 Duo processor and 2.00 GB of

RAM. We experimented with two sets of instances. The first

set contains 10 realistic instances from Dutta and Tsiotras

(2008) whose characteristics can be found in Table 1. The

second set contains 120 instances that we randomly generated

(see Table 4).

We first discuss the outcomes of the first set of instances as

described in Tables 2 and 3. Table 2 shows the results of this

numerical investigation. Table 3 contains the corresponding

TABLE 1.

Sample constellations

Label Description

C1 Altitude ¼ 35; 786 Km, n ¼ 10, T ¼ 12, �f i ¼ 30, f
i
¼ 12, msi ¼ 70 f�i : 30, 30, 6, 6, 6, 6, 6, 30, 30, 30

C2 Altitude ¼ 1; 200 Km, n ¼ 16, T ¼ 30, �f i ¼ 30, f
i
¼ 15, msi ¼ 70 f�i : 30, 30, 30, 30, 30, 30, 10, 10, 10, 10, 10, 10, 10, 10, 30, 30

C3 Altitude ¼ 2; 000 Km, n ¼ 12, T ¼ 30, �f i ¼ 30, f
i
¼ 15, msi ¼ 70 f�i : 30, 30, 30, 10, 10, 10, 10, 10, 10, 30, 30, 30

C4 Altitude ¼ 6; 000 Km, n ¼ 18, T ¼ 25, �f i ¼ 25, f
i
¼ 12, msi ¼ 75 f�i : 25, 25, 25, 25, 25, 25, 25, 25, 25, 6, 6, 6, 6, 6, 6, 6, 6, 6

C5 Altitude ¼ 12; 000 Km, n ¼ 12, T ¼ 20, �f i ¼ 25, f
i
¼ 12, msi ¼ 75 f�i : 25, 25, 25, 25, 25, 25, 8, 8, 8, 8, 8, 8

C6 Altitude ¼ 1; 400 Km, n ¼ 14, T ¼ 35, �f i ¼ 25, f
i
¼ 12, msi ¼ 75 f�i : 25, 25, 25, 25, 25, 25, 25, 8, 8, 8, 8, 8, 8, 8

C7 Altitude ¼ 30; 000 Km, n ¼ 16, T ¼ 15, �f i ¼ 30, f
i
¼ 15, msi ¼ 70 f�i : 10, 10, 10, 10, 10, 10, 10, 10, 28, 28, 28, 28, 28, 28, 28, 28

C8 Altitude ¼ 1; 200 Km, n ¼ 16, T ¼ 30, �f i ¼ 30, f
i
¼ 15, msi ¼ 70 f�i : 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10

C9 Altitude ¼ 2; 000 Km, n ¼ 36, T ¼ 30, �f i ¼ 30, f
i
¼ 15, msi ¼ 70 f�i : 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30,

8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30, 8, 30

C10 Altitude ¼ 2; 000 Km, n ¼ 40, T ¼ 30, �f i ¼ 25, f
i
¼ 12, msi ¼ 75

f�i : 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
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satellite assignments. The first column in Table 2 contains the

name of the instance, and the second column gives the

number of satellites (n). The third column gives the value of

an optimal solution, and indicates (by “(i)”) whether the

linear programming (LP) relaxation of model (6)–(10) for the

corresponding instance is integral. The fourth column gives

the running time (in seconds) needed to solve the integer

program (6)–(10). Columns 5 and 6 each give the value of a

feasible solution: Column 5 reports the outcome of a network

flow formulation followed by a local search procedure as

described in Dutta and Tsiotras (2008), and Column 6 (called

“Restricted”) gives the best possible solution when moving sat-

ellites need to return to their original position.

Table 2 shows that an optimal solution is found within 1

second for the instances with size 18 or smaller, and in a few

seconds for instances with size 40 or less. The LP relaxation

yields an optimal solution for all but one instance tested. The

optimal solutions reported here show that the solutions found

by local search are quite good: with one exception (instance

C8), the optimal solution is only 1-3 % better than the solution

found by local search. When we compare the optimal solutions

to the solutions with the added restriction that satellites need to

return to their original position (which can be found in polynomial

time), it turns out that the improvement is often significant.

The second set of instances was generated randomly taking

into account specific characteristics of the real-life problem.

TABLE 2.

Costs and running times

Constellation n Opt Running time (s) Local Search Restricted

C1 10 18.515 (i) 0.078 19.11 (3.2%) 26.072 (41%)

C2 16 24.356 (i) 0.172 24.82 (1.9%) 37.478 (54%)

C3 12 18.452 (i) 0.156 18.87 (2.3%) 26.428 (43%)

C4 18 25.787 (i) 0.266 26.26 (1.8%) 40.728 (58%)

C5 12 18.792 (i) 0.125 18.86 (0.36%) 28.385 (51%)

C6 14 19.025 (i) 0.156 19.26 (1.2%) 28.774 (51%)

C7 16 22.539 (i) 0.234 22.75 (0.94%) 34.976 (55%)

C8 16 9.0826 (i) 0.203 10.18 (12%) 9.3751 (3,2%)

C9 36 8.3445 (i) 1.344 na 8.3837 (0,47%)

C10 40 52.0535 2.891 na 90.696 (74%)

TABLE 3.

Satellite assignments

Constellation Assignment

C1 s1 ! s4 ! s5; s3 ! s2 ! s3; s5 ! s9 ! s8; s6 ! s10 ! s1; s8 ! s7 ! s6

C2 s1 ! s12 ! s11; s4 ! s9 ! s10; s6 ! s7 ! s8; s8 ! s5 ! s6; s10 ! s3 ! s4,

s11 ! s16 ! s15; s13 ! s2 ! s1; s15 ! s14 ! s13

C3 s2 ! s5 ! s6; s4 ! s3 ! s4; s6 ! s1 ! s2; s7 ! s10 ! s9; s9 ! s12 ! s11, s11 ! s8 ! s7

C4 s2 ! s17 ! s16; s4 ! s15 ! s14; s7 ! s10 ! s11; s9 ! s12 ! s13; s11 ! s8 ! s9,

s13 ! s6 ! s7; s14 ! s5 ! s4; s16 ! s1 ! s18; s18 ! s3 ! s2

C5 s1 ! s12 ! s11; s4 ! s7 ! s8; s6 ! s9 ! s10; s8 ! s5 ! s6; s10 ! s2 ! s1; s11 ! s3 ! s4

C6 s2 ! s13 ! s12; s4 ! s11 ! s10; s7 ! s8 ! s9; s9 ! s6 ! s7; s10 ! s5 ! s4, s12 ! s1 ! s14; s14 ! s3 ! s2

C7 s1 ! s16 ! s1; s3 ! s14 ! s15; s4 ! s13 ! s12; s6 ! s9 ! s8; s8 ! s11 ! s10,

s10 ! s7 ! s6; s12 ! s5 ! s4; s15 ! s2 ! s3

C8 s1 ! s2 ! s3; s3 ! s4 ! s5; s5 ! s6 ! s7; s7 ! s8 ! s9; s9 ! s10 ! s11,

s11 ! s12 ! s13; s13 ! s14 ! s15; s15 ! s16 ! s1

C9 s1 ! s2 ! s3; s3 ! s4 ! s5; s5 ! s6 ! s7; s7 ! s8 ! s9; s9 ! s10 ! s11,

s11 ! s12 ! s13; s13 ! s14 ! s15; s15 ! s16 ! s17; s17 ! s18 ! s19,

s19 ! s20 ! s21; s21 ! s22 ! s23; s23 ! s24 ! s25; s25 ! s26 ! s27,

s27 ! s28 ! s29; s29 ! s30 ! s31; s31 ! s32 ! s33; s33 ! s34 ! s35, s35 ! s36 ! s1

C10 s1 ! s40 ! s39; s3 ! s38 ! s37; s5 ! s36 ! s35; s7 ! s34 ! s33; s9 ! s32 ! s31,

s12 ! s21 ! s22; s14 ! s23 ! s24; s16 ! s25 ! s26; s18 ! s27 ! s28,

s20 ! s29 ! s30; s22 ! s19 ! s20; s24 ! s17 ! s18; s26 ! s15 ! s16,

s28 ! s13 ! s14; s30 ! s11 ! s12; s31 ! s2 ! s1; s33 ! s4 ! s3, s35 ! s6 ! s5; s37 ! s8 ! s7; s39 ! s10 ! s9
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Table 4 summarizes the parameters that were taken into account

in order to generate the instances. Instances with realistic size

range between 16 and 56 satellites. We only consider satellites

that employ chemical propulsion systems, and more specifi-

cally, those which are currently being used for satellite station-

keeping and attitude control purposes (Ley etal., 2009;

Campbell and McCandles, 1996). For such propulsion

systems, the specific impulse (Isp) varies between 220

seconds and 320 seconds. For the fuel content of satellites,

we consider satellites with a lifespan of at least 5 years, and

use data obtained from (Maral and Bousquet, 2009; of

Concerned Scientists Satellite Database) related to wet mass

and dry mass of such satellites at Beginning-of-Life on orbit.

The fuel content of the satellites range between 20% and 30%.

In all instances there is an equal number of fuel-sufficient and

fuel deficient satellites. In total, consideration of 6 choices of

n, 5 choices of Isp values, and 4 choices of maximum fuel

content of satellites yields 6� 5� 4 ¼ 120 instances of the

problem. For each of these instances, the optimal value is calcu-

lated using model (6)–(10). This solution value is compared to

the solution obtained using the local search approach described

in Dutta and Tsiotras (2008) and the optimal value of the

restricted peer-to-peer strategy (i.e. each satellite needs to

return to its original position). An overview of the results is

given in Table 5. This table follows the format from Table 2,

only now each entry is an average over 20 instances. Given a

total number of satellites in the constellation, this average rep-

resents the mean refueling costs over different choices of

engine and fuel content of satellites. In the second column is

indicated between brackets how many of the instances were

solved to optimality by solving the LP-relaxation. Most of the

instances could not be solved to optimality by solving the

LP-relaxation. However, on average, the optimality GAP was

only 0.05% when not solved to optimality. The largest instances

can be solved to optimality in less than 12 seconds and solutions

are significantly better than the solutions obtained with local

search. For instances with 16 satellites, the improvement is

only around 4%, but the improvement is substantial when the

number of satellites increases. In fact, the improvement is

.30% when the number of satellites is around 50. The

optimal solutions for the restricted peer-to-peer strategy can be

found faster (since the problem is solvable in polynomial time,

see Section 3), however, the costs of the E-P2P strategy are

between 50% and 80% lower compared to the restricted

version. Again, we can conclude that the improvement of

E-P2P compared to restricted P2P is very significant. The

running times for the E-P2P increase faster than for the restricted

P2P (which was to be expected), they are, however, still reason-

able for realistic instance sizes of the problem. Especially since

running time is not a major concern in P2P applications.

5. CONCLUSIONS

It is shown that solving the so-called Egalitarian Peer-to-Peer

(E-P2P) satellite refueling problem to optimality is a computa-

tionally hard problem. However, since most instances from

practice are likely to contain 50 satellites or less, finding

the solution with minimum fuel costs can be done using

state-of-the-art integer programming algorithms. As a result,

the implementation of E-P2P strategies is feasible for practical

applications; all computations can be done on-board with rela-

tively limited computational resources, thus opening the way to

TABLE 5.

Average costs and running times (dataset 2)

n Opt Running time (s) Local Search Restricted

16 13.575 (10\ 20) 0.322 14.107 (4%) 20.841 (54%)

24 19.037 (16\ 20) 0.582 21.854 (15%) 32.292 (64%)

32 24.622 (0\ 20) 1.643 29.226 (19%) 41.660 (69%)

40 30.186 (0\ 20) 3.573 37.370 (24%) 52.067 (72%)

48 35.735 (0\ 20) 6.432 46.812 (31%) 62.457 (75%)

56 41.282 (0\ 20) 10.941 55.398 (34%) 72.886 (77%)

TABLE 4.

Generation of P2P Instances

Parameter Value Comment

1 Number of satellites 16 � n � 56 6 uniformly

distributed

values

2 Specific impulse 220 � Isp � 320 5 uniformly

distributed

values

3 Fuel capacity 20% � �f � 30% 4 uniformly

distributed

values

4 Fuel content of

fuel-sufficient

satellites

�f Fixed for a given

selection of �f

5 Fuel content of

fuel-deficient

satellites

0:05�f � fi;d � 0:10�f Randomly

chosen

6 Orbital locations of

satellites

0 � Fi , 2p Uniformly

distributed
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completely decentralized implementations of the baseline

E-P2P algorithms.
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