
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust Nonlinear Control 2003; 13:1149–1175 (DOI: 10.1002/rnc.834)

New results for the analysis of linear systems with
time-invariant delays

Jianrong Zhang1, Carl R. Knospe1,n,y and Panagiotis Tsiotras2

1Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer’s Way, P.O. Box 400746,

Charlottesville, VA 22904-4746, U.S.A.
2School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Dr., Atlanta, GA 30332, U.S.A.

SUMMARY

This paper presents a comparison system approach for the analysis of stability and H1 performance of
linear time-invariant systems with unknown delays. The comparison system is developed by replacing the
delay elements with certain parameter-dependent Pad!ee approximations. It is shown using the special
properties of the Pad!ee approximation to e�s that the value sets of these approximations provide outer and
inner coverings for that of each delay element and that the robust stability of the outer covering system is a
sufficient condition for the stability of the original time delay system. The inner covering system, in turn, is
used to provide an upper bound on the degree of conservatism of the delay margin established by the
sufficient condition. This upper bound is dependent only upon the Pad!ee approximation order and may be
made arbitrarily small. In the single delay case, the delay margin can be calculated explicitly without
incurring any additional conservatism. In the general case, this condition can be reduced with some
(typically small) conservatism to finite-dimensional LMIs. Finally, this approach is also extended to
the analysis of H1 performance for linear time-delay systems with an exogenous disturbance. Copyright
# 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The analysis of linear time-delay systems (LTDS) has attracted much interest over a half
century, especially in the last decade. The recent books [1–3] contain an extensive collection of
research results dealing with both delay-dependent and delay-independent stability conditions.
Much interest in the literature has focused on searching for sufficient conditions which are
numerically tractable but are not too conservative. Many of the stability criteria have been
formulated in the time domain, based on Lyapunov’s Second Method using Lyapunov–
Krasovskii functionals or Lyapunov–Razumikhin functions [4–9]. Frequency domain
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techniques for analysis of time-delay systems have also been developed [10], such as polynomial
criteria [11–13], matrix pencils [14], integral quadratic constraints [15], the singular value test
[16], m-based criteria [17, 18], etc. Most of these stability tests are for systems with a single delay.
In recent years, several stability criteria for the multiple delay case have also been reported. In
Reference [19], the traditional m-framework was extended for time-delay systems to obtain a
necessary and sufficient stability condition, which was then relaxed to a convex sufficient
condition. For linear systems with commensurate delays, [20] proposed a simple stability test
which requires computation of eigenvalues and generalized eigenvalues of constant matrices.
For the general multiple delays case, several sufficient stability conditions have also been
reported [21, 22].

Many of the existing stability criteria involve, either explicitly or implicitly, covering
the uncertain delay elements with some (convex) sets so as to obtain numerically tractable
stability conditions [23]. Furthermore, the conservatism of the analysis can be effectively
reduced by choosing appropriate covering sets, based on the properties of the delay ele-
ments [24].

In this paper, we present a covering set for the non-rational delay element based upon
parameter-dependent diagonal Pad!ee approximations of the function e�s: Special properties of
these approximations are used to develop both inner and outer coverings that are related via
frequency dilation. We demonstrate that a comparison system can be obtained by replacing the
delay elements with the outer Pad!ee approximation and that robust stability of the resulting
finite-dimensional, parameter-dependent system is sufficient for delay-dependent stability of the
original time-delay system. Using the inner approximation, we establish that the degree-of-
conservatism of this sufficient condition has an upper bound that is dependent only on the order
of the outer Pad!ee approximation used and may be made arbitrarily small. Moreover, in the
single delay case, the delay margin given by this condition can be calculated explicitly without
incurring any additional conservatism. In the general case, this condition can also be reduced
with some (typically small) conservatism to finite-dimensional LMIs. Finally, this approach is
extended to derive a sufficient condition for the H1 performance for LTDS with exogenous
disturbance.

The results of this paper indicate that, by replacing the uncertain delay elements e�tks

with Pad!ee approximations directly, the stability analysis of the resultant finite-dimensional
system only gives a necessary condition, and hence it does not guarantee, in general, the
stability of the original systems. This traditional manner of using Pad!ee approximations for
time-delay systems has been used extensively; see [25–28]. However, it can only be used for
small delays and over a finite bandwidth of the system, because the Pad!ee approximations
are accurate only when jtksj is sufficiently small. On the other hand, our covering relation holds
for all frequencies. Thus, by using a frequency-dilated version of the Pad!ee approximation,
robust stability of the comparison system guarantees the stability of the original time-delay
system without imposing any restrictions on the magnitude of the delay and/or the system
bandwidth.

Many published Lyapunov-based stability analysis results (see References [6, 7, 9] and the
references therein) use a model transformation to transform a time-delay system into a system
with distributed delays. The recent results of References [29, 30] demonstrated that this
transformation introduces additional dynamics and hence any stability criteria based on this
transformation will be inherently conservative if the additional dynamics have unstable poles (in
addition to the conservatism induced by the value set covering discussed in Reference [23]). Our
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result does not involve such model transformation, and therefore does not suffer the inherent
conservatism incurring in these Lyapunov-based results.

The notation used in this paper is conventional. Let Rn�m ðCn�mÞ be the set of all real
(complex) n� m matrices, Cþ ( %CCþ) be the open (closed) right-half of the complex plane, Re :¼
R[ f1g; In be n� n identity matrix, and W T be the transpose of real matrix W : P > 0 indicates
that P is a symmetric and positive definite matrix, and jj � jj1 indicates the H1 norm defined by
jjGjj1 :¼ supo2R %ss½GðjoÞ� where %ssðMÞ is the maximum singular value of the complex matrix M :
For a transfer function matrix GðsÞ; its minimal realization ðA;B;C;DÞ is denoted by

GðsÞ ¼
A B

C D

" #

and A is said to be the kernel matrix of GðsÞ: If P ¼ PT and Q ¼ QT; then

P M

* Q

" #

denotes the symmetric matrix

P M

MT Q

" #
:

For matrices M ¼ ðmijÞ 2 Rn1�n1 and N 2 Rn2�n2 ; the Kronecker product is defined by M � N
:¼ ðmijN Þ and the Kronecker sum is defined by M � N :¼ M � In2 þ In1 � N : lþmaxðMÞ is the
maximum positive real eigenvalue of M and lþmaxðMÞ ¼ 0þ when M does not have any positive
real eigenvalues. Finally, given a continuous function wðqÞ : ½0;1Þ ! D where D ¼ fz 2 Cj jzj ¼
1g; letting Gr be the path created by mapping the interval q 2 ½0; r� via wðqÞ to D; we define a
continuous argument (phase) function for the value wðrÞ as ArgðwðrÞÞ :¼ argðwðrÞÞ þ 2pnðGr; 0Þ;
where argðzÞ 2 ð�2p; 0� is the unique argument of z 2 C; z=0 and ðG; aÞ is the winding numberz

of path G about a:

2. PRELIMINARIES

Consider the linear, multiple time-delay system given by

’xxðtÞ ¼ AxðtÞ þ
XN
k¼1

Akxðt � tkÞ ð1Þ

where the time delays tk 2 ½0; %ttk�; %ttk > 0; k ¼ 1; . . . ;N ; are constant, unknown and independent
of each other. We denote the delay vector by s ¼ ½t1 � � � tN �; and the delay set

QN
k¼1 �

½0; %ttk� :¼ f½t1 � � � tN �jtk 2 ½0; %ttk�; k ¼ 1; . . . ; Ng:
The following assumption is necessary when investigating asymptotic stability of the

system (1).

zFor clockwise paths, winding numbers are negative. See Reference [31] for more details.
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Assumption 1
The system (1) free of delays is asymptotically stable, that is, the matrix %AA :¼ Aþ

PN
k¼1 Ak is

Hurwitz.

Herein, we provide the definitions and preliminary results that will be used later in our analysis.
First, we provide the notion of robust stability of a feedback interconnection of a finite-
dimensional linear, time-invariant (FDLTI) system and an uncertain system with known
uncertainty structure. More on this definition can be found in Reference [32].

Definition 1
Consider a linear, time-invariant (finite-dimensional) system GðsÞ interconnected with an
uncertain block D 2 D (D is a set of linear time-invariant stable systems), as shown in Figure 1,
denoted as

P
½GðsÞ;DðsÞ�: Then the system is said to be robustly stable if GðsÞ is internally stable,

the interconnection is well-posed and it remains internally stable for all D 2 D:

It is well known that the stability of (1) can be described by its characteristic function (see e.g.
References [14, 33–35] and the references therein).

Definition 2
The system (1) is said to be asymptotically stable on

QN
k¼1 ½0; %ttk� if and only if

Cðs; t1; . . . ; tN Þ=0; 8s 2 %CCþ; tk 2 ½0; %tt� ð2Þ

where Cðs; t1; . . . ; tN Þ :¼ detðsIn � A�
PN

k¼1 Ake
�tksÞ is the characteristic function associated

with system (1).

Compared with the single-delay case, the analysis of linear systems with multiple delays is much
more complicated. As a matter of fact, in the general non-commensurate delays case, this
problem is NP-hard [36]. Consequently, it is unlikely to find efficient algorithms to solve this
problem exactly in the general case. Our objective is to find sufficient conditions which are
numerically tractable but are not too conservative. Moreover, it turns out that the analysis of
the stability regions is rather complex even for the case of a scalar differential equation involving
only two delays [37]. In particular, this system may have multiple ‘maximum’ stability margins,
i.e., the system may have stability margins which are unbounded in two different directions [38].

Figure 1. An interconnection system.
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This phenomenon complicates our analysis. Herein, we introduce the definition of the actual
delay margin with a proportionality ratio vector.

Definition 3
Given the proportionality ratio vector n :¼ ½l1 � � � lN � 2 RN ; where min14k4N ðlkÞ ¼ 1; the
actual delay margin %tt n for the system (1) is defined by

%tt n :¼ sup %ttjð1Þ is asymptotcially stable on
YN
k¼1

½0; lk %tt �

( )
The stability of system (1) is said to be delay-dependent if %ttn is finite, and delay-independent
otherwise.

Next, we introduce the definition of the degree of conservatism of a stability criterion.

Definition 4
Suppose the stability of (1) is delay-dependent with actual delay margin %tt n with respect to the
proportionality ratio vector n :¼ ½l1 � � � lN �; and P is a sufficient condition which ensures the
asymptotic stability of (1). The degree of conservatism (d.o.c.) of P is defined by

d:o:c:ðPÞ :¼
%tt n � %ttnP

%tt n

where %ttnP :¼ supf%ttjP is true on
QN

k¼1 ½0; lk %tt �g: Moreover, %ttnP is said to be the delay margin
guaranteed by P with the same proportionality ratio vector n:

The d:o:c:ðPÞ gives a quantitative measure for the conservatism of the stability criterion P:
Notice that 04d:o:c:ðPÞ41: If P is necessary and sufficient, d:o:c:ðPÞ ¼ 0:

Our results will make use of the following lemmas.

Lemma 1 (Datko [34])
Given t1; . . . ; tN50; the function sðhÞ :¼ supfReðsÞjCðs; ht1; . . . ; htN Þ ¼ 0g is continuous for all
h50:

Lemma 2
The system (1) is asymptotically stable on

QN
k¼1 ½0; %ttk� if and only if

Cðjo; t1; . . . ; tN Þ=0; 8o50; tk 2 ½0; %ttk� ð3Þ

Proof
Necessity is obvious. We prove the sufficiency by contradiction. Assume there exist s0 2 Cþ and
tk0 2 ½0; %ttk�; k ¼ 1; . . . ;N such that Cðs0; tl0 ; . . . ; tN0

Þ ¼ 0: Let sðhÞ :¼ supfReðsÞjCðs; htl0 ; . . . ; h
tN0

Þ ¼ 0g: Then we have sð1Þ > 0: Notice that %AA ¼ Aþ
PN

k¼1 Ak is Hurwitz, thus sð0Þ50: Since
from Lemma 1, sðhÞ is continuous for h50; there exists h0 2 ½0; 1� such that sðh0Þ ¼ 0: Let
#ttk :¼ h0tk0 2 ½0; %ttk�; k ¼ 1; . . . ;N : Then we have supfReðsÞjCðs; #ttkl ; . . . ; #ttkN Þ ¼ 0g ¼ 0: On the
other hand, for any given constant c > 0; the number of the roots of Cðs; #ttkl ; . . . ; #ttkN Þ in
the region �c5ReðsÞ5c is finite, and these roots, if any, have finite magnitude [35]. Therefore,
there exists an #oo 2 R such that Cðj #oo; #ttkl ; . . . ; #ttkN Þ ¼ 0: This contradicts the condition (3) because
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the roots of Cðs; #ttkl ; . . . ; #ttkN Þ are symmetric with respect to the real axis. The proof is hence
complete. &

In the sequel, we decompose Ak ¼ HkFk where Hk 2 Rn�qk and Fk 2 Rqk�n have full rank, and
denote H :¼ ½H1 � � � HN �; and F :¼ ½F T

1 � � � F T
N �

T: The following zero exclusion condition will be
used for the stability analysis of (1).

Lemma 3 (Zero Exclusion Condition: Multiple Delay Case)
The system (1) is asymptotically stable on

QN
k¼1 ½0; %ttk� if and only if

det½Iq � GðjoÞFðt; joÞ�=0; 8o50; tk 2 ½0; %ttk� ð4Þ

where q ¼ q1 þ � � � þ qN ;

GðsÞ :¼ F ðsIn � %AAÞ�1H ¼
%AA H

F 0

" #
and Fðs; sÞ :¼ diagffðt1sÞIq1 ; . . . ;fðtNsÞIqN g; fðtksÞ ¼ e�tks � 1:

Proof
This follows form Lemma 2 immediately. &

Examining the stability of (1) by checking the condition (4) directly is nontrivial, because (4)
implies solving a transcendental equation. An indirect but intuitive approach for examining
whether (4) holds, is to cover Fðs; joÞ with another set

%
FðoÞ; that is, to find a value set

%
FðoÞ such

that for each o50;

Fðs; joÞ 2
%
FðoÞ; 8t 2

YN
k¼1

½0; %ttk�

Then (4) holds if det½Iq � GðjoÞDð joÞ�=0; 8DðjoÞ 2
%
FðoÞ; for each o50: This is satisfied if the

interconnection
P

½GðsÞ;DðsÞ� (referred to as the comparison system in the sequel) is robustly
stable. The conservatism of this approach mainly arises from the manner in which the covering
set

%
FðoÞ is chosen for each frequency o; based on the properties of the delay element. In

Reference [23], it was demonstrated that the unit disk was implicitly used in the Lyapunov-based
stability criteria of [4, 7, 6, 9]. In Reference [24], various covering sets, based on a shifted disk
and/or a weighting filter were introduced to reduce the conservatism of the analysis.

Herein, we introduce a new less conservative covering set for the delay element Fðt; joÞ; which
is based on the properties of the diagonal Pad!ee approximation to the delay element.

3. INNER AND OUTER COVERING OF THE DELAY ELEMENT VALUE SET USING
PAD !EE APPROXIMATION

Since 1970s, Pad!ee approximations have been widely used in various fields, such as physics,
chemistry and mathematics. Recently, Pad!ee approximations have also been used for LTDS (see
Reference [25] and the references therein). A Pad!ee approximation is a rational approximation to
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an irrational function and is defined so that its power series expansion matches as many terms of
the power series of the approximated function as possible [39].

Next, we develop an inner and outer covering relation for the delay element using a Pad!ee
approximation to e�s: This relation is fundamental to the stability analysis developed in the later
sections. The primary reason that a Pad!ee approximation is used for our analysis of LTDS is that
this choice ensures the approximation of the delay element is stable itself for any order of
approximation [40]. Alternative approximations, such as Taylor, do not necessarily enjoy this
property.

Consider the mth ðm53Þ diagonal Pad!ee approximation RmðsÞ to e�s: Then we have

RmðsÞ ¼
PmðsÞ
QmðsÞ

where

PmðsÞ ¼
Xm
k¼0

ð2m� kÞ!m!ð�sÞk

ð2mÞ!k!ðm� kÞ!
; and QmðsÞ ¼ Pmð�sÞ:

Clearly, for each o 2 R; Rmð joÞ is on the unit circle in the complex plane. Now, consider the
continuous argument function ArgðRmð joÞÞ for Rmð joÞ for all o50: This satisfies ArgðRm

ð joÞÞjo¼0 ¼ 0: The following lemma provides a property of this phase function which plays a key
role in proving Lemma 5.

Lemma 4
For every integer m53; the function ðd=doÞArgðRmðjoÞÞ can be expressed in the following form:

d

do
ArgðRmðjoÞÞ ¼ �

TmðoÞ
o2m þ TmðoÞ

; 8o 2 R

where

TmðoÞ ¼
Xm�1

k¼0

ako2k ð5Þ

and ak > 0; k ¼ 0; . . . ;m� 1 are independent of o: (see Appendix for proof)

In the sequel, given constant %tt > 0 and o50; we define the following value sets:}

Xd ðo; %tt Þ :¼ fe�jtojt 2 ½0; %tt �g

Xoðo; %tt Þ :¼ fRmðjyamoÞjy 2 ½0; %tt �g

Xiðo; %tt Þ :¼ fRmðjyoÞjy 2 ½0; %tt �g

where am :¼ ocm=2p; and ocm is the phase crossover frequency of RmðjoÞ at the �2p line:

ocm :¼ minfo > 0jRmðjoÞ ¼ 1g:

It can be found that for m ¼ 3; 4 and 5; am � 1:2329; 1:0315 and 1.00363, respectively. Since
jRmðjoÞj ¼ 1; for every o > 0; Xd ðo; %ttÞ;Xoðo; %ttÞ and Xiðo; %ttÞ are arcs on the unit circle; see
Figure 2.

}The subscripts d ; o; and i indicate delay, outer, and inner, respectively.
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Now, for the continuous argument functions of e�jo and Rmð jamoÞ for all o50; we have
Argðe�joÞ jo¼0 ¼ ArgðRmð jamoÞÞ jo¼0 ¼ 0; Argðe�joÞ ¼ �o; for all o50: When m ¼ 3; the
phase functions Argðe�joÞ; ArgðRmð jamoÞÞ; and ArgðRmð joÞÞ are shown in Figure 3. We have
the following lemma about the relationship among these functions.

Lemma 5
For every integer m53; the phase functions Argðe�joÞ; ArgðRmðjamoÞÞ; and ArgðRmðjoÞÞ have
the following properties.

(a) Argðe�joÞ4ArgðRmðjoÞÞ; 8o 2 ½0;ocm�; and
(b) ArgðRmðjamoÞÞ4Argðe�joÞ; 8o 2 ½0; 2p�:

Proof
From Lemma 4, we know that there exist constants ak > 0; k ¼ 0; . . . ;m� 1; such that

d

do
ArgðRmðjoÞÞ ¼ �

TmðoÞ
o2m þ TmðoÞ

; 8o 2 R

where

TmðoÞ ¼
Xm�1

k¼0

ako2k ð6Þ

If follows that

d

do
ArgðRmðjoÞÞ5� 1; 8o 2 R

Figure 2. The covering sets generated by a third order Pad!ee approximation (o ¼ 2:5 rad=s and %tt ¼ 1 s).
Arc cSLISLI-set Xiðo; %ttÞ; Arc dSLDSLD-set Xd ðo; %ttÞ; Arc dSLOSLO-set Xoðo; %ttÞ:
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Then (a) follows from integrating the above inequality from 0 to o; by using the fact that
Argðe�joÞ ¼ �o and ArgðRmð joÞÞjo¼0 ¼ 0:

To show (b), we define

gðoÞ :¼ ArgðRmð joÞÞ þ
1

am
o

and obtain

d2

do2
gðoÞ ¼

d2

do2
ArgðRmð joÞÞ

¼ �
d

do
TmðoÞ

o2m þ TmðoÞ

� �
¼
o2m�1½2mTmðoÞ � oTm0ðoÞ�

½o2m þ TmðoÞ�2

¼
o2m�1½a0 þ 2

Pm�1
k¼0 akðm� kÞo2k�

½o2m þ TmðoÞ�2

Therefore, ðd2=do2ÞgðoÞ > 0 for all o > 0 because a0 > 0 and akðm� kÞ > 0; k ¼ 1; . . . ;m� 1:
This indicates that the function gðoÞ is strictly convex in the interval o 2 ð0;ocmÞ: Clearly,

0 1 2 3 4 5 6 7 8 9 10
 -10

 -9

 -8

 -7

 -6

 -5

 -4

 -3

 -2

 -1

0

P
ha

se
 (

ra
d)

�cm

�

b
a

c

Figure 3. Phase plot for delay and third order Pad!ee approximation. (a) Argðe�joÞ:
(b) ArgðRmðjamoÞÞ: (c) ArgðRmðjoÞÞ:

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1149–1175

ANALYSIS OF LINEAR SYSTEMS 1157



gðamoÞ is strictly convex in the interval o 2 ð0; 2pÞ: Because gðamoÞjo¼0 ¼ gðamoÞjo¼2p ¼ 0; we
have gðamoÞ40; for all o 2 ½0; 2p�; which yields (b). &

Next we demonstrate that the function RmðsÞ and the above defined sets have several important
properties which are summarized in the following lemma.

Lemma 6
For every integer m53; the following statements hold:

(a) All poles of RmðsÞ are in the open left half complex plane.
(b) Given any %tt50 and any o50; Xiðo; %tt Þ � Xd ðo; %tt Þ � Xoðo; %tt Þ; and
(c) am ! 1 as m ! 1:

Proof
(a) The conclusion follows directly from the results of Reference [40].
(b) From Lemma 5, we conclude that

Xiðo; %tt Þ � Xdðo; %ttÞ; 8o 2 0;
ocm

%tt

h i
Xd ðo; %tt Þ � Xoðo; %ttÞ; 8o 2 0;

2p
%tt

� �
Also, if o > ocm=%tt; both Xiðo; %ttÞ and Xd ðo; %tt Þ cover the entire unit circle. Thus,
Xiðo; %tt Þ ¼ Xd ðo; %tt Þ for all o > ocm=%tt: Similarly, for all o > 2p=%tt; both Xoðo; %ttÞ and Xdðo; %tt Þ
cover the entire unit circle, hence Xoðo; %ttÞ ¼ Xd ðo; %ttÞ: Thus we have Xiðo; %ttÞ � Xd ðo; %ttÞ � Xo

ðo; %ttÞ; 8o50:
(c) Let m55: First, it can be easily seen from part (a) of Lemma 5 that ocm52p: On the other

hand, for every o > 0; it can be verified that Tmþ1ðoÞ > o2TmðoÞ where TmðoÞ is given by (6).
Hence, using Lemma 4, we have

jArgðRmðjocmÞÞj ¼
Z ocm

0

d

do
ArgðRmðjoÞÞ

� �
do

���� ����
¼

Z ocm

0

TmðoÞ
o2m þ TmðoÞ

do

5
Z ocm

0

T5ðoÞ
o10 þ T5ðoÞ

do

Then by the definition of ocm; we conclude that 2p4ocm4ocmjm¼552:0073p: In view of the fact
ð4=eÞm > ocm; it follows from the results of Reference [41] that

je�jocm � 1j ¼ je�jocm � RmðjocmÞj

4
ocme
4m

� �2mþ1

5
4:286

m

� �2mþ1
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In addition, there exists xm 2 ½2p;ocm� such that

je�jocm � 1j ¼ 2 sin
ocm

2

��� ��� ¼ jocm � 2pj cos
xm
2

���� ����
5 jocm � 2pj cos

2:0073p
2

Therefore,

jam � 1j ¼
1

2p
jocm � 2pj50:16

4:286

m

� �2mþ1

ð7Þ

which implies that am ! 1 as m ! 1:

It should be noted that the above proof has an important implication. When o > ocm=%tt; the two
sets Xiðo; %tt Þ and Xd ðo; %tt Þ both cover the unit circle and consequently Xiðo; %tt Þ ¼ Xdðo; %ttÞ:
Similarly, for every o > 2p=%tt; both Xoðo; %tt Þ and Xdðo; %tt Þ cover the unit circle, and hence
Xd ðo; %tt Þ ¼ Xoðo; %tt Þ: The fact that the inner and outer covering relation in (b) of Lemma 6 holds
for every frequency o50 is of fundamental importance for our analysis and is in contrast with
the traditional manner of using rational approximations, in which the accuracy and validity can
only be ensured for a certain finite frequency range.

4. STABILITY ANALYSIS

We now will take advantage of the outer covering developed in the preceding section to create a
finite-dimensional, parameter-dependent comparison system, the robust stability of which will
guarantee the stability of the original time-delay system. The inner approximation will be
employed to establish a necessary condition for stability, and this will allow the establishment of
an upper bound on the degree-of-conservatism of the sufficient condition. Toward this end, we
replace the delay elements e�ths with the real rational functions RmðykamsÞ and RmðyksÞ and
denote the resulting finite-dimensional interconnection systems as

P
o ðyÞ :¼

P
ðGðsÞ; PyðamsÞÞ

and
P

i ðyÞ :¼
P

ðGðsÞ; PyðsÞÞ; respectively, where PyðsÞ :¼ diagf½Rmðy1sÞ � 1�IqI ; . . . ;RmðyNsÞ �
1�IqNg: This changes the analysis problem from one of examining the stability of a family of
infinite-dimensional systems (parameterized by tk) to one of examining the stability of a family
of finite-dimensional systems (parameterized by yk). Note, however, that the variables tk and yk
are not in any sense equivalent.

The following theorem gives a sufficient condition for the stability of (1).

Theorem 1
The system (1) is asymptotically stable on

QN
k¼1 ½0; %ttk�; if the comparison system

P
o ðhÞ is

robustly stable for h 2
QN

k¼1 ½0; %ttk�:

Proof
If

P
o ðyÞ is robustly stable for h 2

QN
k¼1 ½0; %ttk�; then

det½Iq � GðjoÞPyðjamoÞ�=0; 8o50; h 2
YN
k¼1

½0; %ttk�
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which can be rewritten as

det½Iq � GðjoÞ diagf½d1ðoÞ � 1�Iq1 ; . . . ; ½dN ðoÞ � 1�IqN g�=0

8o50; dkðoÞ 2 Xoðo; %ttkÞ

From Lemma 6, Xd ðo; %ttkÞ � Xoðo; %ttkÞ: Hence

det½Iq � GðjoÞ diagf½d1ðoÞ � 1�Iq1 ; . . . ; ½dN ðoÞ � 1�IqN g�=0

8o50; dkðoÞ 2 Xdðo; %ttkÞ ð8Þ

which implies that

det½Iq � GðjoÞFðs; joÞ�=0; 8o50; s 2
YN
k¼1

½0; %ttk�

Thus from Lemma 3, (1) is asymptotically stable on
QN

k¼1 ½0; %ttk�: &

The following theorem provides a necessary condition for the stability of (1) which will be used
to check the d.o.c. of our analysis result.

Theorem 2
If (1) is asymptotically stable on

QN
k¼1 ½0; %ttk�; then

P
i ðyÞ is robustly stable for y 2

QN
k¼1 ½0; %ttk�:

The proof of this theorem is rather technical and is given in Appendix B.
Next, we show that the d.o.c. of Theorem 1 is bounded by a function of am:

Theorem 3
The d.o.c. of Theorem 1 with any proportionality ratio vector n satisfies

d:o:c:ðTheorem 1Þ4
am � 1

am
ð9Þ

Moreover, d:o:c:ðTheorem 1Þ ! 0 as m ! 1:

Proof
Let %tt n be the actual delay margin of (1), and %tt n

Theorem 1 be the delay margin guaranteed by
Theorem 1, both with the same proportionality ratio vector n: Let

Ti :¼ sup %tti
X
i

ðyÞ is robustly stable for y 2
YN
k¼1

½0; lk %tti�

�����
( )

Then, clearly, we have Ti ¼ am %tt n
Theorem 1: In addition, from Theorem 2,

P
i ðyÞ is robustly stable

for y 2
QN

k¼1 ½0; %ttk� whenever (1) is asymptotically stable on
QN

k¼1 ½0; %ttk�: Therefore,

Ti5%tt n

which immediately yields (9). &

Remark 1
For m ¼ 3; 4 and 5, we have ðam � 1Þ=am � 18:9; 3.05 and 0.361%, respectively. This upper
bound depends only on the order of Pad!ee approximation used and it can be reduced to any
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desired degree by choosing higher order m: This d.o.c. upper bound is independent of %tt n; A
and Ak :

Remark 2
Theorem 2 indicates that, by replacing the delay elements e�tks with Pad!ee approximations
directly, the stability analysis of the resultant finite-dimensional system only gives a necessary
condition, and hence it does not guarantee, in general, the stability of the original time-delay
systems. This manner of using Pad!ee approximations for time-delay systems has been used
extensively; see [25–28]. However, it can only be used for small delays and over a finite
bandwidth of the system, because the Pad!ee approximations are accurate only when jtksj is
sufficiently small. On the other hand, Theorem 1 may be used for analysis without any
restriction in its use on the delays or on the bandwidth of the system. This is due to the fact that
the covering relations hold for all frequencies.

The following corollary follows immediately from Theorem 3 and inequality (7). This result
gives an explicit bound on the d.o.c. as a function of m:

Corollary 1
For m55; the d.o.c. of Theorem 1 with any proportionality ratio vector n satisfies

d:o:c:ðTheorem 1Þ50:16
4:286

m

� �2mþ1

ð10Þ

4.1. The singularity problem

The comparison system
P

o ðyÞ is free of delays, but it has parametric (real) uncertainties yk :
Some care must be taken when examining its robust stability. When yk ¼ 0 for some k ¼
1; . . . ;N ; the system dynamics suffer a fundamental and abrupt change. The singularity of the
system at yk ¼ 0 obviously complicates the employment of Theorem 1 for analysis. Next, we
discuss several approaches for dealing with this issue. We first consider the single delay case, and
then we address the multiple delays case. For convenience, in the sequel, let the minimal
realization of PkðsÞ :¼ ½RmðamsÞ � 1�Iqk be

PkðsÞ ¼
APk BPk

CPk DPk

" #
As :¼ %AAþ

PN
k¼1 HkDPkFk ;Bsk :¼ BPkFk ; Csk :¼ HkCPk and denote nk as the order of APk :

4.2. Single delay case: An explicit delay margin formula

First, we consider the special case when N ¼ 1: In this single delay case, the singularity issue can
be dealt with in a straightforward manner. We demonstrate that the delay margin %ttnTheorem 1

guaranteed by Theorem 1 can be explicitly calculated without incurring any additional
conservatism in the single delay case. Then, we conclude that if %tt15%ttnTheorem 1; the system (1) is
asymptotically stable for all t1 2 ½0; %tt1�:
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Theorem 4
Suppose that N ¼ 1 and the system (1) is asymptotically stable for all t1 2 ½0; %tta�; where %tta > 0:
Then the delay margin guaranteed by Theorem 1 with proportionality ratio vector n ¼ 1; is
given by

%tt n
Theorem 1 ¼

%tta
am

þ
1

lþmaxð�ðM0 �M0Þ
�1ðM1 �M1ÞÞ

ð11Þ

where M0 :¼
%tta
am
As Cs1

%tta
am
Bs1 AP1

" #
and M1 :¼

As 0
Bs1 0

� �
:

To prove Theorem 4, we need the following lemma.

Lemma 7 (Barmish [42])
Let #MMðqÞ :¼ M0 þ qM1; where M0 and M1 are constant square matrices. Suppose M0 is Hurwitz
and let

%qqn :¼ supf %qq j #MMðqÞ is Hurwitz for all q 2 ½0; %qq�g

Then

%qqn ¼
1

lþmaxð�ðM0 �M0Þ
�1ðM1 �M1ÞÞ

Proof of Theorem 4
When N ¼ 1; it can be easily verified that the comparison system

P
o ðy1Þ can be realized by

’xx ¼ %AAxþ H1u

y ¼ F1x

’xxP1 ¼ y�1
1 AP1xP1 þ y�1=2

1 BP1y

u ¼ y�1=2
1 CP1xP1 þ DP1y

The closed-loop system is given as

’xx

’xxP1

" #
¼ ALðy1Þ

x

xP1

" #
where

ALðy1Þ :¼
As y�1=2

1 Cs1

y�1=2
1 Bs1 y�1

1 AP1

24 35
is the kernel matrix of

P
o ðh1Þ: Notice that for y1 > 0; ALðy1Þ is Hurwitz if and only if

y1ALðy1Þ ¼
y1As y1=21 Cs1

y1=21 Bs1 AP1

24 35
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is Hurwitz. Let Ey1 :¼ diagfy�1=2
1 In; In1g: Then ALðy1Þ is Hurwitz if and only if the matrix #AAðy1Þ

:¼ Ey1y1ALðy1ÞE�1
y1 is Hurwitz. Then, #AAðy1Þ can be rewritten as

#AAðy1Þ ¼ M0 þ y1 �
%tta
am

� �
M1

Since (1) is asymptotically stable for all t1 2 ½0; %tta�; from Theorem 2,
P

i ðy1Þ is asymptotically
stable for y1 2 ½0; %tta�; which implies that

P
o ðy1Þ is asymptotically stable for y1 2 ½0; %tta=am�:

Hence M0 ¼ ALð%tta=amÞ is Hurwitz. The conclusion then follows immediately from Lemma 7 and
Theorem 2. &

4.3. General case: A new LMI delay-dependent stability criterion

In this section, we present a delay-dependent stability criterion based on a parameter-dependent
Lyapunov matrix for system (1). Some additional conservatism is introduced, but the resultant
stability condition is formulated as a finite set of LMIs, which can be solved efficiently [18].

In the sequel, let Fc :¼
QN

k¼1 ½0; %ttk�; and Fo :¼
QN

k¼1 ð0; %ttk�: The following theorem indicates
that under an additional condition, the robust stability of

P
o ðyÞ on Fo implies its robust

stability on the closed set Fc:

Lemma 8P
o ðyÞ is asymptotically stable on Fo if and only if for every y 2 Fo there exists a positive definite

matrix X ðyÞ satisfying the Lyapunov inequality

ALðyÞ
TX ðyÞ þ X ðyÞALðyÞ5� I

where

ALðyÞ :¼

As y�1=2
1 Cs1 � � � y�1=2

N CsN

y�1=2
1 Bs1 y�1

1 AP1 0 0

..

.
0 . .

.
0

y�1=2
N BsN 0 0 y�1

N APN

266666664

377777775
is the kernel of the closed loop system

P
o ðyÞ: If, in addition, the matrix X ðyÞ is bounded for all

y 2 Fo; then
P

o ðyÞ is asymptotically stable on Fc:

Proof
See Appendix C. &

Next, we present a delay-dependent stability condition for system (1). This condition is
formulated in terms of a (finite) set of LMIs.

Theorem 5
The system (1) is asymptotically stable on

QN
k¼1 ½0; %ttk�; if there exist a constant e > 0; positive

definite matrices Yi 2 Rn�n and Xi 2 Rni�ni ; i ¼ 1; . . . ;N ; and matrices Wk 2 Rn�nk ; k ¼ 1; . . . ;N ;
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such that for each vertex y#l ; l ¼ 1; . . . ; 2N of the polytope
QN

k¼1 ½0; %ttk�;

Pðy#l Þ50 ð12Þ

and

X ðy#l Þ > 0 ð13Þ

where

PðyÞ :¼

P1;1ðyÞ P1;2ðyÞ � � � P1;Nþ1ðyÞ

* P2;2ðyÞ 0 0

* *
. .
.

0

* * * PNþ1;Nþ1ðyÞ

26666664

37777775

X ðyÞ :¼

Y ðyÞ y1=21 W1 � � � y1=2N WN

* X1 0 0

* *
. .
.

0

* * * XN

266666664

377777775
with P1;1ðyÞ :¼ Y ðyÞAs þ AT

s Y ðyÞ þ
PN

k¼1 ðWkBsk þ BT
skW

T
k Þ þ eIn; P1;kþ1ðyÞ :¼ Y ðyÞCsk þ WkAPk þ

ykAT
s Wk þ BT

skXk ; Pkþ1;kþ1ðyÞ :¼ ykW T
k Csk þ ykCT

skWk þ XkAPk þ AT
PkXk þ eykInk ; k ¼ 1; . . . ;N ; and

Y ðyÞ :¼ Y0 þ
PN

k¼1 ykYk :

Proof
First, notice that PðyÞ is convex in y because it is affine in y: Hence (12) implies that

PðyÞ50; 8y 2 Fc ð14Þ

Using the properties of Shur Complement, Equation (13) is equivalent to Yððy#l Þ > 0; where
YðyÞ :¼ Y ðyÞ �

PN
k¼1 ykWkX�1

k W T
k : Since YðyÞ is convex in y; we obtain YðyÞ > 0; 8y 2 Fc; which

is equivalent to X ðyÞ > 0; 8y 2 Fc: For any y 2 Fo; multiplying (14) on both sides by Ey :¼
diagfIn; y

�1=2
1 In1 ; . . . ; y

�1=2
N InN g yields EyPðyÞEy50 which immediately gives

ALðyÞ
TX ðyÞ þ X ðyÞALðyÞ5� eI

where ALðyÞ is the kernel of the closed loop system
P

o ðyÞ: Since X ðyÞ is bounded for all y 2 Fo;
by Theorem 8,

P
o ðyÞ is also asymptotically stable on Fc: Hence, by Theorem 1, the system (1) is

asymptotically stable on Fc: &

5. H1 PERFORMANCE OF LTDS

Our comparison system approach via value set covering can be easily extended to the analysis of
other properties of time-delay systems. As an example, in this section we address the problem of
H1 performance of LTDS. For simplicity, we only consider the single delay case, but our
analysis results can be generalized easily to systems with multiple delays.
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5.1. Problem description

Consider a LTDS (denoted as
P

d in the sequel) subject to exogenous disturbance given by

’xxðtÞ ¼ AxðtÞ þ A1xðt � tÞ þ BwðtÞ

zðtÞ ¼ CxðtÞ

where A; A1 2 Rn�n; B1 2 Rn�nw ; and C1 2 Rnw�n are constant matrices, t 2 ½0; %tt � is constant and
unknown time-delay, and wðtÞ 2 L2½0;1Þ is an exogenous disturbance. The H1 performance
problem is to examine if the system is asymptotically stable for all t 2 ½0; %tt � and satisfies

jjT ðs; tÞjj14g 8t 2 ½0; %tt � ð15Þ

where T ðs; tÞ is the transfer function from the disturbance vector w to performance vector z; and
g > 0 is the performance measure.

To proceed with our analysis, we first provide the following definition.

Definition 5
Suppose that a system

P
has an uncertain constant parameter x 2 X; X a compact set, and that

T ðs; xÞ is the transfer function from the disturbance w 2 L2½0;1Þ to the performance vector z: IfP
is asymptotically stable for all x 2 X; then the worst case H1 performance gn of

P
is defined

as

gn :¼ max
x2X

jjT ðs; xÞjj1 ð16Þ

5.2. Analysis of H1 performance

To simplify the presentation, we will employ frequency domain descriptions. Decompose A1 ¼
HF where H 2 Rn�q and F 2 Rq�n have full rank. First notice that the LTDS

P
d can be

rewritten as

sX ðsÞ ¼ %AAX ðsÞ þ HV ðsÞ þ BW ðsÞ

V ðsÞ ¼ ½ðe�st � 1ÞF �X ðsÞ

ZðsÞ ¼ CX ðsÞ

Replacing e�st with RmðyamsÞ and RmðysÞ; we obtain the following two systems
P

o and
P

i :
System

P
o:

sX ðsÞ ¼ %AAX ðsÞ þ HV ðsÞ þ BW ðsÞ

V ðsÞ ¼ ½RmðyamsÞIq � Iq�FX ðsÞ

ZðsÞ ¼ CX ðsÞ

System
P

i:

sX ðsÞ ¼ %AAX ðsÞ þ HV ðsÞ þ BW ðsÞ

V ðsÞ ¼ ½RmðysÞIq � Iq�FX ðsÞ

ZðsÞ ¼ CX ðsÞ

Then we have the following theorem regarding the relation among the worst case H1

performances of the systems
P

d ;
P

o and
P

i :
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Theorem 6
Suppose

P
o is asymptotically stable for all y 2 ½0; %tt �: Then the worst case H1 performances of

the systems
P

d ;
P

o and
P

i satisfy gni 4gnd 4gno :

Proof
Since

P
o is asymptotically stable for all y 2 ½0; %tt �; from Theorems 1 and 2, we know that

P
d is

asymptotically stable for all t 2 ½0; %tt �; and
P

i is asymptotically stable for all y 2 ½0; %tt �: Therefore,
the transfer functions Tdðs; tÞ ¼ C½sI � ðAþ A1e

�tsÞ�1�B; Toðs; yÞ ¼ C½sI � ðAþ A1RmðyamsÞÞ
�1�B;

and Tiðs; yÞ ¼ C½sI � ðAþ A1RmðysÞÞ
�1�B are analytic in s and bounded in the closed right half

complex plane. By the maximum modulus theorem [43],

jjTd ðs; tÞjj1 ¼ sup
o2R

%ss½Td ð jo; tÞ�; 8t 2 ½0; %tt �

jjToðs; yÞjj1 ¼ sup
o2R

%ss½Toð jo; yÞ�; 8y 2 ½0; %tt �

jjTiðs; yÞjj1 ¼ sup
o2R

%ss½Tið jo; yÞ�; 8y 2 ½0; %tt �

Therefore, gnd :¼ maxt2½0;%tt� supo2R %ss½Td ð jo; tÞ�; gno :¼ maxy2½0;%tt� supo2R %ss½Toð jo; yÞ�; and gni :¼
maxy2½0;%tt� supo2R %ss½Tið jo; yÞ�: Since %ss½Td ð jo; tÞ� is a continuous function in o and t; and
%ss½Tdð jo; tÞ� ! 0 as joj ! 1; we know that there exist a finite number *oo 2 R and *tt 2 ½0; %tt � such
that gnd ¼ %ss½Tdð j *oo; *ttÞ�: Since Xdð *oo; %ttÞ � Xoð *oo; %ttÞ; there exists *yy 2 ½0; %tt � such that e�j *oo*tt ¼ Rm �
ð jam *yy *ooÞ which implies that Toð j *oo; *yyÞ ¼ Tdð j *oo; *ttÞ: Hence, gnd ¼ %ss½Td ð j *oo; *ttÞ�4maxy2½0;%tt� supo2R
%ss½Toð jo; yÞ� ¼ gno :
Similarly, we can show that gni 4gnd and the proof is complete. &

Theorem 7
Let the minimal realization of P ðsÞ :¼ ½RmðamsÞ � 1�Iq be

P ðsÞ ¼
AP BP

CP DP

" #

As :¼ Aþ A1 þ HDPF ; Bs :¼ BPF ; Cs :¼ HCP and denote nP as the order of AP : Then the systemP
d is asymptotically stable for any constant time-delay t 2 ½0; %tt�; and satisfies the H1

performance bound gnd 4g; if there exist matrices X0 ¼ XT
0 > 0; X0 2 Rn�n; X1 ¼ XT

1 2 Rn�n; X22 ¼
XT
22 > 0; X22 2 RnP�nP and X12 2 Rn�nP such that

Pð0Þ50; Pð%ttÞ50 ð17Þ

and

X0 þ %ttX1 %ttX12

%ttXT
12 %ttX22

" #
> 0 ð18Þ
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where

PðyÞ :¼

P11ðyÞ P12ðyÞ ðX0 þ yX1ÞB CT

* P22ðyÞ yXT
12B 0

* * �gInw 0

* 0 0 �gInw

2666664

3777775
P11ðyÞ :¼ ðX0 þ yX1ÞAs þ X12Bs þ ATðX0 þ yX1Þ þ BT

s X
T
12; P12ðyÞ :¼ ðX0 þ yX1ÞCs þ X12AP þ yAT

s
X12 þ BT

s X22; and P22ðyÞ :¼ yXT
12Cs þ yCT

s X12 þ X22AP þ AT
P X22:

Proof
First of all, notice that PðyÞ is convex in y because it is affine in y: Hence (17) implies that

PðyÞ50; 8y 2 ð0; %tt � ð19Þ

Similarly, Equation (16), X0 > 0; as well as X2 > 0; imply that

X0 þ yX1 yX12

yXT
12 yX22

" #
> 0; 8y 2 ð0; %tt �

Pre- and post-multiplying by Ey :¼ diagfIn; y
�1=2InP ; Inw ; Inwg; the above inequality is equivalent

to

X ðyÞ :¼
X0 þ yX1 y1=2X12

y1=2XT
12 X22

24 35 > 0; 8y 2 ð0; %tt �

Multiplying (19) on both sides by Ey yields

EyPðyÞEy50 ð20Þ

which immediately gives

ALðyÞ
TX ðyÞ þ X ðyÞALðyÞ50

where

ALðyÞ :¼
As y�1=2Cs

y�1=2Bs y�1AP

24 35
Hence, from Theorem 1,

P
d is asymptotically stable for any constant time-delay t 2 ½0; %tt �:

Furthermore, (20) gives

ALðyÞ
TX ðyÞ þ X ðyÞALðyÞ X ðyÞ

B

0

" #
CT

0

" #

* �gInw 0

* 0 �gInw

2666664

377777550
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which, by the Bounded Real Lemma [18], is equivalent to

½C 0�½sInþnP � ALðyÞ��1
B

0

" #�����
�����

�����
�����
1

5g ð21Þ

It can be easily verified that

ALðyÞ
B

0

" #
½C 0� 0

2664
3775

is a minimal realization of
P

o; thus we have jjToðs; yÞjj15g; 8y 2 ð0; %tt �: In addition, we have

T ðs; yÞ ¼ ½C 0�½sInþnP � ALðyÞ��1
B

0

" #
¼C½sIn � As � Csðys� AP Þ

�1Bs��1B

thus

lim
y!0þ

T ðs; yÞ ¼CðsIn � As þ CsA�1
P BsÞ

�1B

¼CðsIn � %AAÞ�1 B ¼ T ðs; 0Þ

and we can conclude that gno 4g: Using Theorem 6, we have gnd 4gno 4g: &

6. NUMERICAL EXAMPLES

To examine the effectiveness of our approach, we compare our stability analysis results with
those similar criteria published elsewhere [6, 7, 9, 16] including a previous result by the authors
[24]. The calculations were performed on a Pentium 200 MHz PC by using the MATLAB LMI
Control Toolbox [44].

Example 1 (Park [9])
Consider the system (1) with a single delay and

A ¼
�2 0

0 �0:9

" #
; A1 ¼

�1 0

�1 �1

" #
Table I summarizes the maximal delay margin calculated by several methods along with the

CPU time for each method. We can see that using higher order Pad!ee approximation reduces the
conservatism of our analysis but requires more computation effort. For this example the delay
margin from Theorem 5 coincides with the value calculated by Theorem 4, and hence in this case
the basis function used in deriving Theorem 5 does not introduce additional conservatism. Note
that we used the bisection method with Theorem 5 to calculate the maximal delay margin. The
relatively larger computational time that Theorem 5 requires is largely due to the 10 iterations
used in the bisection search. This is not necessary if we use Theorem 5 to examine the stability
for a given %tt1 rather than determine the delay margin.
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Example 2 (Statistical Performance)
Using a 5th order Pad!ee approximation, we compared the statistical performance of our LMI
condition Theorem 5 with that of References [6, 9] and [24] by examining 1000 randomly-
generated second order single delay systems.} The computed delay margins are compared with
the actual values from the MIMO Nyquist Criterion and their distribution is shown in Figure 4.
We find that for 97.3% of these systems, our new result gives the d.o.c. less than 10%. We note
that with the next best performing criterion of Reference [24], less than 50% of the cases have
d.o.c. below 10%. The average d.o.c. for Theorem 5 is 1.52%.

Example 3 (Multiple-delay case)
Consider the following system with two independent delays

’xxðtÞ ¼ �xðt � t1Þ � xðt � t2Þ ð22Þ

For the stability analysis problem, the actual stability boundary may be computed numerically
using the analytical result [45]. In Figure 5, this boundary is plotted along with the stability
regions (boxes) that are determined from Theorem 5 (with a 5th order Pad!ee Approximation)
with varying proportionality ratio vector. Note that the stability region found for each
proportionality ratio is essentially as large as it could be, given the stability boundary (i.e., the
corner of the stability region box nearly touches the stability boundary in each case). For
instance, with the proportionality ratio vector n ¼ ½1 1�; the actual delay margin was found in
[45] to be p=4: The recent result [22] provides a delay margin of 0.7071 which has d.o.c. of 10%.
Using Theorem 5, we found a delay margin of 0.7825, and for this example the d.o.c. of our
LMI condition is only 0.37%.

Table I. Comparison of several methods.

Methods Maximal delay margin d.o.c. CPU Time (s)

Nyquist Criterionn 6.172 0 N/A
Niculescu et al. [7]y 0.956 84.5 3.74
Li et al. [6]y 0.9984 83.8 1.91
Park [9]y 4.358 29.4 4.80
Zhang et al. [24]y,z 5.542 10.2 4.80

m ¼ 3 5.021 18.7% 0.45
Theorem 4} m ¼ 4 5.985 3.0% 1.00

m ¼ 5 6.150 0.36% 2.60
m ¼ 3 5.020 18.7% 8.67

Theorem 5} m ¼ 4 5.985 3.0% 16.7
m ¼ 5 6.150 0.36% 26.7

nad hoc approach was used.
yThe generalized eigenvalue minimization algorithm was used.
zCovering disk Dð�0:251; 0:749Þ was used.
}Bisection search with 10 iterations was performed.

}For each test case, Aþ A1 is Hurwitz and the stability of the system is delay-dependent.
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Figure 4. Performance of several criteria. (a) Result of Reference [6]. (b) Result of Reference [9]. (c) Result
of Reference [24]. (d) Theorem 5.
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Figure 5. Stability boundary of system (22) and stability regions guaranteed by LMI with
varying proportionality ratio.
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7. CONCLUSIONS

In this paper, we presented a comparison system approach for analysis of linear systems with
time-invariant delays. In the comparison system, the uncertain delay elements are replaced by a
parameter dependent Pad!ee approximation to the exponential function. By using inner and outer
covering sets for the non-rational delay elements, we demonstrated that replacing the delay
elements with the traditional form of a diagonal Pad!ee approximation leads to a necessary
condition for stability of the time-delay system, while replacing with a frequency-dilated Pad!ee
approximation results in a sufficient condition. The degree of conservatism of this sufficient
condition has an a priori known upper bound which depends only on the order of the Pad!ee
approximation used and can be made arbitrarily small. Moreover, in the single delay case, the
delay margin can be calculated explicitly without incurring any additional conservatism. In the
general case, this condition can also be reduced with some (typically small) conservatism to
finite-dimensional LMIs. Finally, this approach is also extended for analysis of the H1

performance of linear time-delay systems with an exogenous disturbance.
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Appendix A: Proof of Lemma 4

Proof
From the results of Reference [40], we have

jQmð joÞj2 ¼
ðm!Þ2

½ð2mÞ!�2
Xm
k¼0

ako2k ; o 2 R ðA1Þ

where ak ¼
½2ðm�kÞ�!ð2m�kÞ!

k!½ðm�kÞ!�2
> 0; and

d

ds
RmðsÞ ¼ �RmðsÞ þ ð�1Þm

ðm!Þ2

½ð2mÞ!�2
s2m

Q2
mðsÞ

ðA2Þ

Since QmðjoÞ ¼ Pmð�joÞ; from (A1) and (A2) we get

d
do RmðjoÞ
RmðjoÞ

¼ � 1þ
ðm!Þ2

½ð2mÞ!�2
o2m

jQmðjoÞj2

¼ � 1þ
o2m

o2m þ
Pm�1

k¼0 ako2k

Note that jRmðjoÞj 	 1; log RmðjoÞ ¼ jArg RmðjoÞ; o 2 R: Thus

d

do
Arg RmðjoÞ ¼

d

ds
ðlog RmðsÞÞjs¼jo

¼
d
doRmðjoÞ
RmðjoÞ

¼ �
TmðoÞ

o2m þ TmðoÞ
&

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1149–1175

ANALYSIS OF LINEAR SYSTEMS 1171



Appendix B: Proof of Theorem 2

Proof
If (1) is asymptotically stable on

QN
k¼1 ½0; %ttk�; then

det½Iq � GðjoÞDðoÞ�=0; 8o50; dkðoÞ 2 Xd ðo; %ttkÞ

where DðoÞ :¼ diag fðd1ðoÞ � 1ÞIq1 ; . . . ; ðdN ðoÞ � 1ÞIqN g: In view of the fact that Xiðo; %ttkÞ � Xd

ðo; %ttkÞ; for every dkðoÞ 2 Xiðo; %ttkÞ; we have dkðoÞ 2 Xd ðo; %ttkÞ: Therefore

det ½Iq � Gð joÞDðoÞ�=0; 8o50; dkðoÞ 2 Xiðo; %ttkÞ

which can be rewritten as

det½Iq � GðjoÞDyðoÞ�=0; 8o50; yk 2 ½0; %ttk�

where DyðoÞ :¼ diagfðRmð jy1oÞ � 1ÞIq1 ; . . . ; ðRmð jykoÞ � 1ÞIqN g: Define pðsÞ :¼ RmðsÞ � 1 ¼
N ðsÞ=DðsÞ; then the above condition is equivalent to

ryðjo; hÞ=0; 8o50; yk 2 ½0; %ttk�; h 2 ½0; 1� ðB1Þ

where ryðs; hÞ is the characteristic function associated with the closed loop system
P

i ðyÞ;
given by

ryðs; hÞ :¼ det ðsIn � %AAÞ �
XN
k¼1

Ak
N ðhyksÞ
DðhyksÞ

" #
Since %AA is Hurwitz, all of its eigenvalues are located in the open left half complex plane C�: The
eigenvalues of a matrix continuously depend on its elements, hence there exists a sufficient small
e > 0 such that the eigenvalues of the matrix %AAþ

PN
k¼1 zkAk remain in C�; for all jzk j4e:

Next, we fix y: The condition (B1) indicates that for any h 2 ½0; 1�; there are no roots of ryðs; hÞ
located on the jo axis. For h ¼ 0;N ðhyksÞ ¼ 0; DðhyksÞ ¼ 1; and the roots of ryðs; hÞ
are all located in C�: Next, we will prove by contradiction that for h 2 ð0; 1�; there exist no
roots of ryðs; hÞ located in the open right half plane Cþ: Assume that for h1 2 ð0; 1�; there is a
zero l1ðh1Þ 2 Cþ of ryðs; h1Þ: Since the degree of ryðs; hÞ is invariant for h > 0; the zeros of ryðs; hÞ
are continuous in h: Hence l1ðhÞ remains in Cþ for all h 2 ð0; 1� since it cannot cross the jo axis.
On the other hand, because limhs!0 pðhyksÞ ¼ 0; there exists a constant b > 0 such that jp�
ðhyksÞj4e; for all jhsj5b and all k 2 f1; . . . ;Ng: In addition, pðsÞ is stable and proper, hence for
every ReðsÞ50; jpðsÞj4supReðzÞ50 jpðzÞj ¼ supo2R jpð joÞj ¼ 2: Also, since l1ðhÞ is a zero of ry �
ðs; hÞ; from Matrix Theory [46], jl1ðhÞj4jj %AAþ

PN
k¼1 Akpðhykl1ðhÞÞjj14jj %AAjj1 þ

PN
k¼1 jpðhykl1 �

ðhÞÞj jjAk jj14c; where c :¼ jj %AAjj1 þ 2
PN

k¼1 jjAk jj1 > 0 is a constant. Then, we can choose a
sufficiently small h2 2 ð0; 1� such that jh2j5

b
c: Then jh2l1ðh2Þj5b and hence jzk j4e; where zk :¼

pðh2ykl1ðh2ÞÞ: Therefore, l1ðh2Þ 2 Cþ is an eigenvalue of %AAþ
PN

k¼1 zkAk : This contradicts the
fact that all eigenvalues of %AAþ

PN
k¼1 zkAk are in C�; for all jzk j4e: The proof is thus

complete. &

Appendix C: Proof of Lemma 8

To prove Lemma 8, we need the following results.
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Lemma C.1
Suppose A 2 Rn�n is Hurwitz and satisfies the Lyapunov inequality

ATP þ PA5� Q

where P and Q are symmetric and positive definite matrices. Then every eigenvalue li of A
satisfies

ReðliðAÞÞ5�
lminðQÞ
2lmaxðP Þ

; i ¼ 1; . . . ; n

Proof
Take m :¼ lminðQÞ=2lmaxðP Þ: Then we have 2mP4Q; or,

�Qþ 2mP40

Since ATP þ PA5� Q; we have

ðAþ mIÞTP þ P ðAþ mIÞ5� Qþ 2mP

Hence ðAþ mIÞTP þ P ðAþ mIÞ50: Therefore, all eigenvalues of Aþ mI are in the open left half
complex plane, or

ReðliðAÞÞ5� m ¼ �
lminðQÞ
2lmaxðP Þ

&

Proof of Lemma 8
The proof for the first part is trivial. To prove the second part, we notice that since X ðyÞ is
bounded for all y 2 Fo; there exists a constant c0 > 0 such that lmaxðX ðyÞÞ4c0 for all y 2 Fo:
Hence from Lemma C.1, we conclude that all the closed loop poles of

P
o ðyÞ remain to the left

of the vertical line ReðsÞ ¼ �1=2c050 for all y 2 Fo:
Define pðsÞ :¼ RmðamsÞ � 1 ¼ N ðsÞ=DðsÞ; and suppose ryðsÞ is the characteristic function

associated with the closed loop system
P

o ðyÞ; given by

rðs; y1; y2; . . . ; yN Þ :¼ det sIn � %AA�
XN
k¼1

Ak
N ðyksÞ
DðyksÞ

" #
Next, let c1 :¼ maxfReðsÞjDðsÞ ¼ 0g: Then c150 since DðsÞ is Hurwitz. Let c2 ¼ maxf� 1

2c0
;

max14k4N fc1
%ttk
gg; then it is clear that ryðsÞ is analytic in the region ReðsÞ > c2:

Clearly, we only need to show that
P

o ðhÞ is asymptotically stable on the boundary of Fc:
Without loss of generality, it suffices to show that ryðsÞ does not have roots in the closed right
half plane %CCþ for any L > 1 with yk ¼ 0 for all k 2 f1; . . . ;L� 1g; and 05yk4%ttk for all
k 2 fL; . . . ;Ng: To this end, we fix yk ; k 2 fL; . . . ;Ng; and assume there exists s0; such that
rðs0; 0; . . . ; 0; yL; . . . ; yN Þ ¼ 0 and Reðs0Þ50: Notice that rðs; y1; . . . ; yN Þ can be represented in the
form

rðs; y1; y2; . . . ; yN Þ ¼ fðsÞ þ Zðs; y1; . . . ; yN Þ

where fðsÞ :¼ rðs; 0; . . . ; 0; yL; . . . ; yN Þ: Then, there exists a sufficiently small neighborhood F of
s0; such that F is a closed set and located entirely in the region ReðsÞ > c2; and fðsÞ does not
vanish on the boundary of F : Since Zðs; y1; . . . ; yN Þ is continuous in y and Zðs; 0; . . . ; 0; yL; . . . ;
yN Þ ¼ 0; we know that for sufficiently small yk ¼ *yy > 0; k ¼ 1; . . . ; L� 1; we have that jZðs; y1;
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. . . ; yN Þj5jfðsÞj on the boundary of F : By Rouch!ee’s Theorem [31], rðs; *yy; . . . ; *yy; yL; . . . ; yN Þ has at
least one root s in F : This is the contradiction we seek. &
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