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SUMMARY

This paper presents a comparison system approach for the analysis of stability and %, performance of
linear time-invariant systems with unknown delays. The comparison system is developed by replacing the
delay elements with certain parameter-dependent Padé approximations. It is shown using the special
properties of the Padé approximation to e * that the value sets of these approximations provide outer and
inner coverings for that of each delay element and that the robust stability of the outer covering system is a
sufficient condition for the stability of the original time delay system. The inner covering system, in turn, is
used to provide an upper bound on the degree of conservatism of the delay margin established by the
sufficient condition. This upper bound is dependent only upon the Padé approximation order and may be
made arbitrarily small. In the single delay case, the delay margin can be calculated explicitly without
incurring any additional conservatism. In the general case, this condition can be reduced with some
(typically small) conservatism to finite-dimensional LMIs. Finally, this approach is also extended to
the analysis of # , performance for linear time-delay systems with an exogenous disturbance. Copyright
© 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The analysis of linear time-delay systems (LTDS) has attracted much interest over a half
century, especially in the last decade. The recent books [1-3] contain an extensive collection of
research results dealing with both delay-dependent and delay-independent stability conditions.
Much interest in the literature has focused on searching for sufficient conditions which are
numerically tractable but are not too conservative. Many of the stability criteria have been
formulated in the time domain, based on Lyapunov’s Second Method using Lyapunov—
Krasovskii functionals or Lyapunov—Razumikhin functions [4-9]. Frequency domain
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techniques for analysis of time-delay systems have also been developed [10], such as polynomial
criteria [11-13], matrix pencils [14], integral quadratic constraints [15], the singular value test
[16], u-based criteria [17, 18], etc. Most of these stability tests are for systems with a single delay.
In recent years, several stability criteria for the multiple delay case have also been reported. In
Reference [19], the traditional p-framework was extended for time-delay systems to obtain a
necessary and sufficient stability condition, which was then relaxed to a convex sufficient
condition. For linear systems with commensurate delays, [20] proposed a simple stability test
which requires computation of eigenvalues and generalized eigenvalues of constant matrices.
For the general multiple delays case, several sufficient stability conditions have also been
reported [21,22].

Many of the existing stability criteria involve, either explicitly or implicitly, covering
the uncertain delay elements with some (convex) sets so as to obtain numerically tractable
stability conditions [23]. Furthermore, the conservatism of the analysis can be effectively
reduced by choosing appropriate covering sets, based on the properties of the delay ele-
ments [24].

In this paper, we present a covering set for the non-rational delay element based upon
parameter-dependent diagonal Padé approximations of the function e™*. Special properties of
these approximations are used to develop both inner and outer coverings that are related via
frequency dilation. We demonstrate that a comparison system can be obtained by replacing the
delay elements with the outer Padé approximation and that robust stability of the resulting
finite-dimensional, parameter-dependent system is sufficient for delay-dependent stability of the
original time-delay system. Using the inner approximation, we establish that the degree-of-
conservatism of this sufficient condition has an upper bound that is dependent on/y on the order
of the outer Padé approximation used and may be made arbitrarily small. Moreover, in the
single delay case, the delay margin given by this condition can be calculated explicitly without
incurring any additional conservatism. In the general case, this condition can also be reduced
with some (typically small) conservatism to finite-dimensional LMIs. Finally, this approach is
extended to derive a sufficient condition for the ., performance for LTDS with exogenous
disturbance.

The results of this paper indicate that, by replacing the uncertain delay elements e ™*
with Padé approximations directly, the stability analysis of the resultant finite-dimensional
system only gives a necessary condition, and hence it does not guarantee, in general, the
stability of the original systems. This traditional manner of using Padé approximations for
time-delay systems has been used extensively; see [25-28]. However, it can only be used for
small delays and over a finite bandwidth of the system, because the Padé approximations
are accurate only when |t;s| is sufficiently small. On the other hand, our covering relation holds
for all frequencies. Thus, by using a frequency-dilated version of the Padé approximation,
robust stability of the comparison system guarantees the stability of the original time-delay
system without imposing any restrictions on the magnitude of the delay and/or the system
bandwidth.

Many published Lyapunov-based stability analysis results (see References [6,7,9] and the
references therein) use a model transformation to transform a time-delay system into a system
with distributed delays. The recent results of References [29,30] demonstrated that this
transformation introduces additional dynamics and hence any stability criteria based on this
transformation will be inherently conservative if the additional dynamics have unstable poles (in
addition to the conservatism induced by the value set covering discussed in Reference [23]). Our
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result does not involve such model transformation, and therefore does not suffer the inherent
conservatism incurring in these Lyapunov-based results.

The notation used in this paper is conventional. Let R™" (C"*") be the set of all real
(complex) n x m matrices, C, (C,) be the open (closed) right-half of the complex plane, R, :=
R U {0}, I, be n x n identity matrix, and W7 be the transpose of real matrix W. P > 0 indicates
that P is a symmetric and positive definite matrix, and || - ||, indicates the #,, norm defined by
[|Glls = SUpyer 6lG(jw)] where ¢(M) is the maximum singular value of the complex matrix M.
For a transfer function matrix G(s), its minimal realization (4, B, C, D) is denoted by

A |B
C|D

and 4 is said to be the kernel matrix of G(s). If P = PT and Q = QT, then

G(s) =

P M
* 0
denotes the symmetric matrix
P M
Mt QO ]

For matrices M = (m;;) € R"*" and N € R™"™, the Kronecker product is defined by M ® N
= (myN) and the Kronecker sum is defined by M @ N =M ® I, + I,, ® N. A}, (M) is the
maximum positive real eigenvalue of M and 47, (M) = 0" when M does not have any positive
real eigenvalues. Finally, given a continuous function w(g) : [0, 00) — & where & = {z e C| |z| =
1}, letting T', be the path created by mapping the interval ¢ € [0, 7] via w(g) to &, we define a
continuous argument (phase) function for the value w(r) as Arg(w(r)) = arg(w(r)) + 2nn(T,,0),
where arg(z) € (—2, 0] is the unique argument of z € C, z#0 and (I', @) is the winding number?
of path I" about a.

2. PRELIMINARIES

Consider the linear, multiple time-delay system given by
N
X(t) = Ax(t) + Y Apx(t — 1) (1)
=1

where the time delays t; € [0,74], T4 >0, £ =1,...,N, are constant, unknown and independent
of each other. We denote the delay vector by 7 =[r; --- 7y], and the delay set Hgil X
[0,7¢] = {[t1 -+ vlltr €0, %], k=1, ..., N}.

The following assumption is necessary when investigating asymptotic stability of the
system (1).

*For clockwise paths, winding numbers are negative. See Reference [31] for more details.
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- A

G(s) -

Figure 1. An interconnection system.

Assumption 1 B
The system (1) free of delays is asymptotically stable, that is, the matrix 4 .= A4 + ZkN:1 Ay 18
Hurwitz.

Herein, we provide the definitions and preliminary results that will be used later in our analysis.
First, we provide the notion of robust stability of a feedback interconnection of a finite-
dimensional linear, time-invariant (FDLTI) system and an uncertain system with known
uncertainty structure. More on this definition can be found in Reference [32].

Definition 1

Consider a linear, time-invariant (finite-dimensional) system G(s) interconnected with an
uncertain block A € A (A is a set of linear time-invariant stable systems), as shown in Figure 1,
denoted as Y [G(s), A(s)]. Then the system is said to be robustly stable if G(s) is internally stable,
the interconnection is well-posed and it remains internally stable for all A € A.

It is well known that the stability of (1) can be described by its characteristic function (see e.g.
References [14, 33-35] and the references therein).

Definition 2
The system (1) is said to be asymptotically stable on H,’Ll [0, 7] if and only if

¥(s,tr,. .., ) #0, VseCy,ti €[0,7] )

where YW(s,ty,...,7y) = det(sl, — 4 — ZleAke’W) is the characteristic function associated
with system (1).

Compared with the single-delay case, the analysis of linear systems with multiple delays is much
more complicated. As a matter of fact, in the general non-commensurate delays case, this
problem is .A4"#2-hard [36]. Consequently, it is unlikely to find efficient algorithms to solve this
problem exactly in the general case. Our objective is to find sufficient conditions which are
numerically tractable but are not too conservative. Moreover, it turns out that the analysis of
the stability regions is rather complex even for the case of a scalar differential equation involving
only two delays [37]. In particular, this system may have multiple ‘maximum’ stability margins,
i.e., the system may have stability margins which are unbounded in two different directions [38].
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This phenomenon complicates our analysis. Herein, we introduce the definition of the actual
delay margin with a proportionality ratio vector.

Definition 3
Given the proportionality ratio vector v:=1[/; --- Iy] € RY, where min;<x<y (/) = 1, the
actual delay margin ©* for the system (1) is defined by

N
¥ = sup{ﬂ(l) is asymptotcially stable on H [0, lkf]}
k=1

The stability of system (1) is said to be delay-dependent if T* is finite, and delay-independent
otherwise.

Next, we introduce the definition of the degree of conservatism of a stability criterion.

Definition 4
Suppose the stability of (1) is delay-dependent with actual delay margin 7 * with respect to the

proportionality ratio vector v :=[/; --- ly], and 2 is a sufficient condition which ensures the
asymptotic stability of (1). The degree of conservatism (d.o.c.) of 2 is defined by
T -7
d.o.c(?) = _7*”7
T

where 7% = sup{7|2 is true on [[_, [0,/;7]}. Moreover, 7% is said to be the delay margin
guaranteed by 2 with the same proportionality ratio vector v.

The d.o.c.(?) gives a quantitative measure for the conservatism of the stability criterion Z2.
Notice that 0<d.o0.c.(?)<1. If 2 is necessary and sufficient, d.o.c.(#) = 0.

Our results will make use of the following lemmas.

Lemma 1 (Datko [34])

Given 14,...,ty =0, the function a(%) = sup{Re(s)|'V(s, ~t1,...,hty) = 0} is continuous for all
h=0.
Lemma 2
The system (1) is asymptotically stable on Hivzl [0, %] if and only if

W(io, 11, ta) 20, Yor=0,7 € [0, (3)
Proof

Necessity is obvious. We prove the sufficiency by contradiction. Assume there exist s € C, and
T, €[0,7c), k=1,...,N such that W(so,7y,...,Tn) = 0. Let a(h) = sup{Re(s)|'Y(s, htyy, ..., h
75,) = 0}. Then we have a(1) > 0. Notice that A=A+ Zszl Ay 1s Hurwitz, thus ¢(0) <0. Since
from Lemma 1, o(h) is continuous for 4#>0, there exists A € [0, 1] such that a(hy) = 0. Let
T = hot, €[0,7¢], k=1,...,N. Then we have sup{Re(s)[¥(s,%,,...,Tr,) =0} =0. On the
other hand, for any given constant ¢ >0, the number of the roots of Y(s,s,..., %) in
the region —c <Re(s) <c is finite, and these roots, if any, have finite magnitude [35]. Therefore,
there exists an @ € R such that ¥(jo, 7y, . . ., Tk, ) = 0. This contradicts the condition (3) because
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the roots of W(s,7,,...,Tr,) are symmetric with respect to the real axis. The proof is hence
complete. []

In the sequel, we decompose A; = H;F;, where H, € R"™% and F, € R%**" have full rank, and
denote H := [H, --- Hyl,and F == [F! --- FIE]T. The following zero exclusion condition will be
used for the stability analysis of (1).

Lemma 3 (Zero Exclusion Condition: Multiple Delay Case)
The system (1) is asymptotically stable on Hivzl [0, 7] if and only if

detll, — G(jw)D(z,jw)] #£0, Yor=0, 14 € [0, %] 4)

A|lH
Flo

and O(z,s) = diagi{p(ti8)y,, ..., P(tys)y, }, P(Tes) =e ™ — 1.

where ¢ = ¢q1 + -+ qv,

G(s) = F(sl, — A 'H =

Proof
This follows form Lemma 2 immediately. []

Examining the stability of (1) by checking the condition (4) directly is nontrivial, because (4)
implies solving a transcendental equation. An indirect but intuitive approach for examining
whether (4) holds, is to cover @(t, jw) with another set ®(w), that is, to find a value set ®(w) such
that for each >0,

N
O(z,jw) € D(w), Vre ] 10,7
k=1

Then (4) holds if det[/, — G(jw)A(jw)]#0, VA(jw) € ®(w), for each w>0. This is satisfied if the
interconnection Y [G(s), A(s)] (referred to as the comparison system in the sequel) is robustly
stable. The conservatism of this approach mainly arises from the manner in which the covering
set ®(w) is chosen for each frequency w, based on the properties of the delay element. In
Reference [23], it was demonstrated that the unit disk was implicitly used in the Lyapunov-based
stability criteria of [4,7,6,9]. In Reference [24], various covering sets, based on a shifted disk
and/or a weighting filter were introduced to reduce the conservatism of the analysis.

Herein, we introduce a new less conservative covering set for the delay element ®(z, jw), which
is based on the properties of the diagonal Padé approximation to the delay element.

3. INNER AND OUTER COVERING OF THE DELAY ELEMENT VALUE SET USING
PADE APPROXIMATION

Since 1970s, Padé approximations have been widely used in various fields, such as physics,
chemistry and mathematics. Recently, Padé approximations have also been used for LTDS (see

Reference [25] and the references therein). A Padé approximation is a rational approximation to
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an irrational function and is defined so that its power series expansion matches as many terms of
the power series of the approximated function as possible [39].

Next, we develop an inner and outer covering relation for the delay element using a Padé
approximation to e~*. This relation is fundamental to the stability analysis developed in the later
sections. The primary reason that a Padé approximation is used for our analysis of LTDS is that
this choice ensures the approximation of the delay element is stable itself for any order of
approximation [40]. Alternative approximations, such as Taylor, do not necessarily enjoy this

property.
Consider the mth (m > 3) diagonal Padé approximation R,,(s) to e . Then we have
Pu(s)
Ry(s) = -+
" On(s)
where

" (2m — k)!m!(—s)*
Pm = A NV N and m = Pm )
() ; Qi — g 204 On(9) = Pal=s)

Clearly, for each w € R, R, (jw) is on the unit circle in the complex plane. Now, consider the
continuous argument function Arg(R,(jw)) for R,(jw) for all @>0. This satisfies Arg(R,
(jo))y—o = 0. The following lemma provides a property of this phase function which plays a key
role in proving Lemma 5.

Lemma 4
For every integer m >3, the function (d/dw) Arg(R,,(jw)) can be expressed in the following form:
d : Tn(w)
— Arg(R,, =—— VYoeR
3o ArgRu(jo)) = —o Ty @€
where
m—1
Tu(w) = aow™* (5)
k=0
and a; >0, k=0,...,m — 1 are independent of w. (see Appendix for proof)

In the sequel, given constant 7> 0 and w >0, we define the following value sets:®
Qu(w,7) = {e ™t e[0,7]}
Qo(0,7) = {Ry(j0xnw)|0 € [0, 7]}
Qi(w,7) = {R,,(jOw)|0 €[0,7]}
where o, = ., /27, and ., is the phase crossover frequency of R, (jw) at the —2= line:
Ocm = min{w > O|R,,(jo) = 1}.

It can be found that for m = 3,4 and 5, o, ~ 1.2329,1.0315 and 1.00363, respectively. Since
|R,(jw)| =1, for every >0, Qu(w, 1), R,(w,7) and Q;(w,7) are arcs on the unit circle; see
Figure 2.

$The subscripts d, 0, and i indicate delay, outer, and inner, respectively.
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Figure 2. The covering sets generated by a third order Padé approximation (w = 2.5rad/s and 7 =1 s).
Arc SLI-set Q;(w,1); Arc SLD-set Q,(w, T); Arc SLO-set Q,(w, 7).

Now, for the continuous argument functions of e and R,,(ju,m) for all @>0, we have
Arg(e ) |,_o = ArgRu(jon®)) |y—o = 0, Arg(e )= —m, for all @>0. When m = 3, the
phase functions Arg(e ), Arg(R,(jun®)), and Arg(R,(jw)) are shown in Figure 3. We have
the following lemma about the relationship among these functions.

Lemma 5
For every integer m>3, the phase functions Arg(e ), Arg(R,(jo.®)), and Arg(R,(jw)) have
the following properties.

(a) Arg(e )< Arg(R,(jo)), VYo €[0,w.n], and
(b) Arg(R,,(jonw)) <Arg(e ), VYo €0, 2n].

Proof
From Lemma 4, we know that there exist constants a; >0, £k =0,...,m — 1, such that
d . Tn(w)
— Arg(R ="V R
d(}J rg( Wl(.]w)) wzm + Tm((l))’ w e
where
m—1
Ty() = ao™ (6)
k=0

If follows that

9 ArgRu(o)> — 1, VoeR
dw

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1149-1175



ANALYSIS OF LINEAR SYSTEMS 1157
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Figure 3. Phase plot for delay and third order Padé approximation. (a) Arg(e™i?).
(b) Arg(Ry(jor)). () Arg(Ry(jw)).

Then (a) follows from integrating the above inequality from 0 to , by using the fact that
Arg(e™”) = —w and Arg(R,(jo))|,=o = 0.
To show (b), we define

1
g() = Arg(Ru(jo)) +——o

and obtain
2 Fp .
o2 g(w) = do? Arg(Ru(jw))
_ 4] Tu»
 dw|w* + T,(0)

_ w2m7| [2me(0)) B U)Tm/(w)]

- [0 + Tu(@)]

0 ag + 23707 ar(m — o]
- [0 + T,()]

Therefore, (dz/dwz)g(w) >0 for all w >0 because agp >0 and ay(m —k)>0, k=1,...,m— 1.
This indicates that the function g(w) is strictly convex in the interval w € (0, ;). Clearly,
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g(o,m) is strictly convex in the interval w € (0, 27). Because g(0,®)|,—g = g(0m®)|y=rr = 0, We
have g(o,,w)<0, for all € [0,2x], which yields (b). []

Next we demonstrate that the function R,,(s) and the above defined sets have several important
properties which are summarized in the following lemma.

Lemma 6
For every integer m >3, the following statements hold:

(a) All poles of R,(s) are in the open left half complex plane.
(b) Given any 7>0 and any w >0, Qi(w,7) < Qu(w,7) < Q,(w,7), and
(¢) ap = 1 as m — 0.

Proof
(a) The conclusion follows directly from the results of Reference [40].
(b) From Lemma 5, we conclude that

Qi(.7) € Q. 7)., Yoe [0, ”i’”}
T

_ 2n

Qd(wn T) - Qo(wa f)n Vo e |:On ?:l

Also, if ®> w,/T, both Qi(w,7) and Qu(w,T) cover the entire unit circle. Thus,
Qi(w,7) = Qy(w,7) for all w > w,,/t. Similarly, for all w > 2x/7, both Q,(w,7) and Qu(w,7)
cover the entire unit circle, hence Q,(w,7) = Q4(w, 7). Thus we have Q;(w, 1) < Qu(w,7) < Q,
(0,7), Yor=0.

(c) Let m= 5. First, it can be easily seen from part (a) of Lemma 5 that w,, > 2n. On the other
hand, for every o > 0, it can be verified that 7}, (w) > ©’T,,(w) where T,,(w) is given by (6).
Hence, using Lemma 4, we have

WDem d
Are(RaGoon )l =| [ 5 Areation | a0

e D)
_/0 P+ To() O

P T5(w)
> - - 7
/0 %+ Ts(w) do

Then by the definition of w,,,, we conclude that 27 < @, < Wepl,—5 <2.00737. In view of the fact
(4/e)m > ey, it follows from the results of Reference [41] that

|Cijw“” — 1] = |efjw[,,, — Ry(joem)|
Oeme 2+1 (4.286>2m+1
<(ZmT < (2
4m m

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1149-1175
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In addition, there exists &,, € [2m, w.,] such that

Lo . Wem im
|e JWem 1| = ‘2 S]nTc‘ = |a}cm — 27'E| COS?
2.00737
2 |wcm - 275' COs
2
Therefore,

1 4.286\ !

ot — 1] 2ﬂ|wcm2n|<0-16(m) ™

which implies that o,, — 1 as m — oo.

It should be noted that the above proof has an important implication. When @ > w,,, /7, the two
sets Q;(w,7) and Qu(w,7) both cover the unit circle and consequently Q;(w,7) = Qu(w, 7).
Similarly, for every w > 2n/7, both Q,(w,7) and Q,(w,7) cover the unit circle, and hence
Qi(w,7) = Q,(w, 7). The fact that the inner and outer covering relation in (b) of Lemma 6 holds
for every frequency w>=0 is of fundamental importance for our analysis and is in contrast with
the traditional manner of using rational approximations, in which the accuracy and validity can
only be ensured for a certain finite frequency range.

4. STABILITY ANALYSIS

We now will take advantage of the outer covering developed in the preceding section to create a
finite-dimensional, parameter-dependent comparison system, the robust stability of which will
guarantee the stability of the original time-delay system. The inner approximation will be
employed to establish a necessary condition for stability, and this will allow the establishment of
an upper bound on the degree-of-conservatism of the sufficient condition. Toward this end, we
replace the delay elements e ™* with the real rational functions R,,(0;%,s) and R, (6;s) and
denote the resulting finite-dimensional interconnection systems as Y (0) := > (G(s), Py(ot5))
and ), (0) = > (G(s), Py(s)), respectively, where Py(s) = diag{[R(01s) — 11y, ..., Ru(Ons) —
1]7,n}. This changes the analysis problem from one of examining the stability of a family of
infinite-dimensional systems (parameterized by t;) to one of examining the stability of a family
of finite-dimensional systems (parameterized by 6;). Note, however, that the variables 7, and 60y
are not in any sense equivalent.
The following theorem gives a sufficient condition for the stability of (1).

Theorem 1
The system (1) is asymptotically stable on Hﬁcv:l [0, 7], if the comparison system ). (6) is
robustly stable for 0 € ],_, [0, 7.

Proof
If >, (0) is robustly stable for 0 € Hi’zl [0, 7], then

N
det[Z, — G(i@)Py(jon)] #0, VYo =0, 0e[][0.%]
k=1

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1149-1175
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which can be rewritten as
det[l, — G(jow) diag{[o1(w) — 1]1,,, ..., [on(®) — 1]1,, }]#0
V=0, 6 (w) € Qy(w, Tr)
From Lemma 6, Q,(w, 7)) < Q,(w, T;). Hence
det[l, — G(jw) diag{[d1(w) — 1]1,,, ..., [0n(@) — 1]I,, }]#0
V=0, or(w) e Qq(w, Tx) ®)
which implies that
N
det[l, — G(jo)D(z,jw)] #0, Yor=0, te ] [0.%]
k=1
Thus from Lemma 3, (1) is asymptotically stable on Hi’zl [0,7]. O

The following theorem provides a necessary condition for the stability of (1) which will be used
to check the d.o.c. of our analysis result.

Theorem 2
If (1) is asymptotically stable on HkN:1 [0, T¢], then ), (0) is robustly stable for 6 € HkN:1 [0, T4].

The proof of this theorem is rather technical and is given in Appendix B.
Next, we show that the d.o.c. of Theorem 1 is bounded by a function of o,,.

Theorem 3
The d.o.c. of Theorem 1 with any proportionality ratio vector v satisfies

m— 1
d.o.c.(Theorem 1)< x

)

m

Moreover, d.o.c.(Theorem 1) - 0 as m — oo.

Proof
Let 7% be the actual delay margin of (1), and 775, ..., be the delay margin guaranteed by
Theorem 1, both with the same proportionality ratio vector v. Let

T, = sup{f,-

Then, clearly, we have 7; = O‘me*heorem - In addition, from Theorem 2, >, (0) is robustly stable
for 6 Hivjl [0, 7x] whenever (1) is asymptotically stable on Hivzl [0, 74]. Therefore,

T,>t*

N
Z (0) is robustly stable for 0 € H [0, lkf,-]}
i k=1

which immediately yields (9). [
Remark 1
For m =3, 4 and 5, we have («, — 1)/a, ~ 18.9, 3.05 and 0.361%, respectively. This upper

bound depends only on the order of Padé approximation used and it can be reduced to any
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desired degree by choosing higher order m. This d.o.c. upper bound is independent of 7*, 4
and 4.

Remark 2

Theorem 2 indicates that, by replacing the delay elements e ™ with Padé approximations
directly, the stability analysis of the resultant finite-dimensional system only gives a necessary
condition, and hence it does not guarantee, in general, the stability of the original time-delay
systems. This manner of using Padé approximations for time-delay systems has been used
extensively; see [25-28]. However, it can only be used for small delays and over a finite
bandwidth of the system, because the Padé approximations are accurate only when |tys| is
sufficiently small. On the other hand, Theorem 1 may be used for analysis without any
restriction in its use on the delays or on the bandwidth of the system. This is due to the fact that
the covering relations hold for all frequencies.

The following corollary follows immediately from Theorem 3 and inequality (7). This result
gives an explicit bound on the d.o.c. as a function of m.

Corollary 1
For m>=35, the d.o.c. of Theorem 1 with any proportionality ratio vector v satisfies

4286) 2m+1

d.o.c.(Theorem 1)<0.16( (10)
m

4.1. The singularity problem

The comparison system ) (0) is free of delays, but it has parametric (real) uncertainties 0y.
Some care must be taken when examining its robust stability. When 0, = 0 for some k& =
I,...,N, the system dynamics suffer a fundamental and abrupt change. The singularity of the
system at 6; = 0 obviously complicates the employment of Theorem 1 for analysis. Next, we
discuss several approaches for dealing with this issue. We first consider the single delay case, and
then we address the multiple delays case. For convenience, in the sequel, let the minimal
realization of Pi(s) == [Ry(cms) — 1]/, be

Ap, | B,
Pi(s) =

P | Dp,

A, = A+ Ziv:l HDp Fy, By := Bp,Fy, Cy = H;Cp, and denote ny as the order of 4p,.

4.2. Single delay case: An explicit delay margin formula

First, we consider the special case when N = 1. In this single delay case, the singularity issue can
be dealt with in a straightforward manner. We demonstrate that the delay margin 5, ..,
guaranteed by Theorem 1 can be explicitly calculated without incurring any additional
conservatism in the single delay case. Then, we conclude that if T) <75 . .. |- the system (1) is
asymptotically stable for all 7; € [0, 7;].
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Theorem 4

Suppose that N = 1 and the system (1) is asymptotically stable for all 7| € [0, 7,], where 7, > 0.
Then the delay margin guaranteed by Theorem 1 with proportionality ratio vector v =1, is
given by

T* _ Tty ! (11)
Theorem 1 S /’L:f_]ax(_(MO @MO)_I(MI ) Ml))
iAs Csl A 0
where My = | and M = [ § }
[%le AP] BSl 0

To prove Theorem 4, we need the following lemma.

Lemma 7 (Barmish [42])
Let M(q) = My + gM;, where My and M, are constant square matrices. Suppose M, is Hurwitz
and let

g* = sup{q| M(q) is Hurwitz for all ¢ €[0,q]}
Then

1
S (—(My @ My) (M, @ My))

max

~ 3%

Proof of Theorem 4
When N = 1, it can be easily verified that the comparison system ) (6;) can be realized by

X = Ax + Hyu
y=Fx
xPl = HIIAPlel + 01_1/2BP1y

u= 0;1/2CPIXP| +DP1)’

X X
Xp Xp,

A, 0,'%c,

The closed-loop system is given as

where
Ar(0y) =
0,'7By  0;'4p
is the kernel matrix of )" (6;). Notice that for 0, >0, 4,(0,) is Hurwitz if and only if
0,4, 0)/°Cy

0,4.(0,) =
0\°By  Ap

1
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is Hurwitz. Let Ey, = diag{0; '/*L,,1,, }. Then 4;(0) is Hurwitz if and only if the matrix A(0))
= E9]01AL(01)E511 is Hurwitz. Then, A(6;) can be rewritten as

Ay) = My + (91 - t—a>M1
Since (1) is asymptotically stable for all 7; € [0, 7,], from Theorem 2, 3, (0;) is asymptotically
stable for 0, €[0,7,], which implies that ) (0;) is asymptotically stable for 0, € [0, 7 /o]
Hence My = A;(T,/uy) is Hurwitz. The conclusion then follows immediately from Lemma 7 and
Theorem 2. []

4.3. General case: A new LMI delay-dependent stability criterion

In this section, we present a delay-dependent stability criterion based on a parameter-dependent
Lyapunov matrix for system (1). Some additional conservatism is introduced, but the resultant
stability condition is formulated as a finite set of LMIs, which can be solved efficiently [18].

In the sequel, let F. := HkN:1 [0,74], and F, = Hﬁcv:l (0,7;]. The following theorem indicates
that under an additional condition, the robust stability of > (0) on F, implies its robust
stability on the closed set F..

Lemma 8§
>, (0) is asymptotically stable on F, if and only if for every 0 € F, there exists a positive definite
matrix X(0) satisfying the Lyapunov inequality

A (0)TX(0) + X(O)A,(0)< — 1

where
A, 01—1/2(:31 0;/1/2CSN_
0,'?By  07'4p 0 0
A1(0) = '
0 - 0
L0,*Boy 0 0 0y'4p, |

is the kernel of the closed loop system ) (6). If, in addition, the matrix X (0) is bounded for all
0 € F,, then ) (0) is asymptotically stable on F..

Proof
See Appendix C. []

Next, we present a delay-dependent stability condition for system (1). This condition is
formulated in terms of a (finite) set of LMIs.

Theorem 5
The system (1) is asymptotically stable on Hi’zl [0, 7], if there exist a constant ¢ > 0, positive

definite matrices ¥; e R”*" and X; e R"*" i =1,...,N, and matrices W, e R"*™, k=1,...,N,
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such that for each vertex 0}#, I=1,...,2" of the polytope ngl [0, T¢],

1(0;)<0 (12)
and
X0 >0 (13)
where
[T11(0) Tia0) - yyea(0)
* I(0) 0 0
I1(0) =
* * 0
L * * * Iyyive1(0)
vy 0w o 0wy ]
* X1 0 0
X(0) =
* * 0
* * * Xy

with T11,(0) = YO, + ATY0) + S, (B 1 BT + el Ty pr(0) = Y(OC | Wi, +
HkA;rVVk + B;rkal’v Mit1441(0) = QkVVkTCSk + ch;l;(VVk + XiAp, + A;ka +&0ily,, k=1,...,N, and
Y(0) =Yoo+ > 1 .

Proof
First, notice that I1(0) is convex in 0 because it is affine in 6. Hence (12) implies that

I1(0)<0, VOeF. (14)
Using the properties of Shur Complement, Equation (13) is equivalent to ®((9f) > (0, where
O(0) = Y(0) — Y1, O Wi X' WL, Since ©(0) is convex in 0, we obtain ©(6) > 0, ¥0 e F,, which
is equivalent to X(6) >0, VO e F.. For any 0 € F,, multiplying (14) on both sides by Ey =
diagil,,0;'*1,,,...,0,"L, } yields EoTI(0)Ey <0 which immediately gives
A (0" X(0) + X(O0)A4,(0)< — &l

where 4, (0) is the kernel of the closed loop system ) (0). Since X(0) is bounded for all 0 € F,,,
by Theorem 8, )" (6) is also asymptotically stable on F.. Hence, by Theorem 1, the system (1) is
asymptotically stable on F.. []

5. #~ PERFORMANCE OF LTDS

Our comparison system approach via value set covering can be easily extended to the analysis of
other properties of time-delay systems. As an example, in this section we address the problem of
H ~ performance of LTDS. For simplicity, we only consider the single delay case, but our
analysis results can be generalized easily to systems with multiple delays.
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5.1. Problem description

Consider a LTDS (denoted as ), in the sequel) subject to exogenous disturbance given by
X(t) = Ax(t) + A1x(t — 7) + Bw(?)
z(t) = Cx(¢)

where 4, 4; e R, B; e R and C| e R™*" are constant matrices, T € [0, 7] is constant and
unknown time-delay, and w(f) € £»[0, 00) is an exogenous disturbance. The # , performance
problem is to examine if the system is asymptotically stable for all 7 € [0,7] and satisfies

I7(s, Dl <y V7 €[0,7] (15)

where 7'(s, 7) is the transfer function from the disturbance vector w to performance vector z, and
y >0 is the performance measure.
To proceed with our analysis, we first provide the following definition.

Definition 5

Suppose that a system . has an uncertain constant parameter ¢ € E, & a compact set, and that
T(s, &) is the transfer function from the disturbance w € %»[0, 00) to the performance vector z. If
> is asymptotically stable for all ¢ € Z, then the worst case # , performance 7* of > is defined
as

y* = max [|7(s, Ol (16)

5.2. Analysis of H « performance

To simplify the presentation, we will employ frequency domain descriptions. Decompose 4| =
HF where H € R"™*? and F € R?”*" have full rank. First notice that the LTDS ), can be
rewritten as

sX(s) = AX(s) + HV (s) + BW(s)
Vis) = [ — DF]X(s)
Z(s) = CX(s)

Replacing e** with R,,(0o,,s) and R, (0s), we obtain the following two systems > and >_,.
System ) :
sX(s) = AX(s) + HV (s) + BW(s)
V(s) = [Ru(Oops)ly — 1,)FX (s)
Z(s) = CX(s)
System )
sX(s) = AX(s) + HV (s) + BW(s)
V(s) = [Ru(0s)I; — I,]FX (s)
Z(s) = CX(s)
Then we have the following theorem regarding the relation among the worst case # .

performances of the systems >, > and >_..

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1149-1175



1166 J. ZHANG, C. R. KNOSPE AND P. TSIOTRAS

Theorem 6
Suppose ), is asymptotically stable for all 6 € [0, 7]. Then the worst case # , performances of

the systems >, > and ), satisfy y*<p¥ <X

Proof

Since ), is asymptotically stable for all 0 € [0,7], from Theorems 1 and 2, we know that ), is
asymptotically stable for all 7 € [0,7], and ), is asymptotically stable for all 6 € [0, 7]. Therefore,
the transfer functions Ty(s, ) = C[s] — (4 + Aje ™) B, T,(s,0) = C[s] — (4 + AR, (00,,5))"']B,
and Ti(s, 0) = C[sI — (4 4+ A, R,,(0s))"']B are analytic in s and bounded in the closed right half
complex plane. By the maximum modulus theorem [43],

||Td(S, T)H(x, = sup U_[Td(Jwa T)]’ Vte [Oaf]

weR

I75(s, 0l = sup a[T,(jw,0)], VOe[0,7]
weR

I7i(s, Ol = sup a[Ti(jw,0)], VO e€[0,7]
weR

Therefore, ¥ := max.coq Supyer 617u(jo,7)], 7¥ = maxgeoz supyer 6[7,(jo,0)], and ¥ =
maxge(o,7] SUPyer 01 7i(jo, 0)]. Since 6[T;(jw,7)] is a continuous function in w and 7, and
a[Ta(jw, )] = 0 as |w] - oo, we know that there exist a finite number @ € R and 7 € [0, 7] such
that 7% = G[Ty(j@,)]. Since Qu(d,7) < Q,(®,7), there exists 0 € [0,7] such that e 97 = R,, x
(jonOd) which implies that 7,(j@,0) = Tu(jé, 7). Hence, 7* = 6[T,(jd, )] < MaXgeoq SUPyer
[T, (joo. )] = 7.

Similarly, we can show that y*<yX and the proof is complete. [J

Theorem 7
Let the minimal realization of P(s) := [R(otns) — 1]/, be
Ap| Bp

P(s) =
Cp| Dp

Ag = A+ Ay + HDpF, B; .= BpF, C; .= HCp and denote np as the order of Ap. Then the system
>4 is asymptotically stable for any constant time-delay 7 €[0,7], and satisfies the #
performance bound 7 <y, if there exist matrices Xy = XOT >0,X0 e R, X; = X e R™", Xy =
X5 >0, Xo € R and X, € R such that

1(0)<0, TI(£)<0 (17)

and

(18)

Xo + X fX]z]
>0

XL TX»
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where

I (0) M) (Xo+0x)B  CT

* I1,,(0) 0X 5B 0
I1(0) =

* * —1y, 0

* 0 0 —ly,

111 (0) = (Xo + 0X1)4;s + X12Bs + AT(Xo + 0X)) + BIX),, T12(0) = (Xo + 0X1)Cs + Xi2dp + 04T
X+ B;erz, and Iy (0) = QXITZCS + HCSTXlz + X»nAp +A;X22.

II;;rOSOtfof all, notice that IT(0) is convex in 0 because it is affine in 0. Hence (17) implies that
I1(0)<0, VOe(0,7] (19)
Similarly, Equation (16), X; > 0, as well as X; > 0, imply that
Xo+0X, 0X12
0xXy5  0X»n

] >0, VO0e(,1]
Pre- and post-multiplying by Ey := diag{/,, 0!/ 2I,,P,I,,W,Inw}, the above inequality is equivalent
to
Xo+ 060X, 02X,
X(0) = >0, V0e(0,7]
0'°x% Xy
Multiplying (19) on both sides by Ej yields
E()H(Q)E() <0 (20)
which immediately gives
A(0) X (0) + X (0)4,(0)<0
where
4, 07V¢
Ar(0) =
0B, 07 '4p

Hence, from Theorem 1, ), is asymptotically stable for any constant time-delay t € [0,7].
Furthermore, (20) gives

B ct
AL(0)X(0) + X (0)4.(0) X(B)lol [ ]

0
<0
* — 1y, 0
s 0 —1,,
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which, by the Bounded Real Lemma [18], is equivalent to

<y (21)

[e¢}

[C OlisLusn, — A2(O)]' [ﬂ

It can be easily verified that

[C 0| o

is a minimal realization of )", thus we have ||T,(s, 0)||, <7, V0 € (0,7]. In addition, we have

B
T(s,0) =[C  Olshyin, — AL(0)] [0

=C[sl, — A; — Cy(0s — Ap) 'B,]"'B
thus
Jlim 7(s,0) = Clsl, — 4 + C4,'B)"'B

=C(sl, — A)~' B=T(s,0)

and we can conclude that y*<y. Using Theorem 6, we have y¥<y*<y. O

6. NUMERICAL EXAMPLES

To examine the effectiveness of our approach, we compare our stability analysis results with
those similar criteria published elsewhere [6, 7,9, 16] including a previous result by the authors
[24]. The calculations were performed on a Pentium 200 MHz PC by using the MATLAB LMI
Control Toolbox [44].

Example 1 (Park [9])
Consider the system (1) with a single delay and

-2 0 -1 0
A= , A =
0 -09 -1 -1

Table I summarizes the maximal delay margin calculated by several methods along with the
CPU time for each method. We can see that using higher order Padé approximation reduces the
conservatism of our analysis but requires more computation effort. For this example the delay
margin from Theorem 5 coincides with the value calculated by Theorem 4, and hence in this case
the basis function used in deriving Theorem 5 does not introduce additional conservatism. Note
that we used the bisection method with Theorem 5 to calculate the maximal delay margin. The
relatively larger computational time that Theorem 5 requires is largely due to the 10 iterations
used in the bisection search. This is not necessary if we use Theorem 5 to examine the stability
for a given 7; rather than determine the delay margin.
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Table I. Comparison of several methods.

Methods Maximal delay margin d.o.c. CPU Time (s)
Nyquist Criterion™ 6.172 0 N/A
Niculescu et al. [7]' 0.956 84.5 3.74
Li et al. [6]' 0.9984 83.8 1.91
Park [9]" 4.358 29.4 4.80
Zhang et al. [24]7 5.542 10.2 4.80
. m=3 5.021 18.7% 0.45
Theorem 4% m=4 5.985 3.0% 1.00
m=5 6.150 0.36% 2.60
. m=73 5.020 18.7% 8.67
Theorem 5° m=4 5.985 3.0% 16.7
m=>5 6.150 0.36% 26.7

*ad hoc approach was used.

"The generalized eigenvalue minimization algorithm was used.
?Covering disk D(—0.251;0.749) was used.

YBisection search with 10 iterations was performed.

Example 2 (Statistical Performance)

Using a 5th order Padé approximation, we compared the statistical performance of our LMI
condition Theorem 5 with that of References [6,9] and [24] by examining 1000 randomly-
generated second order single delay systems.” The computed delay margins are compared with
the actual values from the MIMO Nyquist Criterion and their distribution is shown in Figure 4.
We find that for 97.3% of these systems, our new result gives the d.o.c. less than 10%. We note
that with the next best performing criterion of Reference [24], less than 50% of the cases have
d.o.c. below 10%. The average d.o.c. for Theorem 5 is 1.52%.

Example 3 (Multiple-delay case)
Consider the following system with two independent delays

X(t) = —x(t — 1) —x( — 12) (22)

For the stability analysis problem, the actual stability boundary may be computed numerically
using the analytical result [45]. In Figure 5, this boundary is plotted along with the stability
regions (boxes) that are determined from Theorem 5 (with a 5th order Padé Approximation)
with varying proportionality ratio vector. Note that the stability region found for each
proportionality ratio is essentially as large as it could be, given the stability boundary (i.e., the
corner of the stability region box nearly touches the stability boundary in each case). For
instance, with the proportionality ratio vector v = [1 1], the actual delay margin was found in
[45] to be 7/4. The recent result [22] provides a delay margin of 0.7071 which has d.o.c. of 10%.
Using Theorem 5, we found a delay margin of 0.7825, and for this example the d.o.c. of our
LMI condition is only 0.37%.

" For each test case, 4 + A4, is Hurwitz and the stability of the system is delay-dependent.
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100 F dl T T T T T T T T =

70F 1
60 - b

50F 1

Percentage

40t i

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Degree of Conservatism

Figure 4. Performance of several criteria. (a) Result of Reference [6]. (b) Result of Reference [9]. (c) Result
of Reference [24]. (d) Theorem 5.

25 T T T T

T2

Y

Figure 5. Stability boundary of system (22) and stability regions guaranteed by LMI with
varying proportionality ratio.
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7. CONCLUSIONS

In this paper, we presented a comparison system approach for analysis of linear systems with
time-invariant delays. In the comparison system, the uncertain delay elements are replaced by a
parameter dependent Padé approximation to the exponential function. By using inner and outer
covering sets for the non-rational delay elements, we demonstrated that replacing the delay
elements with the traditional form of a diagonal Padé approximation leads to a necessary
condition for stability of the time-delay system, while replacing with a frequency-dilated Padé
approximation results in a sufficient condition. The degree of conservatism of this sufficient
condition has an a priori known upper bound which depends only on the order of the Padé
approximation used and can be made arbitrarily small. Moreover, in the single delay case, the
delay margin can be calculated explicitly without incurring any additional conservatism. In the
general case, this condition can also be reduced with some (typically small) conservatism to
finite-dimensional LMIs. Finally, this approach is also extended for analysis of the # .
performance of linear time-delay systems with an exogenous disturbance.
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Appendix A: Proof of Lemma 4

Proof
From the results of Reference [40], we have
On(jo)* = eR (A1)
[(2 )’ kz:
where a; = M >0, and

Km—b)'F
(m ) S2m

[(2m)! O3 (s) A

€ Ry(s) = ~Rufs) + (-1)"

Since O, (jow) = P,(—jw), from (Al) and (A2) we get

do Rui) (m)* o™
R (jo) [Cm)!T* [Om(jo)*
me
=1+

—1
w2m + ZZI:O akak

Note that |R,(jw)| = 1, logR,(jw) = jArg R,,(jw), @ € R. Thus

d . d
@ AI'g Ry, 00‘)) =7 (IOg Rm(s))|s:j(u

dw m(jo) Tu(w)
R, (jw) @ + T, (w)

O
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Appendix B: Proof of Theorem 2

Proof
If (1) is asymptotically stable on Hfj:l [0, 7«], then

det[l, — G(Gw)A(w)]#0, Yw=0,5(w) € Qi(w,Tx)

where A(w) = diag {(61(®) — DI, ...,(0n(w) — DI, }. In view of the fact that Q;(w, ;) = Qy
(0, 1), for every ox(w) € Qi(w, T), we have o (w) € Qq(w, 7). Therefore

det [I, — G(jo)A(w)]#0, Yo=0, dxw) e Qi(w, 7))
which can be rewritten as
det[/, — G(jw)Ag(w)]#0, V=0, 0, €10, 7]

where  Ay(w) = diag{(R,(j01®) — DI, ...,(R,(jOrw) — 1), }. Define p(s) = R,(s) — 1 =
N(s)/D(s), then the above condition is equivalent to

polio, h)#0, V=0, 0 €[0,7],h €[0,1] (B1)

where py(s,h) is the characteristic function associated with the closed loop system ) (),
given by

N(hOys)

po(s, h) == det|(sl, — A) — ZAkD(he )

Since A is Hurwitz, all of its eigenvalues are located in the open left half complex plane C_. The
eigenvalues of a matrix continuously depend on its elements, hence there exists a sufficient small
&> 0 such that the eigenvalues of the matrix A+ Zk \ zrdy remain in C_, for all |z| <e.

Next, we fix 0. The condition (B1) indicates that for any 4 € [0, 1], there are no roots of p,(s, /)
located on the jw axis. For h = 0,N(hOis) =0, D(h0Ops) =1, and the roots of py(s,h)
are all located in C_. Next, we will prove by contradiction that for % € (0, 1], there exist no
roots of py(s,h) located in the open right half plane C,. Assume that for 4, € (0, 1], there is a
zero Ai(h1) € Cy of py(s, h1). Since the degree of py(s, k) is invariant for 4 > 0, the zeros of py(s, &)
are continuous in 4. Hence 4;(h) remains in C, for all 4 € (0, 1] since it cannot cross the jo axis.
On the other hand, because limy,_, ¢ p(h@ks) = 0, there exists a constant f§ >0 such that |p x
(hOrs)|<e, for all |hs|<f and all k € {1,...,N}. In addition, p(s) is stable and proper, hence for
every Re(s) >0, |p(s)| <supge)>o |P(2)] = supweR |p(jw)| = 2. Also, since A;(h) is a zero of p, x
(s, h), from Matrix Theory [46], I/h(h)|<||A + 3y Ak phOd ()l <Al + Sy | p(hOA X
W) 14kl <c, where ¢ = |||+, +22k 1 ||Ak||w >( is a constant. Then, we can choose a
sufficiently small %, € (0, 1] such that |h2|< Then |hyA1(hy)| < B and hence |z;|<e, where z; =
p(h20;21(hy)). Therefore, 21(hy) € C, is an elgenvalue of A+ Zk 1 zkAk. This contradicts the
fact that all eigenvalues of A4 + Zk , zrdy are in C_, for all |z|<e. The proof is thus
complete. []

Appendix C: Proof of Lemma 8
To prove Lemma 8, we need the following results.
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Lemma C.1
Suppose 4 € R"*" is Hurwitz and satisfies the Lyapunov inequality

AP+ PA< - O

where P and Q are symmetric and positive definite matrices. Then every eigenvalue 4; of 4
satisfies

;Lmin(Q) .
Re(4;(4 - =1,...
e(/ll( ))< Z;Lmax(P)’ l b :n
Proof
Take == Anin(Q)/2Amax(P). Then we have 2uP < Q, or,
—0+2uP<0

Since ATP 4+ PA< — Q, we have
A+ ul)'P+ P+ ul)< — O+ 2uP

Hence (4 + ul)'P + P(4 + ul) <0. Therefore, all eigenvalues of A4 4+ ul are in the open left half

complex plane, or

Jmin(Q)

Re((A) < —p = —5 "

O

Proof of Lemma 8
The proof for the first part is trivial. To prove the second part, we notice that since X(0) is
bounded for all 0 € F,, there exists a constant ¢y > 0 such that Jy,.(X(0))<cy for all 0 € F,.
Hence from Lemma C.1, we conclude that all the closed loop poles of >, (0) remain to the left
of the vertical line Re(s) = —1/2¢y <0 for all 0 € F,.

Define p(s) = R, (ams) — 1 = N(s)/D(s), and suppose py(s) is the characteristic function
associated with the closed loop system ) (6), given by

N
- N(@ks)

(s,01,0,...,0y) = det s[,,—A—E A

p 1,02 N 2 kD(Oks)

Next, let ¢; = max{Re(s)|D(s) = 0}. Then ¢; <0 since D(s) is Hurwitz. Let ¢; = max{—z—io,
maxj<i<n {%}}, then it is clear that p,(s) is analytic in the region Re(s) > c;.

Clearly, we only need to show that >  (6) is asymptotically stable on the boundary of F..
Without loss of generality, it suffices to show that py(s) does not have roots in the closed right
half plane C, for any L>1 with 0, =0 for all ke {l,...,L — 1}, and 0<0;<7; for all
ke{L,...,N}. To this end, we fix 0y, ke {L,...,N}, and assume there exists sy, such that
0(50,0,...,0,0;,...,0x) = 0 and Re(sg) >0. Notice that p(s, 01, ..., 0y) can be represented in the
form

p(s,01,0,...,08) = P(s) +n(s,01,...,0n)

where ¢(s) = p(s,0,...,0,0z,...,0y). Then, there exists a sufficiently small neighborhood F of
s0, such that F is a closed set and located entirely in the region Re(s) > ¢, and ¢(s) does not
vanish on the boundary of F. Since n(s, 0, ..., 0y) is continuous in 6 and 5(s,0,...,0,0.,...,
On) = 0, we know that for sufficiently small 0, = 0>0, k=1,...,L — 1, we have that [5(s, 01,

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:1149-1175
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, 0p)| <|¢(s)| on the boundary of . By Rouché’s Theorem [31], p(s, 0,...,0,0,,...,0y) has at

least one root s in F. This is the contradiction we seek. []
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