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Abstract

Three and four parameter representations of 3x3 orthogonal matrices are extended to the gen- 
eral case of proper NxN orthogonal matrices.  These developments generalize the classical Ro- 
drigues parameter, the Euler parameters, and the recently introduced modified Rodrigues parame- 
ters to higher dimensions.  The developments presented generalize and extend the classical result 
known as the Cayley transformation.

Introduction

It is well known in rigid body dynamics, and many other areas of Euclidean analysis, that the 

rotational coordinates associated with Euler’s Principal Rotation Theorem [1,2,3] leads to espe- 

cially attractive descriptions of rotational motion.  These parameterizations of proper orthogonal 

3x3 matrices include the four-parameters set known widely as the Euler parameters, or the quater- 

nion parameters [1,2,3], as well as the classical three-parameter set known as the Rodrigues pa- 

rameters, or as the Gibbs vector [1,2,3,4].  Also included is a recent three parameter description 

known as the modified Rodrigues parameters [4,5,6].  As we review briefly below, these parame- 

terizations are of fundamental significance in the geometry and kinematics of three-dimensional 

motion.  Briefly, their advantages are as follows:

Euler Parameters:  This once redundant four-parameter description of three-dimensional rota- 

tional motion maps all possible motions into arcs on a four-dimensional unit sphere.  This accom- 

plishes a regularization and the representation is universally nonsingular.  The kinematic differen- 

tial equations contain no transcendental functions and are bi-linear without approximation.

Classical Rodrigues Parameters:  This three parameter set is proportional to Euler’s principal 

rotation vector.  The magnitude is tan(φ/2), with φ being the principal rotation angle.  These param-
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eters are singular at φ = ±π and have elegant, quadratically nonlinear differential kinematic equa- 

tions.

Modified Rodrigues Parameters:  This three parameter set is also proportion to Euler’s princi- 

pal rotation vector, but with a magnitude of tan(φ/4).  The singular orientation is at φ = ±2π, dou- 

bling the principal rotation range over the classical Rodrigues parameters. 

The question naturally arises; can these elegant parameterizations be extended to orthogonal 

projections in higher dimensional spaces?  Cayley partially answered this question in the affirma- 

tive; his “Cayley Transform” fully extends the classical Rodrigues parameters to higher dimen- 

sional spaces [1,2,7].  This paper extends the classical Cayley transform to parameterize a proper 

NxN orthogonal matrix into a set of higher dimensional modified Rodrigues parameters.  Further, 

a method is shown to parameterize the NxN matrix into a once-redundant set of higher dimen- 

sional Euler parameters.

The first section will review the Euler, Rodrigues and the modified Rodrigues parameters used 

later in this paper to parameterize the NxN orthogonal matrices.  The second section will review 

the classical Cayley transform resulting with the parameterization of an orthogonal matrix into the 

Rodrigues parameters, followed by the new parameterization into the modified Rodrigues parame- 

ters is presented and by the parameterization into higher order Euler parameters.

Review of Rigid Body Rotation Parameterizations

The Direction Cosine Matrix

The 3x3 direction cosine matrix C completely describes any three-dimensional rigid body ro- 

tation.  The matrix elements are bounded between ±1 and never go singular.  The famous Poisson 

kinematic differential equation for the direction cosine matrix is:

[ ]CC ˜˙ ω−=   (1)

where the tilde matrix is defined as:

[ ] [ ]ωω−
ω−ω

ωω−
=ω

0
0

0
˜

12
13

23
  (2)

The direction cosine matrix C is orthogonal, therefore it satisfies the following constraint.

ICCCC TT ==   (3)
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This constraint causes the direction cosine matrix representation to be highly redundant.  In- 

stead of considering all nine matrix elements, it usually suffices to parameterize the matrix into a 

set of three or four parameters.  However, any minimal set of three parameters will contain singu- 

lar orientations.

The constraint in equation (3) shows that besides being orthogonal, the direction cosine matrix 

is also normal [8].  Consequently it has the spectral decomposition of the form

UUC Λ= ∗  (4)

where U is a unitary matrix containing the orthonormal eigenvectors of C and Λ is a diagonal 

matrix whose entries are the eigenvalues of C.  The * symbol stands for the adjoint operator, 

which takes the complex conjugate transpose of a matrix.  Since C corresponds to rigid body rota- 

tions, it always has a real eigenvalue of +1.  Having an orthogonal matrix with a negative real ei- 

genvalue means the matrix represents a reflection, not simply a rotation.  All matrices with a posi- 

tive real eigenvalue are labeled as proper matrices.

The Principal Rotation Vector

Euler’s principal rotation theorem states that a rigid body (reference frame) can be brought 

from an arbitrary initial orientation to an arbitrary final orientation by a single principal rotation 

(φ) about a principal line ê [3]
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Fig. 1:  Euler’s Principal Rotation Theorem.
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During the principal rotation shown in Figure 1, the body axis  components b̂i  of the principal 

line ê are identical to the spatial components n̂i .

{ } ⋅== êCê
e
e
e

3
2
1

  (5)

Therefore ê must be an eigenvector of C with a corresponding eigenvalue of +1.  If C has a ei- 

genvalue of -1, the matrix represents a reflection, not a proper rotation and the concept of the prin- 

cipal rotation theorem does not hold.  The principal rotation vector γ  is defined as:

φ=γ ê  (6)

Let us now consider the case where a rigid body performs a pure single-axis rotation.  This ro- 

tation axis is identical to Euler’s principal line of rotation ê.  Let the rotation angle be φ.  The angu- 

lar velocity vector for this case becomes:

φ=ω ˆ˙e  (7)

or in matrix form:

[ ] [ ]φ=ω ˜˙˜ e   (8)

Substituting equation (8) into (1), one obtains the following development.

[ ]Ce
td

d
td
Cd φ−= ˜

[ ]Ce
d
Cd −=
φ

˜

[ ]eC = φ− ẽ   (9)

The last step can be done since the [ ]ẽ   matrix is assumed to be constant during this single axis 

maneuver.  Due to Euler’s principal rotation theorem, however, any arbitrary rotation can always 

be described instantaneously by the equivalent single-axis principal rotation.  Hence equation (9) 

will hold at any instant for an arbitrary direction cosine matrix C.  Using the following substitu- 

tion

[ ] [ ]φ=γ ˜˜ e  (10)

equation (9) can be rewritten as [2]:

[ ]eC = γ− ˜  (11)
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To find the inverse transformation from the direction cosine matrix C to [ ]γ̃   , the matrix loga- 

rithm can be taken of equation (11).

[ ] −=γ log˜ C (12)

Using the spectral decomposition of C, equation (12) can be rewritten as

[ ] ( )Λ−=γ log˜ UU ∗ (13)

where calculating the matrix logarithm of a diagonal matrix becomes trivial.

The principal vector representation of C is not unique. Adding or subtracting 2π from the prin- 

cipal rotation angle φ describes the same rotation.  As expected, equation (11) will always yield 

the same C matrix for the different principal rotation angles, since all angles correspond to the 

same physical orientation.  However, the inverse transformation given in equation (13) yields only 

the principal rotation angle which lies between -180° and +180°. 

As do all minimal parameters set, the principal rotation vector parameterization has a singular 

orientation.  The vector is not defined for a zero rotation from the reference frame.  The differen- 

tial kinematic equations can be found by substituting equation (11) into (1).  However, the result 

cannot be solved for γ̇  directly.

[ ]( ) [ ] [ ]ee
td

d ω−= γ−γ− ˜˜ ˜  (14)

The principal rotation vector parameterization will be convenient later to derive useful rela- 

tionships.  They are unsuitable for kinematic equation, since they cannot be explicitly solved.

The Euler (Quaternion) Parameters

The Euler parameters are a once-redundant set of rotation parameters.  They are defined in 

terms of the principal rotation angle φ and the principal line components e i  as follows:

=φ=βφ=β0 3,2,1
2

sin,
2

cos ii ie  (15)

They satisfy the holonomic constraint:

=β+β+β+β 3
2

2
2

1
2

0
2 1 (16)

Equation (16) states that all possible Euler parameter trajectories generate arcs on the surface 

of a four-dimensional unit sphere.  The behavior bounds the parameters to values between ±1. 
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However, the Euler parameters are not unique.  The mirror image trajectories β(t) and -β(t) both 

describe the identical physical orientation histories.  This is somewhat analogous to saying a body 

is displaced by +60° or -300°.  Both angles correspond to the same physical location.  Given a 3x3 

orthogonal matrix, there will be two corresponding sets of Euler parameters which differ by a 

sign.  The Euler parameters are the only set of rotation parameters which have a bi-linear system 

of kinematic differential equations [1], other then the direction cosine matrix itself.

⎪

⎪

⎩

⎨

⎧

⎪

⎪

⎭

⎬

⎫

⎢

⎢

⎣

⎢

⎡

⎥

⎥

⎦

⎥

⎤

⎪

⎪

⎩
⎨
⎧

⎪

⎪

⎭
⎬
⎫

ω
ω
ω

βββ−β
β−βββ
ββ−ββ
β−β−β−β

=

β
β
β
β

0

2
1

˙

˙

˙

˙

3
2
1

0123

1032

2301

3210

3

2

1

0

 (17)

It is also of significance that the above 4x4 matrix is orthogonal, so “transportation" between 

ω i ’s and β̇i ‘s is painless.  The direction cosine matrix in term of the Euler parameters is [1,3]:

[ ]
( ) ( )

( ) ( )
( ) ( )

⎢

⎢

⎣
⎢
⎡

⎥

⎥

⎦
⎥
⎤

β+β−β−βββ−ββββ+ββ
ββ+βββ−β+β−βββ−ββ
ββ−ββββ+βββ−β−β+β

=C

3
2

2
2

1
2

0
2

10322031

10323
2

2
2

1
2

0
2

3021

203130213
2

2
2

1
2

0
2

22

22

22

 (18)

The Euler parameters have several advantages over minimal rotation parameters.  Namely, 

they are bounded between ±1, never encounter a singularity, and have linear kinematic differential 

equations if the ω i (t) are considered known.  All of these advantages are slightly offset by the cost 

of having one extra parameter.

The Classical Rodrigues Parameters

The classical Rodrigues parameter vector q  is a set of symmetric stereographic parameters [6] 

with the projection point at the origin and the stereographic mapping hyperplane at β 0  = +1 .  

Therefore they have their singular orientation at a principal rotation angle from the reference 

frame of φ = ±180°.  Their transformation from the Euler parameters is:

iq i
i =

β
β=

0
3,2,1  (19)

Unlike the Euler parameters, the Rodrigues parameters are numerically unique.  They 

uniquely define a rotation on the open range of (-180°,+180°) [6]; as is evident in equation (19), 

reversing the sign of the Euler parameters has no effect on the q i .  Using equation (15), the classi- 

cal Rodrigues parameters can also be defined directly in term of the principal rotation angle and 

the principal axis components.
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ieq ii =φ= 3,2,1
2

tan  (20)

The kinematic differential equation for the Rodrigues parameters contain a low degree polyno- 

mial nonlinearity.  They can be verified from equations (17,20) to be [1-4]:

⎪

⎪

⎩
⎨
⎧

⎪

⎪

⎭
⎬
⎫

⎢

⎢

⎣
⎢
⎡

⎥

⎥

⎦
⎥
⎤{ }ω

ω
ω

++−
−++
+−+

=
qqqqqqq

qqqqqqq

qqqqqqq

q
q
q

1

1

1

2
1

˙
˙
˙

3
2
1

3
2

123213

1322
2

312

2313211
2

3

2

1
 (21)

Notice that the above coefficient matrix is not orthogonal, although the inverse is well behaved 

everywhere except when | | ∞→q  .  The direction cosine matrix in terms of the Rodrigues parame- 

ters is [1-4]:

( )
( ) ( )

( ) ( )
( ) ( )

⎢

⎢

⎣
⎢
⎡

⎥

⎥

⎦
⎥
⎤

qqqqqqqqq

qqqqqqqqq

qqqqqqqqq

qqq
qC

+−−−+
+−+−−
−+−−+

+++
=

122

212

221

1

1

3
2

2
2

1
2

123213

1323
2

2
2

1
2

312

2313213
2

2
2

1
2

3
2

2
2

1
2  (22)

The Modified Rodrigues Parameters

The modified Rodrigues parameter vector σ  is also a set of symmetric stereographic parame- 

ters, closely related to the classical Rodrigues parameters [2,4-6].  The modified Rodrigues param- 

eters have the projection point at (-1,0,0,0) and the stereographic mapping hyperplane at β 0  = 0.  
This projection results in a set of parameters which do not encounter a singularity until a principal 

rotation from the reference frame of ±360° has been performed.  Their transformation from the 

Euler parameters is:

=
β+

β=σ i
i 3,2,1

1 0
i  (23)

Like the Euler parameters, the modified Rodrigues parameters are not unique.  They have an 

associated shadow set found by using -β(t) instead of β(t) in equation (23) [5,6].  The transforma- 

tion from the original set to the shadow set is [2,5,6]:

=
σσ

σ−=σ T
i

i
S i 3,2,1  (24)

The shadow points are denoted with a superscript S.  Keep in mind that both σ and σS de- 

scribe the same physical orientation, similar and related to the case of the two possible sets of 

Euler parameters and principal rotation vectors.  It turns out that the modified Rodrigues shadow



8 

parameters have the opposite singular behavior to the original ones.  The original parameters are 

very linear near a zero rotation and are singular at a ±360° rotation.  The shadow parameters are 

linear near the ±360° rotation and singular at the zero rotation. [6]

Since the modified Rodrigues parameters allow for twice the principal rotation angle com- 

pared to the classical Rodrigues parameters, they allow for an eight times larger linear domain!  

Using equation (15), the definition for the modified Rodrigues parameters in equation (23) can be 

rewritten as [4]:

Φ=σ ii e
4

tan  (25)

Equation (25) is very similar to equation (20), except for the scaling factor of the principal ro- 

tation angle.  The singularity at ±360° is evident in equation (25), and small rotations behave like 

quarter angles.  The differential kinematic equations display a similar degree of nonlinearity as do 

the corresponding equations in terms of the classical Rodrigues parameters [4-6].

( ) ( )
( ) ( )
( ) ( )

⎢

⎢

⎣
⎢
⎡

⎥

⎥

⎦
⎥
⎤{ }ω

ω
ω

σ+σ−σ−σ+σσσ−σσ
σ−σσσ−σ+σ−σ+σσ
σ+σσσ−σσσ−σ−σ+

=σ
122

212

221

4
1˙

3
2
1

3
2

2
2

1
2

123213

1323
2

2
2

1
2

312

2313213
2

2
2

1
2

 (26)

Note that the coefficient matrix of the differential kinematic equation is not orthogonal, but al- 

most.  Multiplying it with its transpose yields a scalar times the identity matrix.  This almost or- 

thogonal behavior allows for a simple transformation between the ωi  and the σ̇i . 

( )
( )

( )
( )

( )⎢

⎢

⎣
⎢
⎡

⎥

⎥

⎦
⎥
⎤

C

σσ−=Σ
Σ+σ+σ−σ−Σσ−σσΣσ+σσ

Σσ+σσΣ+σ−σ+σ−Σσ−σσ
Σσ−σσΣσ+σσΣ+σ−σ−σ

σσ+
=σ

1

44848

48448

48484

1

1

T

T
2

3
2

2
2

1
2

123213

132
2

3
2

2
2

1
2

312

231321
2

3
2

2
2

1
2

2  (27)

The direction cosine matrix is shown above.  It has a slightly higher level of nonlinearity than 

the corresponding direction cosine matrix in terms of the classical Rodrigues parameters.

Parameterization of Proper NxN Orthogonal Matrices

A proper orthogonal matrix is an orthogonal matrix whose real eigenvalue is +1.  Some as- 

pects of parameterizing NxN orthogonal matrices into N-dimensional Rodrigues parameters have 

been covered by Junkins and Kim [1] and Shuster [2].  These classical developments date from the 

work of Cayley [7] and are included here for comparative purposes with the other parameteriza-
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tions.

Any NxN orthogonal matrix abides by the constraint given in equation (3).  Taking the first de- 

rivative thereof one obtains:

CCCC 0˙˙ TT =+  (28)

The Ċ  matrix defined in equation (1) can be shown to satisfy this differential equation exactly.  

Substitute equation (1) into (27) and expand.

[ ]( ) [ ]( ) =ω−+ω− 0˜˜ CCCC TT

[ ]( ) [ ] =ω−ω− CCCC TTT 0˜˜

[ ] [ ]( )CC TT =ω−ω− 0˜˜

The above statement is only satisfied if [ ]ω̃   is a skew-symmetric matrix satisfying 

[ ] [ ]ω−=ω ˜˜ T 

Consequently equation (1) will generate an NxN orthogonal matrix, as long as [ ]ω̃   is 

skew-symmetric.  This observation allows for the evolution of NxN orthogonal matrices to be 

viewed as higher order direction cosine matrices, somewhat analogous to a “higher dimensional 

rigid body rotation,” and be parameterized into set of higher dimensional rigid body-motivated ro- 

tation parameters.

Higher Dimensional Classical Rodrigues Parameters

Cayley’s transformation [7] parameterizes an orthogonal matrix C as a function of a 

skew-symmetric matrix Q.

( )( ) ( ) ( )QIQIQIQIC −+=+−= −− 11   (29a)

( )( ) ( ) ( )CICICICIQ −+=+−= −− 11  (29b)

For the 3x3 case, let the Q matrix be defined as the following skew-symmetric matrix:

[ ]
⎢

⎢

⎣
⎢
⎡

⎥

⎥

⎦
⎥
⎤

qq
qq

qq
qQ

−
−

−
==

0
0

0
˜

12

13

23
 (30)

After substituting equation (30) into (29a), it can be verified that resulting C matrix is indeed 

equal to equation (27).  Cayley’s transformation (29) is a generalization of the classical Rodrigues
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parameter representation for NxN proper orthogonal matrices [1,2]. 

Using the [ ]γ̃   matrix defined in equation (13) the Q matrix can be defined as follows [2]:

[ ]( ) [ ] [ ]( ) [ ] [ ]( )eeeeQ +−−=γ−=
2
˜

tanh
γγγγ
2
˜

2
˜

2
˜

2
˜ −−− 1

 (31)

The above transformation can be verified by performing a matrix power series expansion of 

equation (31) and substituting it into a matrix power series expansion of equation (29a).  The re- 

sult is a matrix power series expansion for the matrix exponential function as expected from equa- 

tion (11).   Note the similarity between equation (31) and (20).  Both calculate the Rodrigues pa- 

rameters in terms of half the principal rotation angle!

The differential kinematic equations of the NxN orthogonal matrix C where shown in equa- 

tion (1), where the skew-symmetric matrix [ ]ω̃   is related to Q  and Q̇  via the kinematic relation- 

ship [1]

[ ] ( ) ( )−+=ω ˙2˜ QIQQI −− 11  (32)

or conversely, Q̇  can be written as

( )[ ]( )QIQIQ ˜
2
1˙ −ω+=  (33)

The equations (32-33) are proven for the N-dimensional case in reference 1.  For NxN orthog- 

onal matrices, [ ] [ ]ω−=ω ˜˜ T  represents an analogous “angular velocity” matrix, even though the 

Gibbsian/Euclidian idea of a cross product does not generalize to higher dimensional spaces.

Higher Dimensional Modified Rodrigues Parameters

As is evident above, the modified Rodrigues parameters have twice the principal rotation 

range as the classical Rodrigues parameters.  Parameterizing the 3x3 direction cosine matrix C, the 

modified Rodrigues parameters have a volume eight times the nonsingular range, in comparison 

to their classical counterparts.  For the case of a general NxN orthogonal matrix, the volume in- 

crease of the nonsingular domain is more substantial, namely 2 N times. 

To find a transformation from the NxN orthogonal matrix C to the modified Rodrigues param- 

eters, let us first examine what happens when taking the matrix square root of C.  Let the square 

root matrix W be defined by:

CWW =  (34)
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Let the solutions be restricted to W’s that are themselves proper rotation matrices.  Therefore 

their eigenvalues must be either a complex conjugate pair or +1.  Obviously, for the general NxN 

case, there will be many W matrices that satisfy equation (34).  Using the spectral decomposition 

given in equation (4), W can be written as:

�
UUW Λ= ∗ (35)

Keep in mind that the Λ matrix is diagonal and that the matrix square root is trivial to calcu- 

late.  The W matrix has a principal line and angle associated with it.  Multiplying W with itself in 

equation (34) simply doubles the principal angle, but leaves the principal line unchanged.  There- 

fore W represents a rotation about the same principal line as C, but with half the principal angle.  

We note that all odd-dimensioned proper C and W matrices will have only one real (+1) eigen- 

value, and all even-dimensioned proper C and W will have only complex conjugate pairs of eigen- 

values.  Since W must be a proper rotation matrix, the square root of a real eigenvalue must be +1.  

This still leaves an ambiguity about the sign of the complex eigenvalues in 
�

Λ .  In the 3x3 case 

there is only one complex conjugate pair of eigenvalues.  Hence only two W matrices would 

satisfy the above conditions.  This is to be expected, since any three-dimensional rotation can be 

described by two principal rotation angles which differ by 2π, one of which is positive and the 

other is negative.  Let us choose to keep the sign of all complex eigenvalues such that their real 

part is always positive.  For three-dimensional rotations, this simple rule can be shown to restrict 

the principal rotation angle to satisfy °+≤φ≤°− 081081  .  This choice is consistent with many 

numerical matrix manipulation packages and their way in handling a square root of a matrix.  Let 

the j-th complex conjugate eigenvalue be denoted as er θ±i
j

j , where the magnitude is  rj ≥ 0  and 

the phase is °+≤θ≤°− 081081 j  .  If the dimension N is an odd number, W is defined as:

� ċ
� ċ

� � �
�

�⎢
⎢
⎣

⎢

⎡

⎥
⎥
⎦

⎥

⎤

U

er

er

er

er

UW ⋅

+
+

+

+

+

⋅= ∗

−
−

+
−

−

+

1

1

1

1

i
N

i
N

i

i

−θ

−θ

θ

θ

2
1

2
1

2
1

2
1

100000

00000

00000

000

0000

0000

N

N
 (36)

If the dimension N is even, then W is defined as:
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� ċ
� ċ

� � � �
�⎢

⎢

⎣

⎢

⎡

⎥
⎥

⎦

⎥

⎤

U

er

er

er

er

UW ⋅

+

+

+

+

⋅= ∗

−
−

+
−

−

+

1

1

1

1

i
N

i
N

i

i

−θ

−θ

θ

θ

2
1

2
1

2
1

2
1

0000

0000

00

000

000

N

N

 (37)

Using the parameterization given in equation (11), the matrix W can also be defined directly in 

terms of the principal rotation matrix [ ]γ̃  .

[ ]
eW =

γ− ˜

2  (38)

This solution for W can be verified by substituting it back into equation (34).  Since, for 

three-dimensional rotations, there are two possible principal angles for a given attitude, there are 

two possible solutions for equation (38).  Again, by keeping |φ| < 180°, the same W matrix is ob- 

tained as with the matrix square root method discussed above. 

Remember that the modified Rodrigues parameters have a nonsingular  range corresponding 

to | | °<φ 063  .  Since W is the direction cosine matrix corresponding to half of the principal rota- 

tion angle of C, the resulting nonsingular range of the W matrix has been scaled down to 

| | °<φ 081  .  This is the same nonsingular range as the classical Rodrigues parameters.  Therefore 

the Cayley transformations, defined in equations (29a,b), can be applied to W.  Let S be the 

skew-symmetric matrix composed of the modified Rodrigues parameters, similar to the construc- 

tion of the Q matrix in equation (30).  Then the transformation from W to S and its inverse are 

given as:

( )( ) ( ) ( )SISISISIW −+=+−= −− 11   (39a)

( )( ) ( ) ( )WIWIWIWIS −+=+−= −− 11  (39b)

Using equation (39a) and (34), a direct transformation from S to C is found.

( ) ( ) ( ) ( )SISISISIC −+=+−= 2222 −−  (40)

This direct transformation is very similar to the classical Cayley transform, but no elegant di- 

rect inverse exists (i.e. we lose the elegance of equation (29b); no analogous equation can be writ- 

ten for S as a function of C).  This is due to the overlapping principal rotation angle range of 

±360°.  Since the classical Rodrigues parameters are for principal rotations between 

(-180°,+180°), they have a unique representation and the Cayley transform has the well known ele-
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gant inverse.  

However, an alternate way to obtain the S matrix from the C matrix is available through the 

skew-symmetric matrix [ ]γ̃   defined in equation (13).

[ ]( ) [ ] [ ]( ) [ ] [ ]( )eeeeS +−−=γ−=
4
˜

tanh
γγγγ
4
˜

4
˜

4
˜

4
˜ −−− 1

 (41)

The transformations given in equation (41) can be verified by performing a matrix power se- 

ries expansion and back-substituting it into equation (40).  Note again the similarity between equa- 

tion (41) and equation (25).  The principal rotation angle is divided by four in both cases.

Either the W or the [ ]γ̃   matrix can be solved from NxN orthogonal C matrix to obtain the cor- 

responding S.  Neither method is as elegant as equation (29b) of the Cayley transformation.  The 

method using the [ ]γ̃   matrix has the advantage that [ ]γ̃   is found by taking the matrix logarithm 

of the eigenvalues of the C matrix as shown in equation (13).  The uniqueness questions do not 

arise here as in the matrix square root method because solutions are implicitly restricted to proper 

rotations with | | °<φ 081  .  Both methods produce the same results.  Since each set of modified Ro- 

drigues parameters has its associated shadow set [6], it is usually not important which S parameter- 

ization one obtains, as long as at least one valid S matrix is found.  Once a parameter set is found, 

either the original ones or the shadow set, it is trivial to remain with this set during the forward in- 

tegration of the differential equations governing the evolution of S.

The differential kinematic equations for S are not written directly from C as they were with 

the classical Cayley transform.  Instead W is used to describe the kinematics of the NxN system.  

The relationship between W and S is the same as between C and Q.  Therefore the same equations 

can be used.  The differential kinematic equation for W is:

[ ]WW ˜˙ Ω−=  (42)

where the skew-symmetric matrix [ ]ω̃   is:

[ ] ( ) ( )−+=Ω ˙2˜ SISSI −− 11  (43)

or conversely Ṡ  could be defined as:

( )[ ]( )SISIS ˜
2
1˙ −Ω+=  (44)

Equation (34) can be used during the forward integration to obtain C(t).  The time evolution of 

C in terms of W and [ ]Ω̃   is:
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[ ] [ ] [ ] [ ]WWCWWWWC ˜˜˜˜˙ Ω−Ω−=Ω−Ω−=  (45)

Equating equation (45) and (1), the direct transformation from [ ]Ω̃   to [ ]ω̃   is:

[ ] [ ] [ ]Ω+Ω=ω ˜˜˜ WW T (46)

To verify that equation (46) yields a skew-symmetric matrix [ ]ω̃  , the definition of a 

skew-symmetric matrix is used:

[ ] [ ] [ ] [ ]( )Ω+Ω−=ω−=ω ˜˜˜˜
TTT WW

[ ] [ ] ( ) [ ]Ω−Ω−=ω ˜˜˜ TTTTT
WW

[ ] [ ] [ ]Ω+Ω=ω ˜˜˜ .d.e.qWW T  

Although this new parameterization  is somewhat more complicated than the classical parame- 

terization into N-dimensional Rodrigues parameters, the complications arise only when setting up 

the parameterization in terms of S.  Once a S and a corresponding W have been found, this method 

is no different from the classical method.  The important improvement is that the nonsingular do- 

main has been expanded by a factor of 2 N !  

A Preliminary Investigation of Higher Dimensional Euler Parameters

The classical Euler parameters stood apart from the other parameterizations, because they 

were bounded, universally nonsingular and had a easy to solve bi-linear differential kinematic 

equations.  All this came at the cost of increasing the dimension of the parameter vector by one.  

These classical Euler parameters are extended to higher dimensions, where they will retain some, 

but not all, of the above desirable features.

The Rodrigues parameters and the Euler parameters are very closely related as seen in equa- 

tion (19).  They are identical except for the scaling term of β 0 .  The classical Rodrigues parame- 

ters have been shown to expand to the higher dimensional case where they parameterize a NxN or- 

thogonal matrix C [1].  They can always be described as the ratio of two quantities.

( )NN
...iq i

i
−=

β
β=

0 2
1

,,3,2,1  (47)

The skew-symmetric matrix Q can be written as:

BQ
β

= 1

0
 (48)
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where B is a skew-symmetric matrix containing the numerators of Q.  For the three dimen- 

sional case, this matrix would be in terms of the Euler parameters β 1 , β 2 , β 3 , and would look like:

⎢

⎢

⎣
⎢
⎡

⎥

⎥

⎦
⎥
⎤

B
ββ−

β−β
ββ−

=
0

0
0

12

13

23

 (49)

Substituting the new definition of Q given in equation (48) into the Cayley transform in equa- 

tion (29a) results in the following:

( )( )BIBIC +β−β= −1
00  

( ) ( )BIBIC −β=+β 00

( ) ( ) =+−β− BCICI 0 0 (50)

Equation (50) represents a NxN system of linear equations in (β 0 , β 1 , ..., β Ν ).  Let the 

[N 2 x(N+1)]  matrix A represent the linear relationship between the β i . 

�⎢

⎢

⎣
⎢
⎡

⎥

⎥

⎦
⎥
⎤

A =

β

β
β

⋅ 1

0

N

0 (51)

Clearly the set of all possible higher dimensional Euler parameters spans the kernel of A.  We 

know that the ½N(N-1) Rodrigues parameters are a minimal set to parameterize the orthogonal 

NxN matrix C.  By adding the scaling factor β 0 , a once redundant set of parameters  has been gen- 

erated.  Even though there are N 2  linear equations in equation (50), the dimension of the range of 

A is only ½N(N-1).  The problem is still under determined.  The dimension of the kernel of A 

must be one,since only one additional term was added to a minimal set of rotation parameters.  

The solution space is a multi-dimensional line through the origin.

After finding the kernel base vector, an infinite number of solutions still exist.  Another con- 

straint is needed.  Let us set the norm of the higher dimensional Euler parameter vector to be 

unity.  This concept is illustrated in Fig. 2 below.

ċ =β++β+β 2
1
2

0
2

N 1 (52)

Equation (52) is the higher dimensional equivalent of the holonomic constraint of the classical 

Euler parameters introduced in equation (16).
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Multi-Dimensional 
Unit Sphere 

Origin 

Kern
el(

A) 

β(t) 

-β(t) 

 

Fig. 2:  Solution of the Higher Dimensional Euler Parameters.

Two solutions are found scaling the base vector of the kernel of A to unit length.  Just as with 

the classical Euler parameters, any point on the multi-dimensional Euler parameter unit sphere de- 

scribes the same physical orientation as its counter pole.  Therefore the higher order Euler parame- 

ters are not unique, but contain a duality.  However, this duality should not pose any practical 

problems, except under one circumstance discussed below.

( )( ) ( ) ( )BIBIBIBIC −β+β=+β−β= −−
0

1
0

1
00  (53)

The inverse transformation from higher order Euler parameters to the orthogonal matrix C is 

found by using Q from equation (48) in the classical Cayley transform.  The result is shown in 

equation (53).  Using a B, as shown in equation (49) for the three-dimensional case, in equation 

(53) results in the same transformation as given in equation (18).  Observe that the inverse transfor- 

mation has a singularity when β0 is zero.  This singularity is a mathematical singularity only.  

Contrary to the Rodrigues parameters, the higher order Euler parameters are well defined at this 

orientation.  After an appropriate skew-symmetric matrix B is constructed and carrying out the al- 

gebra in equation (53), a closed form algebraic transformation is found.  For the 2x2 case the in- 

verse transformation into the direction cosine matrix is:

[ ]C
1
2

0
2

00

001
2

0
2

22x β−βββ−
βββ−β

=
2

2
 (54)

The C matrix contains no polynomial fractions and is easy to calculate.  To find the direction 

cosine matrix for the 3x3 case, use the B matrix defined in equation (51) in equation (53).
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( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

⎢

⎢

⎣
⎢
⎡

⎥

⎥

⎦
⎥
⎤

C

3
2

2
2

1
2

0
2

01032020310

103203
2

2
2

1
2

0
2

030210

20310302103
2

2
2

1
2

0
2

0

3
2

2
2

1
2

0
2

0
33x

β+β−β−ββββ−βββββ+βββ
ββ+ββββ−β+β−ββββ−βββ
ββ−βββββ+ββββ−β−β+ββ

β+β+β+ββ
=

22

22

22
1  

After making some cancellations and enforcing the holonomic constraint equation, the well 

known result is found which transfers the classical Euler parameters to a 3x3 direction cosine ma- 

trix as given in equation (18).  This transformation lacks any polynomial fractions and contains no 

singularities, just as was the case with the 2x2 system.

For dimensions greater than 3x3’s, the algebraic transformation contains polynomial fractions.  

The nice cancelations that occur with a 2x2 and a 3x3 orthogonal matrices do not occur with the 

higher dimensions.  This might have been anticipated, because [2] it is known that quaternion alge- 

bra does not generalize to higher-dimensional spaces and the elegant classical Euler parameter re- 

sults are essentially manifestations of quaternion algebra.  To find C 44x   in terms of the higher di- 

mensional Euler parameters, define the 4x4 B matrix as:

⎢

⎢

⎣

⎢

⎡

⎥

⎥

⎦

⎥

⎤
B

124

135

236

456

44x

ββ−β
β−ββ−

ββ−β
β−ββ−

=

0
0

0
0

 (55)

and substitute it into equation (53).

( ) ( )( )
( )( ) ( )
( )( ) ( )( )

( )( ) ( )( )
⎢

⎢

⎣

⎢

⎡

ċ

ċ

( )( ) ( )( )
( )( ) ( )( )

( ) ( )( )
( )( ) ( )

⎥

⎥

⎦

⎥

⎤

htiw

C

2
0
2

526143

2
6
2

5
2

4
2

3
2

2
2

1
2

0
2

0
2

632541000

632541000
2

6
2

5
2

4
2

3
2

2
2

1
2

0
2

0
2

564203100465302100

362514000241635000

564203100362514000

465302100241635000

2
6
2

5
2

4
2

3
2

2
2

1
2

0
2

0
2

160534200

160534200
2

6
2

5
2

4
2

3
2

2
2

1
2

0
2

0
2

44x

δ+β=∆
ββ−ββ+ββ=δ

δ−β+β+β−β+β−β−ββδβ−ββ+ββ+ββ−ββ
δβ+ββ+ββ+ββββδ−β+β−β+β−β+β−ββ
δβ+ββ−ββ−ββββδβ+ββ+ββ+ββββ
δβ+ββ−ββ−ββββδβ+ββ−ββ+ββ−ββ

δβ−ββ−ββ+ββββδβ−ββ−ββ−ββ−ββ
δβ−ββ+ββ−ββββδβ−ββ−ββ+ββββ

δ−β−β+β+β−β−β+ββδβ−ββ−ββ+ββββ
δβ+ββ+ββ+ββββδ−β−β−β−β+β+β+ββ

∆
=

2

2
22
22

22
22

2

2
1

 (56)

This denominator ∆ can vanish for several β i  configurations.  Observe, however, that when- 

ever ∆ is zero, so is the numerator.  For each singular case we find a finite limit exists, as was to be 

expected, since the original orthogonal C matrix was finite.  In all cases =β0 0  is a prerequisite 

for a (0/0) singularity to occur.  Finding the transformations for matrices with dimensions greater 

than 3x3 would show the same behavior.  =β0 0  is always a indicator that a mathematical singu- 

larity may occur.  In none of these cases are the higher dimensional Euler parameters themselves
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going singular.  It is always a mathematical singularity of the transformation itself.  To circumvent 

this problem for particular applications, the limit of the fraction can be found as →β0 0 .  After 

substituting =β0 0  into equation (58), for example, most fractions become trivial and the matrix 

is reduced to:

⎢

⎢

⎣
⎢
⎡

⎥

⎥

⎦
⎥
⎤

IC 44x −=
−

−
−

−
=

1000
0100
0010
0001

 (57)

Substituting =β0 0  into equation (54) yields the same result.  Actually, as long as C is of even 

dimension the matrix will be -I if =β0 0 .  If the dimension is odd, as it is for the 3x3 case, the C 

matrix will be fully populated.  With this observation it is easy to circumvent the singular situa- 

tions if the dimension is even.  If the dimension is odd a numerical limit must be found.  In either 

case the transformation will be well behaved everywhere except the =β0 0  surface.

Let us examine the uniqueness of the transformation given in equation (53).  Assuming that 

the transformation is not unique, two possible higher dimensional Euler parameter sets β́ and β̋  

are chosen.  

( )( )
( ) ( )BIBIC

BIBIC

−β+β=

+β−β=

˝˝˝˝

´´´´

−

−

0
1

0

1
00

Subtracting one equation from the other the following is obtained:

( )( ) ( ) ( )˝˝˝˝´´´´0 −β+β−+β−β=
−−

0
1

0
1

00 BIBIBIBI

( )( ) ( )( )´´˝˝´´˝˝0 +β−β−−β+β= 0000 BIBIBIBI

´˝˝´0 β−β= 00 BB

BB
˝

˝

´

´

β
=

β 00

 (58)

Equation (58) is the necessary condition for two higher order Euler parameter sets to yield the 

same direction cosine matrix C.  Obviously, for =β0 0  this can only occur when

k
BkB
´˝
´˝

β⋅=β
⋅=

00
 (59)

where k is a scalar.  This condition would yield an infinite number of solutions.  Since the
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higher dimensional Euler parameters must satisfy the holonomic constraint given in equation 

(52), only unit scaling values of k are permissible.  Therefore  k must be either ±1.  This unique- 

ness study results in the same duality as is observed with the classical Euler parameters.  There are 

always two possible sets of classical Euler parameters which describe an orthogonal 3x3 matrix C.  

This result is now extended to the more general case of NxN orthogonal matrices . This duality 

was seen earlier when applying the holonomic constraint to the kernel of A.

( )[ ] ( )[ ]tCtC NxNNxN β−=β  (60)

If =β0 0  nothing can be said about the transformation uniqueness.  As was seen with the 4x4 

C matrix, any point on the unit sphere �
2

1

6
ii=

=β 1  is possible.

After establishing the forward and backward transformations between the NxN orthogonal ma- 

trices and the higher order Euler parameters, their kinematic equations need to be studied.  To de- 

scribe the orthogonal matrix C as a rigid body rotation, Ċ  needs to be of the form given in equa- 

tion (1).  After substituting equation (48) into equation (33) Q̇  is:

( )[ ]( )B
I

B
IQ ˜

2
1˙

β
−ω

β
+=

00
 (61)

After differentiating equation (48) directly Q̇  is:

BB
Q

˙˙
˙

β
β−β=

0
2

00  (62)

Upon substituting equation (61) into equation (62) and after making some simplifications, the 

following kinematic relationship is found.

( )[ ]( )−βω+β=β−β 0000 BIBIBB ˜
2
1˙˙  (63)

This equation can be solved for the skew-symmetric angular velocity matrix [ ]ω̃  .

[ ] ( ) ( )( )−ββ−β+β=ω ˙˙2˜ −− 1
000

1
0 BIBBBI  (64)

Note that this equation contains the same mathematical singularity at β0 =0 as did equation 

(53).  Carrying out the algebra a closed form algebraic equation is found for the higher order angu- 

lar velocities.  

Let us verify that equation (64) for the angular velocities does indeed return a skew-symmetric 

matrix.  This is accomplished with the definition of a skew-symmetric matrix.
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[ ] [ ] ( ) ( )( )( )−ββ−β+β−=ω−=ω ˙˙2˜˜
TT −− 1

000
1

0 BIBBBI

[ ] ( ) ( ) ( )+ββ−β−β−=ω ˙˙2˜ −− 1
000

1
0 BIBBBI

TTT

[ ] ( ) ( )( )+ββ−β−β−=ω ˙˙2˜
−− 1

000
1

0 BIBBBI TTTTTT  

Since the matrix B and its derivative are skew-symmetric matrices by definition, further sim- 

plifications are possible.

[ ] ( ) ( )( )−ββ+β−+β−=ω ˙˙2˜ −− 1
000

1
0 BIBBBI

[ ] ( ) ( )( )−ββ−β+β=ω ˙˙2˜ −− 1
000

1
0 .d.e.qBIBBBI  

All higher order Euler parameter differentials must abide by the derivative of the constraint 

equation (52).

02 ˙2˙2˙ =ββ+…+ββ+ββ 1100 NN  (65)

After using the B from equation (49) the linear differential kinematic equations of the classical 

Euler parameters are found.  For the 2x2 case, the differential kinematic equation is:

[ ][ ]β
βββ−=ω

1

0
011 ˙

˙
2  (66)

Adding the constraint in equation (65), equation (66) can be padded to make it full rank.

[ ] [ ][ ]β
β

ββ−
ββ=ω ˙

˙
20

1

0

01

10
1

 (67)

Note that as with the 3x3 case, the matrix transforming β̇  to ω  is orthogonal for the 2x2 case.  

Therefore the inverse transformation can be written as:

[ ] [ ][ ]ωββ
β−β=

β
β

101

10

1

0 0
2
1

˙

˙
 (68)

As with the direction cosine matrix, for matrices greater than 3x3 the differential kinematic 

equations contain polynomial fractions.  Using the B matrix from equation (55) in equation (64) re- 

sults in the differential kinematic equations for a 4x4 system.
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⎪
⎪

⎩

⎨

⎧

⎪
⎪

⎭

⎬

⎫ ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

ċ

⎢
⎢

⎣

⎢

⎡

ċ

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
⎥
⎥

⎦

⎥

⎤

⎪
⎪
⎩

⎨

⎧

⎪
⎪
⎭

⎬

⎫

( )ββ+ββ−ββ+β=∆
β
β
β
β
β
β
β

β+ββββ+βββ−ββ+ββ−βββ+βββ
ββ−ββββ+ββββ+βββ−ββ+βββ−
ββ+βββββ−ββββ+ββββ−βββ
ββ−βββββ−βββββ−ββββ+ββ
ββ+βββ−ββ+βββββ−βββββ−βββ

ββ−βββββ+βββ−ββ+βββββ−βββ
β∆β∆β∆β∆

ββ−βββββ−ββββ+ββ−ββ−βββ
ββ+βββββ−ββββ+ββ−ββ+βββ
ββ+βββ−ββ+ββ−ββ+ββ−ββ−βββ
ββ+βββ−ββ+ββββ+ββ−ββ−βββ

β+ββββ+βββ−β+ββ−ββ+βββ
ββ−ββββ+βββ+ββ−ββ−βββ

β∆β∆β∆

∆
=

ω
ω
ω
ω
ω
ω

˙

˙

˙

˙

˙

˙

˙

2

0

2
6152430

2
6

5

4

3

2

1

0

1
2

0
2

0213003120050410

213002
2

0
2

03210042600

31200321003
2

0
2

061520

5041042600615204
2

0
2

0

51400614303560054100

43520624006350020640

6543

51400435201
2

0
2

643521

61430624002
2

0
2

543612

35600635003
2

0
2

461523

54100206404
2

0
2

361524

5
2

0
2

0653005
2

0
2

243615

653006
2

0
2

06
2

0
2

143526

210

6

5

4

3

2

1

htiw

 (69)

Note that this transformation matrix is no longer orthogonal as was the case for 2x2 and 3x3 

systems.  Equation (69) has the same denominator as the 4x4 direction cosine matrix did.  Hence 

it contains the identical singular situations.  However, if =β0 0  the above transformation matrix 

is singular and cannot be inverted!

The higher dimensional Euler parameters  lose some key properties as they get expanded to 

higher dimensions.  They retain the properties of being bounded and universally nonsingular, but 

the transformations loose a lot of the elegance of their classical counterparts.  Particularly =β0 0  

poses several unresolved issues.

Conclusion

The parameterizations presented show great promise as an elegant means for describing the ev- 

olution of NxN orthogonal matrices.  The modified Rodrigues parameters are only slightly more 

complicated than their classical counterparts, but provide a nonsingular, near-linear domain which 

is greatly increased by a factor of 2 N !  The higher dimensional Euler parameters retain some of 

the desirable features of their classical counterparts such as being bounded by ±1 and being uni- 

versally nonsingular.  For orthogonal matrices greater than 3x3 though, their direction cosine ma- 

trix and differential kinematic equations contain some mathematical singularities which require 

taking the limits of polynomial fractions.  The computational effort for calculating the higher di- 

mensional Euler parameters grows rapidly when increasing the dimension of the C matrix.  For 

higher dimensional rotations, the modified Rodrigues parameters show the greatest promise. 
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Their gain (increased nonsingular domain) outgrows the extra computation (versus the classical 

Cayley transformation) with increasing dimension N.
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Note that this transformation matrix is no longer orthogonal as was the case for 2x2 and 3x3 

systems.  Equation (69) has the same denominator as the 4x4 direction cosine matrix did.  Hence 

it contains the identical singular situations.  However, if =β0 0  the above transformation matrix 

is singular and cannot be inverted!

The higher dimensional Euler parameters  lose some key properties as they get expanded to 

higher dimensions.  They retain the properties of being bounded and universally nonsingular, but 

the transformations loose a lot of the elegance of their classical counterparts.  Particularly =β0 0  

poses several unresolved issues.

Conclusion

The parameterizations presented show great promise as an elegant means for describing the ev- 

olution of NxN orthogonal matrices.  The modified Rodrigues parameters are only slightly more 

complicated than their classical counterparts, but provide a nonsingular, near-linear domain which 

is greatly increased by a factor of 2 N !  The higher dimensional Euler parameters retain some of 

the desirable features of their classical counterparts such as being bounded by ±1 and being uni- 

versally nonsingular.  For orthogonal matrices greater than 3x3 though, their direction cosine ma- 

trix and differential kinematic equations contain some mathematical singularities which require 

taking the limits of polynomial fractions.  The computational effort for calculating the higher di- 

mensional Euler parameters grows rapidly when increasing the dimension of the C matrix.  For 

higher dimensional rotations, the modified Rodrigues parameters show the greatest promise. 
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Their gain (increased nonsingular domain) outgrows the extra computation (versus the classical 

Cayley transformation) with increasing dimension N.
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