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Abstract. This paper considers the problem of controlling the rotational motion of a rigid body
using three independent control torques. Given a quadratic cost we seek stabilizing state feedback
controllers which guarantee that all motions starting within a specified bounded set satisfy a
specified bound on a quadratic performance index or cost. For a special class of cost functions, we
present explicit expressions for the optimal stabilizing controllers. For the general case, we present
sufficient conditions which guarantee the existence of linear, suboptimal, stabilizing controllers.
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1 INTRODUCTION

In this paper we consider the problem of controlling the
rotational motion of a rigid body using three indepen-
dent control torques. The minimal requirement on the
controller is to stabilize the body about a specified ori-
entation. In addition, we require the controller to guar-
antee that a quadratic performance index or cost be
bounded for all initial states lying in a given set. Ideally,
we would like to minimize the cost; since this is, in gen-
eral, a difficult task we are contented with minimizing
an upper bound for the cost. By minimizing this up-
per bound, it is hoped that one can achieve acceptable
performance.

The problem addressed in this paper is of importance
in aerospace engineering since it corresponds to the con-
trol of the orientation of a spacecraft. Previous research
on this problem has been mostly directed towards the
time or fuel-optimal control problem; see, for example,
(Athans, et al., 1963; Branets et al, 1984; Dixon et
al., 1970) and the recent survey paper by Scrivener and
Thomson (1994).

As far as the optimal regulation of the angular veloc-
ity or the angular momentum vector is concerned, the
earliest results seem to be the ones reported in (Debs
and Athans, 1969; Kumar, 1965; and Windeknecht,
1963). More recent results on the same problem were
reported by Dabbous and Ahmet (1982) and Bourdache-
Siguerdidjane (1991). In the present work we are in-
terested however with the more complicated problem of
optimal control of the complete attitude equations, i.e.
dynamics and kinematics.

The equations describing the rotational motion of a rigid
body are nonlinear. Thus, in general, to obtain opti-
mal feedback controllers for nonlinear systems one has
to solve the associated Hamilton-Jacobi equation (HJE).
This is a partial differential equation and except for very
special cases, it is difficult to obtain solutions. As a re-
sult of the difficulty in obtaining optimal controllers, in
this paper we look for suboptimal stabilizing feedback
controllers. More specifically, we consider the following
problem: Given a bounded set C in the state space, find
a feedback controller which results in an asymptotically
stable closed loop system (with C contained in the region
of attraction), and such that a quadratic cost satisfies a
specified bound for all initial conditions in C. We call

this problem the Quadratic Regulation Problem (QRP).

The paper is organized as follows. In section 2 we present
the equations of motion of a rotating rigid body and we
state the QRP. The description of the dynamics is stan-
dard, whereas for the kinematics we choose the Cayley-
Rodrigues parameters.

In section 3 we show that there exist linear controllers
which render the system under consideration globally
asymptotically stable and give bounded quadratic cost.
In section 4 we consider the QRP for the kinematics only
with the angular velocity as the control input. It turns
out that for this case we can compute globally optimal
controllers for a special class of quadratic cost functions.
The resulting optimal controllers are linear.

The main results are in section 5. For a general
quadratic performance index, we present sufficient condi-
tions which, if satisfied, guarantee the existence of a lin-
ear stabilizing controller that minimizes an upper bound
on a quadratic cost for all initial conditions in a given set.
That is, we give sufficient conditions for the solvability
of the QRP with linear controllers. The conditions com-
prise certain matrix inequalities. The paper concludes
with a (finite dimensional) nonlinear programming prob-
lem that can be used to test our sufficient conditions. We
show that the resulting nonlinear programming problem
can be solved by solving a sequence of Linear Matrix
Inequality (LMI) problems.

The notation used is standard. The transpose of a matrix
Ais A'. If A is real and symmetric, we use 4 < 0 to
denote that A has (strictly) negative eigenvalues; A > 0
is equivalent to —A < 0. The identity matrix of size n is
denoted by I,,. The euclidean norm is ||z|| = V&'z. The
function V' : IR™ — IR is positive definite if V{(z) > 0 for
all x € IR™ and V(z) = 0 only if z = 0. The gradient
of V(z) is denoted by V;(z) (row vector). Finally, the
notation Co{S} stands for the convex hull of the set S.

2 PROBLEM FORMULATION

We consider the rotational motion of a rigid body sub-
ject to three independent scalar control torques; these
torques are applied about axes which are fixed in the
body and aligned with the body principal axes. The
rotational motion of a rigid body can be described by



a system of six first order differential equations. Three
of these equations govern the angular velocity (dynamic

equations) while the other three describe the evolution
of the body orientation (kinematic equations).
Choosing a body-fixed coordinate system aligned with

the torque axes, the dynamic equations can be written
in the form

w=Fww+ J_lu, w(0) = wo, (1)

where w = [w1 w2 wg]' is the angular velocity vector.
The matrix F'(w) is given by

0 —J3W3/J1 JQW2/J1
F(w) = J3W3/J2 0 —J1(,U1/J2 (2)
—J2W2/J3 J1(,U1/J3 0

where Ji, J2, and Js are the principal moments of inertia
of the rigid body at the mass center. The matrix J is
the diagonal matrix

Ji 0 0
J:[O Jo 0].
0 0 Js

To describe the orientation of the rigid body in space,
kinematic equations are necessary. The orientation of a
rigid body can be described with a rotation matriz which
transforms the basis unit vectors between the body-fixed
and the inertial coordinate systems. Every orientation of
the body corresponds to an element of the group of or-
thogonal 3 x 3 matrices with determinant 41, called the
rotation group, which may be viewed as the configura-
tion space for all rotations of a rigid body. The different
ways of parameterizing the rotation group give rise to al-
ternative parameterizations of the kinematics, leading to
different sets of kinematic equations (Kane et al., 1983).

One possible choice of kinematic parameters are the so-
called Cayley-Rodrigues parameters p1, p2, and ps (Kane
et al., 1983). These parameters lead to a minimal three-
dimensional representation of the rotation group. The
corresponding kinematic equations are

p=Gp)w, p(0)=po (3)
where p = [p1 p2 pa]’ is the kinematic vector,
1
Gp) = 5(Is + S(p) + pr"), (4)

and S(p) is the skew-symmetric matrix defined by

0 —p3  p2
S(p) := p3 0 —-p |- (5)
—p2 M 0

A useful property of the Cayley-Rodrigues representa-
tion is that, for any p € IR®, we have

P'Glp) = 201+ ol (6)

This property will be used when computing Lyapunov
derivatives associated with the nonlinear system given
by (1) and (3).

When the Cayley-Rodrigues parameters are zero, p1 =
p2 = ps = 0, the rotation matrix is the identity matrix
and the body and inertial coordinate systems coincide.
This will be the equilibrium (rest) or desired orientation
in this paper.

We associate with the system given by (1) and (3) a
performance output

z:C[‘ﬁ]—l—Du, (7)

where C and D are given real matrices. For each initial

state [ph w§]” € IR®, and control input u, the performance
index or cost associated with this output is given by

T(po.w0.u) = / NERY (8)

where ||z|| = V2'=.

The objective of this paper is to solve the following prob-
lem.

Quadratic Regulation Problem (QRP). Consider

the nonlinear system
= G(p)w (9a)
W = Fww+J 'y (9b)
where F(-) is defined in (2), G(-) is defined in (4), and

the performance index is given by (7) and (8). Given any

bounded set ¢ C IR® containing zero and any positive
scalar v, obtain a memoryless state-feedback controller
u = k(p,w) such that,

(i) the closed loop system is asymptotically stable
about zero with C as a region of attraction;

(i) for each initial state [pj wy]” € C the performance
index satisfies the bound

j(pOaWOa u) S Y. (10)

3 GLOBALLY ASYMPTOTICALLY STABI-
LIZING LINEAR CONTROLLERS

In this section we present simple linear controllers which
render the nonlinear system (9) globally asymptotically

stable. The result given here provides the motivation for
the later developments.

Lemma 1: The linear controller
U= —Kiw — K2p, (11)

where k1 and k2 are any positive scalars, globally asymp-
totically stabilizes the system (9). Moreover,

T (po, wo, u) < 0.
Proof. Define the positive definite function
V(w, p) := %w/Jw—l—KQ In(1+ ||p||2) (12)

where In(-) denotes the natural logarithm. We show that
this is a Lyapunov function for the closed-loop system.
Differentiating (12) along the trajectories of the closed-

loop system obtained by applying (11) to (9), and using
(6), we obtain

V=—riw'Jw <0. (13)
Since V is radially unbounded, it now follows that all

trajectories are bounded. Note also that V=0 implies
w = 0; this gives w = 0 and p = 0. Hence, from LaSalle’s



theorem, it follows that the closed-loop system is globally
asymptotically stable about zero.

To show that the cost (8) is bounded, we will first show
that the control law (11) is (locally) exponential stabiliz-
ing. This can be done by showing that the linearization
of the closed-loop system has all eigenvalues with neg-
ative real parts (Khalil, 1992). The linearization of the
closed-loop system about the origin is given by

[ : ] - [ —ngmz —§3!3K1 ] [ 5 ] (14)

A simple calculation shows that, if A is an eigenvalue of

(14), then
det(JN + m L) + “21) =

Since J > 0, k&1 > 0, and k2 > 0, we conclude that A has
strictly negative real part.

In order now to show that the cost (8) is bounded, con-
sider a closed loop trajectory z(-) = [p(-)' w(-)']’ starting
from an arbitrary initial condition [py wg]’. Using the
fact that the closed loop is globally asymptotically stable

and locally exponentially stable, it is quite elementary to
show that

T
lim / ||x(t)||2dt<oo
T—co 0

Since the control law is linear in the state, and the cost is
quadratic in the state and the control we conclude that

T (po,wo, u) < 0.

O

This lemma provides the main motivation for the
methodology used in the paper. According to this
lemma, the system (9) has the — rather unusual for a
nonlinear system — property that it admits linear glob-
ally asymptotically stabilizing control laws. In addition,
the linear control law (11) provides a bounded value for
the cost (8). It is natural then to search over the class of
linear controllers to find the one yielding the minimum
value of the cost.

4 SPECIAL COST FUNCTIONS

In this section we consider the special class of QRP prob-
lems with performance output z of the form

z= [ " ] (15)

where r1,ro are positive scalars; the corresponding cost
is given by

T (po,wo, u

/ L2 oIF + 2 lw(nIP} dr. (16)

Note that (9) is a system in cascade form; i.e., p does not
enter the right-hand-side of (9b) and u does not enter
(9a). In essence, w acts as a “control” for the subsys-
tem (9a). Therefore, when u does not enter in the cost
function, it is natural to consider first the optimal con-
trol problem for the kinematics only with w treated as
a control-like variable. Such problems are simpler than
optimal control problems for both (9a) and (9b). Opti-
mal control problems with w as the control provide lower
bounds on the optimal performance that can be achieved
when u is the control variable.

Lemma 2: Consider the nonlinear system
p=Gp)w, p(0)=po (17)

with w as the control input. Let r1 and ro denote two
positive scalars and define r = r1/r2. The controller

wopt (p) = —Tp (18)
has the following properties:

(i) The corresponding closed-loop system is globally ex-
ponentially stable about zero.

(i) For every initial state po, the controller (18) mini-
mizes the performance index

H(po,w) :=/ [ oI + 72 lle(I* } dt (19)

over the set of control inputs w(-) which result in
lim; .o p(t) = 0, and the minimum of the perfor-
mance index is

Hopr(p0) = 2rir2 In(1 + [pol|) (20)

Proof. To demonstrate global exponential stability of
the closed loop system

p=—rG(p)p (21)

introduce the Lyapunov function candidate
Wi(p) =¢'p.

From (6) it follows that the derivative of W along any
solution of the closed loop system satisfies

W —r(L+|lpl*)llel®
—rW.

This guarantees global exponential stability about zero
with rate of convergence r/2.

IA

To demonstrate the optimality properties of controller
(18), consider the positive definite function

V(p) :=2rir2In(1+ ||p||2) (22)

Take now any initial state po and any control input w(-)
which results in lim;_.o p(t) = 0. The derivative of V'
along the corresponding solution of system (17) satisfies
(this computation makes use of (6))

Vo= drra(14|plP) 7 Glp)w
= 2r1r2plw
= —rillpll® = r2llwl® + llrip + rawl®.

Considering any time 7' > 0 and integrating this last
equality over the interval [0, T] yields

/ (20N + o)} dt = V(po) -
/nnp )4 row(t)|P .

Since im7_.o p(T') = 0, we have limr_.o V(p(T)) =0
and

V(1))

Hipoo) = Vioo)+ [ s+ ool at. (29

The optimality properties of controller (18) now follow
from (23). O



5 MAIN RESULTS

We now consider a control problem for the nonlinear sys-
tem (9) with a more general performance index than the
one in Lemma 2. In particular, we now include a penalty
in the control input u. Unfortunately, when the perfor-
mance index is arbitrary, we cannot solve the optimal
control problem. Instead, we give sufficient conditions
for the solvability of the QRP problem introduced in
section 2.

In order to state our main result, we need to compute a
few preliminary quantities. First, note that we can write
the nonlinear system (9) in the form

¢ = A(z)z+ Bu 2(0) =10 (24a)
z = Cxz+ Du, (24b)
where z := [p' w']’ and
Alz) = [ 0 g((g)) ] Bi= [ e ] (25)

Using (25) it can be shown that A(z) can also be written
as

6
A(r) = Ao + Z #:A4; + Boza'Co, (26)

=1

where Ag, A1, ..., Ag, By, Cy are real matrices in IR®**®,
determined by G(-) and F(-). These matrices are fairly
easy to compute and they are given in the appendix.
Equation (26) shows that the matrix A(z) is the sum of
two parts; the first part is affine in the state z and the
second is quadratic in the state x.

Let Boo(d) denote the hypercube of radius d in IR?; i.e,
Boo(d)={z €R®| |zs| <di=1,2,...,6} .

Compute real matrices Afk, ey A# such that

{Ao + inAi € Boo(d)} = Co{A¥, ... A#}.(27)

=1

The matrices Afk, ey A# exist because the set in the left

hand side of (27) is a polytope; these matrices are given
in the appendix.

The next result yields a solution to the suboptimal
quadratic regulation problem for the nonlinear system
(24). The basic idea is to give conditions that guarantee
the existence of Lyapunov functions of the form

Vizg)=Aln(1 + ||p||2) + ' P,

(the positive definite matrix P € IR®*® and the non-
negative scalar A are free), that can be used to prove
stability and compute an upper bound for the quadratic
cost. (Recall from the previous sections that Lyapunov
functions which include a logarithmic term in the kine-
matic parameters give rise to linear controllers and, in
addition, are optimal for certain special cost functions.)

Theorem 1: Consider the nonlinear system (24) to-
gether with the cost function

T (0, u) = /OO |Ca(t) + Du(t)) dt. (28)

Suppose that D'[C D] = [0 I]. Let d denote a positive
constant and let the matrices Afk, e A#, Bo, and Cy be
defined by (27) and (26). Suppose there exists a positive
definite symmetric matriz P € IR®*®, positive scalars

O1,...,0p, and X > 0 such that, for eacht1 =1,... p, we

have

AP+ PA* 4 3d°(0:PBo + 0 Cy)(0:PBo + 07 CF)
— PBB'P+C'CH+ A <0, (29)

where

0 I
Define the positive definite function
V(z) :==Aln(1 4+ ||p||2) + &' P, (30)

where p denotes the first 3 components of ¢ € IR®, and
define the set

Q7)== {e € R*| V(2) <7}, (31)

where v is a given positive number. If Q(v) C Boo(d),
then the linear state-feedback control law

w=—B'Pg (32)

is such that, given any initial condition xq € Q(v), the
resulting closed loop trajectory converges to zero, and the
closed loop cost satisfies the bound

J(xo,—B'Pz) = /OO I(C — DB'P)x(t)||? dt

IA

An(1+ ||pol|*) + 26 Pro < 7.(33)

The intuition behind this theorem is as follows. If
the matrix inequalities in (29) hold, one can show, us-
ing the Lyapunov function (30), that the control u =
—B'Pg asymptotically stabilizes the nonlinear system
(24) whenever the initial state belongs to an invariant
set of closed loop trajectories contained in Boo(d). The
set ©(v) is one such invariant set because z(t) € Q(v)
implies #(t) € Boo(d); hence, V(z(t)) < 0. Moreover, the
same Lyapunov function can be used to show the perfor-
mance bound in (33) by a simple “completion of squares
argument.” Although simple, the proof of Theorem 1 is
lengthy and (due to space limitations) it is omitted; the
interested reader may find a proof of this result in Rotea
et al. (1995).

6 NUMERICAL SOLUTION OF THE QRP
PROBLEM

Let C be the bounded set of initial states where the QRP
should be solved. Then, the best suboptimal controller
that can be obtained from Theorem 1 is obtained by
solving

Yopt = inf(w,A,ol,...,op,P) v
subject to A >0, 01 > 0,...,0, > 0,
P="P' >0, and (29)
C CQ(y) C Bo(d)

(34)

where ©(v) is defined in (31). Indeed, the state-feedback

gain Kqrp = —B'Popt, where Pop; denotes a solution



to (34), stabilizes the set C and guarantees that the
quadratic performance index is bounded by vop: for all
initial conditions in C.

It turns out that (34) does not exhibit any convexity
properties that can be exploited to compute a global so-
lution. To see this, suppose that all optimization vari-
ables except P are fixed. Then the matrix inequalities
(29) cannot be made convex in P due to the presence
of an indefinite quadratic term in P; similarly, if we
write (29) in terms of P™', the presence of an indefi-
nite quadratic term in P~! shows that (29) is not convex

in P7! either. Below, we will give an iterative method
for finding local solutions that can be implemented by
solving a sequence of Linear Matrix Inequalities (LMIs).
The reduction of the problem to one involving LMIs has
computational advantages (Boyd et al., 1994; Gahinet
and Nemirovskii, 1993).

Notice first that, with X' = —B’P, we can write each
matrix inequality in (29) as

(A* + BK)'P+ P(A* + BK)
+3d°(0; PBo + 07" C§)(0: PBo + 07 CY)’

+(C + DK)Y(C+ DK)+ A1l < 0. (35)

Fix v > 0 and K. It follows that there exist A > 0,

positive numbers o1, ..., 0, and P = P’ > 0, such that
(35) holds and

€ CQv) CBx(d) (36)

if and only if there exist Fo > 0, positive numbers

B1,.-.,Bp, and X = X' > 0 such that
(A* + BK)'X + X(A* + BK) +
3d°B7 (X Bo + 8:CH) (X Bo + 5:C3) +

7O + DK)(C+ DK) 4 oIl <0 (37)
and
CC®CBx(d). (38)
where

@::{xE]R6| 6oln(1—|—||p||2)—|—x'Xx§1} (39)

(To see this, introduce the change of variables P = vX,
Bo = A/, and Bi = 1/(o77))
Introducing the change of variables o = ™!, and using
the Schur complement formula, (37) is equivalent to
(A* + BK)'X + X(A* + BK)+
a(C+ DK)(C+ DK)+ Boll
By X 4+ 3:Co

X Bo + 3:Cj
_#51.]

Finally, from the equivalence between the pair of condi-
tions (35)-(36) and the pair of conditions (40)-(38), we
get that the optimization problem (34) is equivalent to

7<;alt = SUP(a,80,81,...,8p,X,K) &
subject to B0 >0, X =X'>0,8 >0
(40) holds for: =1,...,p, (41)
the set inclusion (38) holds,
and K = —%B'X.
We will now show how to compute a local solution to

(41) by solving a sequence of LMI problems when the
set C in (38) is the polytope defined by

C=P:=Co{vi,...,v}.

for some vectors v; € IR®, fori =1,...,r.

First we show how that if certain LMIs in the variables
B0 and X hold, the set inclusion in (38) holds. Consider
first the inclusion P C ®. Suppose that, given fy > 0,
X >0and h=1,...,r, we have

Bo |I[L 0Jun||* + o) Xvn < 1. (42)
Then, since P is a polytope and
d_ = {x | Bo ||[Ls 0]7c||2 +'Xe < 1}

is convex, we get P C ®_. Since In(1 + 6%) < 6? for all
6 € IR, we obtain ®_ C ®. Hence, if (42) holds, P C ©.
The important point is that (42) is affine in fg and X.

Now, to enforce ® C Buo(d) we use
] > 0, (43)

for s =1,...,6, where e, denotes the unit vector in IR®.
To show that this condition implies ® C By (d), take

z € ®. Since fo > 0 we get 2’ Xz < 1. If &, denotes
the ellipsoid

P, = {x |x/Xx < 1}

then clearly, ® C 4.

If (43) holds and z € @, then given any real number y
we have

d’y? + 2yelc +1 > 0.

Taking y = d™' and y = —d™' in this last inequality,
we obtain |elz| < d; since s is arbitrary, it follows that

& € Boo(d), thus &4 C Boo(d).

From these (conservative) characterizations of the set in-
clusion (38), we get

7<;alt 2 SUD(4 6.8y, B X, K)
subject to B0 >0, X =X'>0,8 >0
(40) holds for 1 =1,...,p,
(42) holds for h=1,...,7r,
(43) holds for s =1,...,6,
and K = —%B'X.

(44)

< 0.(40)

Notice that, when K is fixed and the last equal-
ity constraint in the optimization problem (44) is ig-
nored, (44) is a convex LMI problem in the vari-
ables (a, B0, 01,...,8p, X). Notice also that given
(a, Bo, B1, ..., Bp, X, K) satisfying all the constraints of
(44) but the last one, a new gain can be generated ac-
cording to the formula

Kpew = — lB'X.
a

Hence, local solutions to (44) can be obtained by itera-
tively computing (o, X) and K. This is summarized in
the following algorithm.



The (o, X) — K iteration

1. Choose d with P C Be(d) and compute the data
necessary to write down the LMIs (40), (42), and
(43).

2. Compute Ko the solution of the LQR problem cor-
responding to the linearized (about z = 0) system.
(A unique Ky exists.) Set the iteration index £ =0
and goto 3.

3. Fix K = K, in (44) and solve it (without the last
equality constraint) to obtain (ag, X¢). (This is a
standard LMI problem which may be solved with
the p;mckage described in Gahinet and Nemirovskii,
1993.

4. Compute Kyq41 = —a;lB'Xg. Stop if || Ke41— Kel|m
is less than a specified tolerance; otherwise, set £ =
£+ 1 and goto 3. (Here || - ||;» denotes a matrix
norm.)

7 REFERENCES

Athans, M., Falb, P.L., and Lacoss, R.T. (1963).
Time-,Fuel-, and Energy-Optimal Control of Non-
linear Norm-Invariant Systems. IRF Trans. on Aut.
Contrl., 8, 196-202.

Bourdache-Siguerdidjane, H. (1991). Further Results
on the Optimal Regulation of Spacecraft Angular
Momentum. Optim. Cont. Appl. Meth., 12, 273-
278.

Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan,
V. (1994). Linear Matriz Inequalities in System and
Control Theory, SIAM Studies in Applied Mathe-

matics.

Branets, V.N., Chertok, M.B., and Kaznachev, Y.V.
1984). Optimal Turning of a Rigid Body with One
ymmetry Axis. Kosmicheskie Issledovaniya, 22,

352-360.

Dabbous, T.E., and Ahmed, N.U. (1982?. Nonlinear
Optimal Feedback Regulation of Satellite Angular
Momenta. IEFE Trans. Aerosp. Elec. Sys., 18, 1,
2-10.

Debs, A.S., and Athans, M. (1969). On the Optimal

Angular Velocity Control of Asymmetrical Space
Vehicles. IFEFE Trans. Aut. Contrl., 14, 80-83.

Dixon, M.V., Edelbaum, T.N., J.E. Potter, and Van-
dervelde, W.E. (1970). Fuel Optimal Reorientation
of Axisymmetric Spacecraft. J. Spacecraft, 7, 1345-
1351.

Gahinet, P., and Nemirovskii, A. (1993). A Package
for Manipulating and Solving LMI’s, (preprint).

Khalil, H. (1992). Nonlinear Systems, MacMillan
Publishing Co., New York.

Kane, T.R., Likins, P.W., and Levinson, P.A. (1983).
Spacecraft Dynamics, McGraw-Hill Inc., New York.

Kumar, K.S.P. (1965). On the Optimum Stabilization
of a Satellite. IFEE Trans. Aerosp. Elec. Sys., 1,
82-83.

Rotea, M., Tsiotras, P., and Corless, M. (1995).
Suboptimal Control of Rigid Body Motion with a
Quadratic Cost. Technical Report, School of Aero-
nautics & Astronautics, Purdue University, West
Lafayette, IN. In preparation.

Scrivener, S.L., and Thomson, R.C. (1994). Survey of
Time-Optimal Attitude Maneuvers. J. Guid., Con-
trl., Dyn., 17, 225-233.

Windeknecht, T.G. (1963). Optimal Stabilization of
Rigid Body Attitude. J. Math. Anal. and Appl., 6,
325-335.

APPENDIX
Let

The matrices in equation (26) are given by

A= [0 § ]
a=3[5 %]
a=3]0 T
a=t[5 %]
A“Z[g Jlozljl]’
A5::[8 J1022J2]’
A‘“:[g Jlozgjg]

The matrices Afk, e A# required in equation (27)
are given by

6
Af = A0+ ) diiAs

=1

where dAkﬂ' denotes the ith component of the kth
vertex (1 < k < p = 2%) of the 6-dimensional cube
B (d).



