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Abstract� This paper considers the problem of controlling the rotational motion of a rigid body
using three independent control torques� Given a quadratic cost we seek stabilizing state feedback
controllers which guarantee that all motions starting within a speci�ed bounded set satisfy a
speci�ed bound on a quadratic performance index or cost� For a special class of cost functions� we
present explicit expressions for the optimal stabilizing controllers� For the general case� we present
su�cient conditions which guarantee the existence of linear� suboptimal� stabilizing controllers�
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� INTRODUCTION

In this paper we consider the problem of controlling the
rotational motion of a rigid body using three indepen�
dent control torques� The minimal requirement on the
controller is to stabilize the body about a speci�ed ori�
entation� In addition� we require the controller to guar�
antee that a quadratic performance index or cost be
bounded for all initial states lying in a given set� Ideally�
we would like to minimize the cost� since this is� in gen�
eral� a di�cult task we are contented with minimizing
an upper bound for the cost� By minimizing this up�
per bound� it is hoped that one can achieve acceptable
performance�

The problem addressed in this paper is of importance
in aerospace engineering since it corresponds to the con�
trol of the orientation of a spacecraft� Previous research
on this problem has been mostly directed towards the
time or fuel�optimal control problem� see� for example�
�Athans� et al	� �	
�� Branets et al	� �	�� Dixon et
al	� �	��� and the recent survey paper by Scrivener and
Thomson ��		��

As far as the optimal regulation of the angular veloc�
ity or the angular momentum vector is concerned� the
earliest results seem to be the ones reported in �Debs
and Athans� �	
	� Kumar� �	
�� and Windeknecht�
�	
��� More recent results on the same problem were
reported by Dabbous and Ahmet ��	��� and Bourdache�
Siguerdidjane ��		��� In the present work we are in�
terested however with the more complicated problem of
optimal control of the complete attitude equations� i�e�
dynamics and kinematics�

The equations describing the rotational motion of a rigid
body are nonlinear� Thus� in general� to obtain opti�
mal feedback controllers for nonlinear systems one has
to solve the associated Hamilton�Jacobi equation �HJE��
This is a partial di�erential equation and except for very
special cases� it is di�cult to obtain solutions� As a re�
sult of the di�culty in obtaining optimal controllers� in
this paper we look for suboptimal stabilizing feedback
controllers� More speci�cally� we consider the following
problem� Given a bounded set C in the state space� �nd
a feedback controller which results in an asymptotically
stable closed loop system �with C contained in the region
of attraction�� and such that a quadratic cost satis�es a
speci�ed bound for all initial conditions in C� We call

this problem the Quadratic Regulation Problem �QRP��

The paper is organized as follows� In section � we present
the equations of motion of a rotating rigid body and we
state the QRP� The description of the dynamics is stan�
dard� whereas for the kinematics we choose the Cayley�
Rodrigues parameters�

In section � we show that there exist linear controllers
which render the system under consideration globally
asymptotically stable and give bounded quadratic cost�
In section  we consider the QRP for the kinematics only
with the angular velocity as the control input� It turns
out that for this case we can compute globally optimal
controllers for a special class of quadratic cost functions�
The resulting optimal controllers are linear�

The main results are in section �� For a general
quadratic performance index� we present su�cient condi�
tions which� if satis�ed� guarantee the existence of a lin�
ear stabilizing controller that minimizes an upper bound
on a quadratic cost for all initial conditions in a given set�
That is� we give su�cient conditions for the solvability
of the QRP with linear controllers� The conditions com�
prise certain matrix inequalities� The paper concludes
with a ��nite dimensional� nonlinear programming prob�
lem that can be used to test our su�cient conditions� We
show that the resulting nonlinear programming problem
can be solved by solving a sequence of Linear Matrix
Inequality �LMI� problems�

The notation used is standard� The transpose of a matrix
A is A�� If A is real and symmetric� we use A � � to
denote that A has �strictly� negative eigenvalues� A � �
is equivalent to �A � �� The identity matrix of size n is
denoted by In� The euclidean norm is kxk � p

x�x� The
function V � IRn � IR is positive de�nite if V �x� � � for
all x � IRn and V �x� � � only if x � �� The gradient
of V �x� is denoted by Vx�x� �row vector�� Finally� the
notation CofSg stands for the convex hull of the set S�

� PROBLEM FORMULATION

We consider the rotational motion of a rigid body sub�
ject to three independent scalar control torques� these
torques are applied about axes which are �xed in the
body and aligned with the body principal axes� The
rotational motion of a rigid body can be described by
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a system of six �rst order di�erential equations� Three
of these equations govern the angular velocity �dynamic
equations� while the other three describe the evolution
of the body orientation �kinematic equations��

Choosing a body��xed coordinate system aligned with
the torque axes� the dynamic equations can be written
in the form

�� � F ���� � J��u� ���� � ��� ���

where � � ��� �� ���
� is the angular velocity vector�

The matrix F ��� is given by

F ��� �

�
� �J����J� J����J�

J����J� � �J����J�
�J����J� J����J� �

�
���

where J�� J�� and J� are the principal moments of inertia
of the rigid body at the mass center� The matrix J is
the diagonal matrix

J �

�
J� � �
� J� �
� � J�

�
�

To describe the orientation of the rigid body in space�
kinematic equations are necessary� The orientation of a
rigid body can be described with a rotation matrix which
transforms the basis unit vectors between the body��xed
and the inertial coordinate systems� Every orientation of
the body corresponds to an element of the group of or�
thogonal �� � matrices with determinant ��� called the
rotation group� which may be viewed as the con�gura�
tion space for all rotations of a rigid body� The di�erent
ways of parameterizing the rotation group give rise to al�
ternative parameterizations of the kinematics� leading to
di�erent sets of kinematic equations �Kane et al	� �	����

One possible choice of kinematic parameters are the so�
called Cayley�Rodrigues parameters ��� ��� and �� �Kane
et al	� �	���� These parameters lead to a minimal three�
dimensional representation of the rotation group� The
corresponding kinematic equations are

�� � G����� ���� � �� ���

where � � ��� �� ���
� is the kinematic vector�

G��� ��
�

�
�I� � S��� � ����� ��

and S��� is the skew�symmetric matrix de�ned by

S��� ��

� � ��� ��
�� � ���
��� �� �

�
� ���

A useful property of the Cayley�Rodrigues representa�
tion is that� for any � � IR�� we have

��G��� �
�

�
�� � k�k����� �
�

This property will be used when computing Lyapunov
derivatives associated with the nonlinear system given
by ��� and ����

When the Cayley�Rodrigues parameters are zero� �� �
�� � �� � �� the rotation matrix is the identity matrix
and the body and inertial coordinate systems coincide�
This will be the equilibrium �rest� or desired orientation
in this paper�

We associate with the system given by ��� and ��� a
performance output

z � C
h
�
�

i
�Du� ���

where C and D are given real matrices� For each initial
state ���� �

�

��
� � IR�� and control input u� the performance

index or cost associated with this output is given by

J ���� ��� u� ��
Z
�

�

kz�t�k� dt� ���

where kzk � p
z�z�

The objective of this paper is to solve the following prob�
lem�
Quadratic Regulation Problem �QRP�� Consider
the nonlinear system

�� � G���� �	a�

�� � F ����� J��u �	b�

where F ��� is de�ned in ���� G��� is de�ned in ��� and
the performance index is given by ��� and ���� Given any
bounded set C � IR� containing zero and any positive
scalar �� obtain a memoryless state�feedback controller
u � k��� �� such that�

�i� the closed loop system is asymptotically stable
about zero with C as a region of attraction�

�ii� for each initial state ���� ����
� � C the performance

index satis�es the bound

J ���� ��� u� � �� ����

� GLOBALLY ASYMPTOTICALLY STABI�
LIZING LINEAR CONTROLLERS

In this section we present simple linear controllers which
render the nonlinear system �	� globally asymptotically
stable� The result given here provides the motivation for
the later developments�

Lemma �� The linear controller

u � ���� � ���� ����

where �� and �� are any positive scalars� globally asymp�
totically stabilizes the system ���	 Moreover�

J ���� ��� u� ���

Proof� De�ne the positive de�nite function

V ��� �� �� �
��

�J�� �� ln�� � k�k�� ����

where ln��� denotes the natural logarithm� We show that
this is a Lyapunov function for the closed�loop system�
Di�erentiating ���� along the trajectories of the closed�
loop system obtained by applying ���� to �	�� and using
�
�� we obtain

�V � �����J� � �� ����

Since V is radially unbounded� it now follows that all
trajectories are bounded� Note also that �V 	 � implies
� 	 �� this gives �� 	 � and � 	 �� Hence� from LaSalle�s
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theorem� it follows that the closed�loop system is globally
asymptotically stable about zero�

To show that the cost ��� is bounded� we will �rst show
that the control law ���� is �locally� exponential stabiliz�
ing� This can be done by showing that the linearization
of the closed�loop system has all eigenvalues with neg�
ative real parts �Khalil� �		��� The linearization of the
closed�loop system about the origin is given byh

��
��

i
�
h

� I���
�J���� �J����

ih
�
�

i
� ���

A simple calculation shows that� if 	 is an eigenvalue of
���� then

det�J	� � ��I�	�
��
�
I�� � ��

Since J � �� �� � �� and �� � �� we conclude that 	 has
strictly negative real part�

In order now to show that the cost ��� is bounded� con�
sider a closed loop trajectory x��� � ������ ������� starting
from an arbitrary initial condition ���� ����

�� Using the
fact that the closed loop is globally asymptotically stable
and locally exponentially stable� it is quite elementary to
show that

lim
T��

Z T

�

kx�t�k� dt ��

Since the control law is linear in the state� and the cost is
quadratic in the state and the control we conclude that

J ���� ��� u� ���

ut
This lemma provides the main motivation for the
methodology used in the paper� According to this
lemma� the system �	� has the � rather unusual for a
nonlinear system � property that it admits linear glob�
ally asymptotically stabilizing control laws� In addition�
the linear control law ���� provides a bounded value for
the cost ���� It is natural then to search over the class of
linear controllers to �nd the one yielding the minimum
value of the cost�

� SPECIAL COST FUNCTIONS

In this section we consider the special class of QRP prob�
lems with performance output z of the form

z �
h
r��
r��

i
����

where r�� r� are positive scalars� the corresponding cost
is given by

J ���� ��� u� �
Z
�

�

�
r��k��t�k� � r��k��t�k�

�
dt� ��
�

Note that �	� is a system in cascade form� i�e�� � does not
enter the right�hand�side of �	b� and u does not enter
�	a�� In essence� � acts as a �control� for the subsys�
tem �	a�� Therefore� when u does not enter in the cost
function� it is natural to consider �rst the optimal con�
trol problem for the kinematics only with � treated as
a control�like variable� Such problems are simpler than
optimal control problems for both �	a� and �	b�� Opti�
mal control problems with � as the control provide lower
bounds on the optimal performance that can be achieved
when u is the control variable�

Lemma �� Consider the nonlinear system

�� � G����� ���� � �� ����

with � as the control input	 Let r� and r� denote two
positive scalars and dene r � r��r�	 The controller

�opt��� � �r� ����

has the following properties�

�i� The corresponding closed�loop system is globally ex�
ponentially stable about zero	

�ii� For every initial state ��� the controller ���� mini�
mizes the performance index

H���� �� ��
Z
�

�

�
r��k��t�k� � r��k��t�k�

�
dt ��	�

over the set of control inputs ���� which result in
limt�� ��t� � �� and the minimum of the perfor�
mance index is

Hopt���� � �r�r� ln�� � k��k�� � ����

Proof� To demonstrate global exponential stability of
the closed loop system

�� � �rG���� ����

introduce the Lyapunov function candidate

W ��� � ����

From �
� it follows that the derivative of W along any
solution of the closed loop system satis�es

�W � �r�� � k�k��k�k�
� �rW�

This guarantees global exponential stability about zero
with rate of convergence r���

To demonstrate the optimality properties of controller
����� consider the positive de�nite function

V ��� �� �r�r� ln�� � k�k��� ����

Take now any initial state �� and any control input ����
which results in limt�� ��t� � �� The derivative of V
along the corresponding solution of system ���� satis�es
�this computation makes use of �
��

�V � r�r��� � k�k������G����
� �r�r��

��

� �r��k�k� � r��k�k� � kr��� r��k��
Considering any time T � � and integrating this last
equality over the interval ��� T � yieldsZ T

�

�
r��k��t�k� � r��k��t�k�

�
dt � V ����� V ���T ��

�

Z T

�

kr���t� � r���t�k� dt�

Since limT�� ��T � � �� we have limT�� V ���T �� � �
and

H���� �� � V ���� �

Z
�

�

kr���t� � r���t�k� dt� ����

The optimality properties of controller ���� now follow
from ����� ut

�



	 MAIN RESULTS

We now consider a control problem for the nonlinear sys�
tem �	� with a more general performance index than the
one in Lemma �� In particular� we now include a penalty
in the control input u� Unfortunately� when the perfor�
mance index is arbitrary� we cannot solve the optimal
control problem� Instead� we give su�cient conditions
for the solvability of the QRP problem introduced in
section ��

In order to state our main result� we need to compute a
few preliminary quantities� First� note that we can write
the nonlinear system �	� in the form

�x � A�x�x�Bu x��� � x� ��a�

z � Cx�Du� ��b�

where x �� ��� ���� and

A�x� ��
h
� G���
� F ���

i
� B ��

h
�

J��

i
� ����

Using ���� it can be shown that A�x� can also be written
as

A�x� � A� �

�X
i��

xiAi � B�xx
�C�� ��
�

where A��A�� � � � �A��B�� C� are real matrices in IR
����

determined by G��� and F ���� These matrices are fairly
easy to compute and they are given in the appendix�
Equation ��
� shows that the matrix A�x� is the sum of
two parts� the �rst part is a�ne in the state x and the
second is quadratic in the state x�

Let B��d� denote the hypercube of radius d in IR�� i�e�

B��d� �
�
x � IR�

�� jxij � d� i � �� �� � � � � 

�
�

Compute real matrices A�
� � � � � �A

�
p such that

�
A� �

�X
i��

xiAi

����� x � B��d�
�
� CofA�

� � � � � �A
�
p g�����

The matrices A�
� � � � � �A

�
p exist because the set in the left

hand side of ���� is a polytope� these matrices are given
in the appendix�

The next result yields a solution to the suboptimal
quadratic regulation problem for the nonlinear system
���� The basic idea is to give conditions that guarantee
the existence of Lyapunov functions of the form

V �x� � 	 ln�� � k�k�� � x�Px�

�the positive de�nite matrix P � IR��� and the non�
negative scalar 	 are free�� that can be used to prove
stability and compute an upper bound for the quadratic
cost� �Recall from the previous sections that Lyapunov
functions which include a logarithmic term in the kine�
matic parameters give rise to linear controllers and� in
addition� are optimal for certain special cost functions��

Theorem �� Consider the nonlinear system ���� to�
gether with the cost function

J �x�� u� �
Z
�

�

kCx�t� �Du�t�k� dt� ����

Suppose that D��C D� � �� I�	 Let d denote a positive

constant and let the matrices A�
� � � � �A

�
p � B�� and C� be

dened by ���� and ����	 Suppose there exists a positive
denite symmetric matrix P � IR���� positive scalars

�� � � � � 
p� and 	 � � such that� for each i � �� � � � � p� we
have

A�
i
�P � PA�

i � �d��
iPB� � 
��i C ����
iPB� � 
��i C ���
�

� PBB�P �C �C � 	� � �� ��	�

where

� �� �
�

h
� I�
I� �

i
�

Dene the positive denite function

V �x� �� 	 ln�� � k�k�� � x�Px� ����

where � denotes the rst 
 components of x � IR�� and
dene the set

���� ��
�
x � IR� j V �x� � �

�
� ����

where � is a given positive number	 If ���� � B��d��
then the linear state�feedback control law

u � �B�Px ����

is such that� given any initial condition x� � ����� the
resulting closed loop trajectory converges to zero� and the
closed loop cost satises the bound

J �x���B�Px� �

Z
�

�

k�C �DB�P �x�t�k� dt

� 	 ln�� � k��k�� � x��Px� � ������

The intuition behind this theorem is as follows� If
the matrix inequalities in ��	� hold� one can show� us�
ing the Lyapunov function ����� that the control u �
�B�Px asymptotically stabilizes the nonlinear system
��� whenever the initial state belongs to an invariant
set of closed loop trajectories contained in B��d�� The
set ���� is one such invariant set because x�t� � ����

implies x�t� � B��d�� hence� �V �x�t�� � �� Moreover� the
same Lyapunov function can be used to show the perfor�
mance bound in ���� by a simple �completion of squares
argument�� Although simple� the proof of Theorem � is
lengthy and �due to space limitations� it is omitted� the
interested reader may �nd a proof of this result in Rotea
et al	 ��		���


 NUMERICAL SOLUTION OF THE QRP
PROBLEM

Let C be the bounded set of initial states where the QRP
should be solved� Then� the best suboptimal controller
that can be obtained from Theorem � is obtained by
solving

�opt � inf ������� ������p �P � �

subject to 	 � �� 
� � �� � � � � 
p � ��

P � P � � �� and ��	�

C � ���� � B��d�

���

where ���� is de�ned in ����� Indeed� the state�feedback
gain Kqrp � �B�Popt� where Popt denotes a solution





to ���� stabilizes the set C and guarantees that the
quadratic performance index is bounded by �opt for all
initial conditions in C�
It turns out that ��� does not exhibit any convexity
properties that can be exploited to compute a global so�
lution� To see this� suppose that all optimization vari�
ables except P are �xed� Then the matrix inequalities
��	� cannot be made convex in P due to the presence
of an indenite quadratic term in P � similarly� if we
write ��	� in terms of P��� the presence of an inde�
nite quadratic term in P�� shows that ��	� is not convex
in P�� either� Below� we will give an iterative method
for �nding local solutions that can be implemented by
solving a sequence of Linear Matrix Inequalities �LMIs��
The reduction of the problem to one involving LMIs has
computational advantages �Boyd et al	� �		� Gahinet
and Nemirovskii� �		���

Notice �rst that� with K � �B�P � we can write each
matrix inequality in ��	� as

�A�
i � BK��P � P �A�

i �BK�

��d��
iPB� � 
��i C ����
iPB� � 
��i C ���
�

��C �DK���C �DK� � 	� � �� ����

Fix � � � and K� It follows that there exist 	 � ��
positive numbers 
�� � � � � 
p� and P � P � � �� such that
���� holds and

C � ���� � B��d� ��
�

if and only if there exist �� � �� positive numbers
��� � � � � �p� and X � X � � � such that

�A�
i � BK��X �X�A�

i � BK� �

�d����i �XB� � �iC
�

���XB� � �iC
�

��
� �

����C �DK���C �DK� � ��� � � ����

and

C �  � B��d�� ����

where

 ��
�
x � IR�

�� �� ln�� � k�k�� � x�Xx � �
�

��	�

�To see this� introduce the change of variables P � �X�
�� � 	��� and �i � ���


�
i ���

Introducing the change of variables � � ���� and using
the Schur complement formula� ���� is equivalent to	

 �A�

i �BK��X �X�A�
i �BK��

��C �DK���C �DK� � ���
XB� � �iC

�

�

B��X � �iC� � �
�d�

�iI

�
� � �����

Finally� from the equivalence between the pair of condi�
tions �������
� and the pair of conditions ��������� we
get that the optimization problem ��� is equivalent to

���opt � sup����� ��� ������p �X�K� �

subject to �� � ��X � X � � �� �i � �

��� holds for i � �� � � � � p�

the set inclusion ���� holds�

and K � � �
�
B�X�

���

We will now show how to compute a local solution to
��� by solving a sequence of LMI problems when the
set C in ���� is the polytope de�ned by
C � P �� Cofv�� � � � � vrg�

for some vectors vi � IR�� for i � �� ���� r�

First we show how that if certain LMIs in the variables
�� and X hold� the set inclusion in ���� holds� Consider
�rst the inclusion P �  � Suppose that� given �� � ��
X � � and h � �� � � � � r� we have

�� k�I� ��vhk� � v�hXvh � �� ���

Then� since P is a polytope and

 � ��
�
x
�� �� k�I� ��xk� � x�Xx � �

�
is convex� we get P �  �� Since ln�� � �� � � for all
 � IR� we obtain  � �  � Hence� if ��� holds� P �  �
The important point is that ��� is a�ne in �� and X�

Now� to enforce  � B��d� we useh
d� e�s
es X

i
� �� ���

for s � �� � � � � 
� where es denotes the unit vector in IR��
To show that this condition implies  � B��d�� take
x �  � Since �� � � we get x�Xx � �� If  	 denotes
the ellipsoid

 	 ��
�
x
�� x�Xx � ��

then clearly�  �  	�

If ��� holds and x �  	� then given any real number y
we have

d�y� � �ye�sx� � � ��

Taking y � d�� and y � �d�� in this last inequality�
we obtain je�sxj � d� since s is arbitrary� it follows that
x � B��d�� thus  	 � B��d��
From these �conservative� characterizations of the set in�
clusion ����� we get

���opt � sup����� ��� ������p �X�K� �

subject to �� � ��X � X � � �� �i � �

��� holds for i � �� � � � � p�

��� holds for h � �� � � � � r�

��� holds for s � �� � � � � 
�

and K � � �
�
B�X�

��

Notice that� when K is �xed and the last equal�
ity constraint in the optimization problem �� is ig�
nored� �� is a convex LMI problem in the vari�
ables ������ ��� � � � � �p� X�� Notice also that given
��� ��� ��� � � � � �p�X�K� satisfying all the constraints of
�� but the last one� a new gain can be generated ac�
cording to the formula

Knew � � �
�
B�X�

Hence� local solutions to �� can be obtained by itera�
tively computing ���X� and K� This is summarized in
the following algorithm�

�



The ���X��K iteration

�� Choose d with P � B��d� and compute the data
necessary to write down the LMIs ���� ���� and
����

�� Compute K� the solution of the LQR problem cor�
responding to the linearized �about x � �� system�
�A unique K� exists�� Set the iteration index � � �
and goto ��

�� Fix K � K� in �� and solve it �without the last
equality constraint� to obtain ����X��� �This is a
standard LMI problem which may be solved with
the package described in Gahinet and Nemirovskii�
�		���

� Compute K�	� � ����� B�X�� Stop if kK�	��K�km
is less than a speci�ed tolerance� otherwise� set � �
� � � and goto �� �Here k � km denotes a matrix
norm��
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APPENDIX

Let

"� ��

� � � �
� � ��
� � �

�
� "� ��

� � � �
� � �
�� � �

�
�

"� ��

� � �� �
� � �
� � �

�
�

The matrices in equation ��
� are given by
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The matrices A�
� � � � � �A

�
p required in equation ����

are given by

A�
k �� A� �

�X
i��

#dk�iAi

where #dk�i denotes the ith component of the kth
vertex �� � k � p � ��� of the 
�dimensional cube
B��d��





