1166

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

A Beamlet-Based Graph Structure for Path
Planning Using Multiscale Information

Yibiao Lu, Xiaoming Huo, Senior Member, IEEE, and Panagiotis Tsiotras, Senior Member, IEEE

Abstract—Path-planning problems are fundamental in many
applications, such as transportation, artificial intelligence, control
of autonomous vehicles, and many more. In this paper, we con-
sider the deterministic path-planning problem, equivalently, the
single-pair shortest path problem on a given grid-like graph struc-
ture. Current commonly used algorithms in this area include the
A* algorithm, Dijkstra’s algorithm, and their numerous variants.
We propose an innovative beamlet-based graph structure for path
planning that utilizes multiscale information of the environment.
This information is collected via a bottom-up fusion algorithm.
This new graph structure goes beyond ‘“nearest-neighbor” con-
nectivity, incorporating ‘long-distance” interactions between
the nodes of the graph. Based on this new graph structure, we
obtain a multiscale version of A*, which is advantageous when
preprocessing is allowable and feasible. Compared to the bench-
mark A* algorithm, the use of multiscale information leads to an
improvement in terms of computational complexity. Numerical
experiments indicate an even more favorable behavior than the
one predicted by the theoretical complexity analysis.

Index Terms—A*, beamlet-like structure, bottom-up fusion al-
gorithm, Dijkstra’s algorithm, dynamic programming, path-plan-
ning.

1. INTRODUCTION

new beamlet-based graph structure is proposed for effi-
A cient path-planning within an environment full of obsta-
cles. The main idea is to use multi-scale information, by uti-
lizing techniques similar to those used in [1] for the purpose
of statistical image processing. The theoretical analysis shows
that the proposed multiscale version of the well-known A* al-
gorithm based on this new graph structure has lower worst-
case complexity than the standard A* algorithm applied to the
nearest-neighbor graph. In numerical experiments, we found
that the proposed multiscale structure significantly reduced the
number of node expansions in several large-scale environment
scenarios.

Manuscript received January 30, 2010; revised November 23, 2010 and
May 11, 2011; accepted September 16, 2011. Date of publication March 23,
2012; date of current version April 19, 2012. This work was supported by the
NSF through award CMMI-0856565. Recommended by Associate Editor F.
Dabbene.

Y. Lu and X. Huo are with the H. Milton Stewart School of Industrial and
System Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250
USA (e-mail: ylv3@gatech.edu; huo@gatech.edu).

P. Tsiotras is with the Daniel Guggenheim School of Aerospace Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0250 USA (e-mail: tsio-
tras @gatech.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2012.2191836

The main idea of the proposed multiscale graph structure can
be summarized as follows. Consider a uniform n by n grid
representing the world (or an image) assuming, without loss
of generality, 4-nearest-neighbor connectivity. There are O (n?)
vertices and O(n?) edges in the corresponding graph. In order
to reduce the number of node expansions (the most time-con-
suming step in all graph search algorithms), the proposed graph
structure first employs a recursive dyadic partitioning (to be de-
fined later) to divide the environment into “blocks” of different
sizes. The block sizes are determined by the relative impor-
tance of information within those blocks. The collection of all
blocks of the same size defines the information scale. The pre-
processing of information within each block is conducted via
an innovative Bottom-Up Fusion algorithm, which “fuses” mul-
tiscale information from finer scales to coarser scales. There-
fore, a properly designed search algorithm, defined on the pre-
processed “blocks,” can significantly reduce the number of ver-
tices in the graph, while only slightly increasing the number of
edges. As a result, path searching can be sped-up significantly,
when preprocessing is feasible.

There are four major ingredients in the proposed multiscale
approach, briefly summarized below (a full description is given
in Section III). (a) A recursive dyadic partitioning that divides
the entire grid world into hierarchically organized d-squares.
These d-squares are of different size, depending on the scale.
Only a subset of these d-squares is used during path-plan-
ning. The concept of Path-Finding Reduced Recursive Dyadic
Partition (PFR-RDP) is introduced to describe the collection
of d-squares used for path-planning. It can be shown that the
PFR-RDP contains at most O(logn) d-squares. (b) For each
d-square, all free boundary cells (i.e., vertices) are connected
by edges, with the edge weights being equal to the lengths of
the corresponding shortest paths. (c) A fusion algorithm, which
efficiently computes the weights in (b) using the recursive
relationship between the dyadic squares across different scales.
A new graph (based on the PFR-RDP and the weights being
computed in (c)) is thus obtained. We call this new graph the
beamlet graph, owing to its similarity with the data structure
introduced in [1] to encode efficiently all linear features in
an image.! (d) Finally, the A* algorithm (or any other similar
graph search algorithm) is run on the beamlet graph to identify
the optimal path.

As it will be shown in the sequel, the proposed beamlet graph
has O(n) vertices and O(n?) edges. The worst-case complexity

Note that the beamlet graph defined in the current paper is different than the
beamlet graph introduced in [1]; we have still decided to use the term beamlet
graph, because both take advantage of “long-distance” neighboring relations
between the nodes of the graph. This slight abuse of terminology should not
cause a confusion—the two names attach to different problems.

0018-9286/$31.00 © 2012 IEEE

LU et al.: BEAMLET-BASED GRAPH STRUCTURE FOR PATH PLANNING USING MULTISCALE INFORMATION

of running A* or Dijkstra’s algorithm on the original 4-nearest-
neighbor graph is O(n?logn), assuming a Fibonacci heap is
used. The complexity on the newly designed beamlet graph is
O(n?). The reduction by a factor of log n initially may not seem
impressive; however, our numerical simulation results proved
to be much more encouraging. In some cases, our approach
demonstrates an increase in speed of the A* algorithm by one
or two orders of magnitude. The numerical experiments show
that by combining the new beamlet-based graph structure with
the A* algorithm yields faster query time, adequate usage of
memory and reasonable preprocessing time.

The major contributions of our work are summarized below.
First, we introduce a new, beamlet-based graph structure, which
uses the multiscale information from the environment in order
to reduce the complexity of benchmark path-finding algorithms.
Although tested extensively against the standard A* and Dijk-
stra algorithms, the proposed data structure is not tied to a spe-
cific graph search algorithm, and it can be easily incorporated
into other existing approaches, such as A* with stronger heuris-
tics (i.e., true distance heuristic, differential heuristic, etc [2],
[3]), bidirectional search algorithms, etc [4]-[6]. Second, we
provide a systematic approach, the bottom-up fusion algorithm,
that allows us to “fuse” local information from finer scales into
global information at coarser scales. This algorithm is of more
general interest, as it can be employed whenever a multi-scale
partition of the environment is available.

The rest of this paper is organized as follows. Section II
gives a description of the problem formulation of the path-plan-
ning problem. Section III provides the details of the proposed
beamlet-based graph structure, which contains the dyadic
partition tree construction, and the bottom-up fusion informa-
tion collection method. The proposed multiscale version of
A* (m-A™) applies A* on the resulting beamlet graph. The
order of complexity of the m-A* is analyzed in Section IV.
Section V compares m-A* with the benchmark A* algorithm
via numerical experiments under different scenarios. Since the
performance of A* strongly depends on the heuristic used,
we also compare m-A* and A* in terms of a much stronger
heuristic than the standard L, distance, namely, the true dis-
tance heuristic (TDH) [2], [3]. As shown in Section V-B, m-A*
outperforms A* even when a much stronger heuristic is used;
furthermore, the performance gap increases with the size of the
problem data. Section VI offers a brief overview of the theory
behind multiscale beamlet analysis, along with a comparison
of our approach with related work from the path-planning
literature. Section VII summarizes the results of this paper and
provides some suggestions for possible future extensions.

II. PROBLEM FORMULATION

A deterministic path-planning problem consists of a graph
G = (V,E), where V is the set of vertices (i.e., the possible
vehicle locations) and F is the set of edges, representing tran-
sitions between these vertices. The weight of each edge repre-
sents the cost of transitioning between the two corresponding
vertex (viz. node) locations. Planning a path from an initial
vertex to an end vertex can be cast as a single-pair, shortest
path problem on this graph. In the deterministic (respectively,

1167

dynamic) path-planning problem, the environment does not (re-
spectively, does) change over time.

We consider path-planning problems in a deterministic 2-D
environment. Without loss of generality, we assume that the in-
formation about the environment is given via an n by n square
image, where n is dyadic: n = 27 and .J is a positive integer.
Note that such an image-based formulation is well-adopted in
the path-planning literature. Often, the image is called the grid-
world [7]. The proposed method does not require the image to
be square. However, assuming a squared image simplifies our
algorithmic description. Therefore, henceforth, we will assume
squared images. We will also assume that the image contains
two types of pixels: black pixels (representing non-traversable
obstacles) and white pixels (representing traversable free cells).
The path-planning problem is to find the shortest path between
a given pair of source and destination pixels.

Two popular shortest-path search algorithms in a determin-
istic setting are Dijkstra’s algorithm [8] and the A* algorithm
[9]. Both algorithms give the optimal path, and can be consid-
ered as special implementations of dynamic programming [10].
A* operates essentially the same way as Dijkstra’s algorithm,
except for the fact that it uses a heuristic estimate to guide the
search towards the most promising states. The use of heuristics
in A* potentially reduces the computational time.

To apply either search algorithm, one needs to first construct
the search graph. In this graph each free cell is defined to
be a vertex (viz. node), and, correspondingly, it is connected
only to its free four nearest-neighbors (four-nearest-neighbor
connectivity assumption). However, both Dijkstra’s and A*
algorithms have the tendency to be slow as the space to be
searched increases. Below we propose a beamlet-based graph
structure that takes advantage of the sparse information induced
by the quadtree decomposition in a hierarchy of dyadic squares,
thus improving the performance of the standard A* algorithm
when it is applied on the beamlet graph. As it will be shown in
Section IV, such a strategy can reduce significantly the order
of computational complexity, in the worst-case. It should be
pointed out that although four-nearest-neighbor connectivity
is assumed throughout the paper for simplicity, our theorems
(supported by the numerical experiments) show that the same
results also hold were eight-nearest neighbor connectivity had
been used, instead.

The main objective of the proposed new graph structure is to
construct a smaller size graph on which the computational com-
plexity of searching for the shortest path is efficiently reduced.
The intuition for the ensuing problem size reduction is given
as follows. The direct implementation of Dijkstra’s or A* algo-
rithm searches through all free cells in the environment. This
can be overwhelmingly redundant: if, for instance, the origin
and destination vertices are in the upper-left and bottom-right
quadrants, respectively, it is not necessary to scan through all
the free vertices in the upper-right and bottom-left quadrants.
Instead, one only needs to consider the boundary white pixels
of these two quadrants. An illustration of this idea can be seen
in Fig. 1. Armed with this intuition, in the sequel we develop
a new dynamic programming algorithm for path planning in a
cluttered environment, which takes advantage of preprocessed
information organized in a multiscale fashion, analogous to the

1168

Fig. 1. Free boundary cells attached to each dyadic square are the only ones that
need to be considered in the proposed approach. Note that not all free boundary
cells need to be expanded when running Dijkstra’s or the A* algorithm on the
beamlet graph. This figure also illustrates the vertices in the beamlet graph, de-
fined in Section III-B.

quadratic tree structure that has been used in beamlet analysis
[1]. The algorithm is explained in detail in the following section.

III. MULTISCALE PATH PLANNING STRATEGY
WITH PREPROCESSED INFORMATION

Each free cell is a vertex in the nearest neighbor graph and
is connected to the free cells among its four nearest-neighbors.
Each edge has unit weight. We describe our approach in four
steps. In Section III-A, we describe the recursive dyadic par-
tition and the path-finding reduced recursive dyadic partition.
These serve as the starting points of our approach. We then de-
scribe a new type of connectivity (Section III-B), motivated by
the beamlet structure introduced in [11]-[13]. We call the new
data structure the beamlet graph, owing to its similarity with
the connectivity relations arising in the beamlet graph struc-
ture of [12]. To compute the edge weights needed to create
the beamlet graph, a bottom-up fusion algorithm is given in
Section III-C. The proposed multiscale A* algorithm, essen-
tially runs A* (or Dijkstra’s) algorithm on the aforementioned
beamlet graph. This is explained in detail in Section III-D.

A. Recursive Dyadic Partitioning of the Environment

We describe two types of recursive dyadic partitioning
(RDP). The first one is the complete version of RDP. We then
introduce the Path-Finding Reduced RDP (PFR-RDP), which
will play an important role in defining the beamlet graph—the
graph structure that we will rely on.

The complete recursive dyadic partition can be described in a
top-down approach: a squared image is subdivided into smaller
d-squares, repeating the partitioning until the finest resolution
of the image is reached. Let s (1 < s < .J) denote the scale.
A dyadic square (referred to as a d-square from this point on)
at scale s, indexed by a,b (1 < a,b < 2°) will be denoted by
q(s;a,b). We have q(s;a,b) = {(i,7) : 277 %(a — 1)+1 <i <
27=5,27=5(b— 1) + 1 < j < 277%b}. The d-square q(s; a, b)
at scale s can be partitioned into four d-squares at scale s + 1;
i.e., we have ¢(s;a,b) = ¢(s+1;2a—1,2b—1)Uqg(s+1;2a —

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

T T T
qa(212,1) |
e e b = S by

! q(2i3,1) !
| | |

q(213,2)

1
q(2:44)

1 2 3 4 5 6 7 8
(b) The corresponding partition of a squared image.

(a) A complete quadtree.

Fig. 2. (a) A complete recursive dyadic partition with the corresponding
quadtree; (b) Complete recursive dyadic partition on a simple 8 X 8 image.
The black cells are the source and destination and the gray cells are obstacles.
The d-squares shown in the figure all come from the third (bottom) layer of
partition in (a). (a) A complete quadtree. (b) The corresponding partition of a
squared image.

T
q(212,1)
-

a(2:4,4)

1 2 3 4 5 6 7 8
(b) The corresponding partition of a squared image.

(a) A path-finding reduced quadtree.

Fig. 3. (a) A partial recursive dyadic partition and the corresponding PFR-
RDP; (b) A partial recursive dyadic partition on a simple 8 x 8 image. The
black cells denote the source and destination. The gray cells are obstacles. The
d-squares shown in figure are from the third (bottom) layer in (a). (a) A path-
finding reduced quadtree. (b) The corresponding partition of a squared image.

N\

Fig. 4. Tllustrations of the original beamlets. The successive subdivision of the
sides of the squares provides a hierarchical data structure that efficiently encodes
the distance between any two points at the boundaries of the squares.

1,2b) U q(s + 1;2a,2b — 1) U q(s + 1;2a,2b). Accordingly,
we say that the d-square ¢(s; a, b) has four children. The family
of d-squares at all scales forms a quadtree. The correspondence
between the recursive dyadic partitioning and the quadtree is
illustrated in Fig. 2.

LU et al.: BEAMLET-BASED GRAPH STRUCTURE FOR PATH PLANNING USING MULTISCALE INFORMATION

In the path-planning problem, for a given pair of start and des-
tination cells, only part of the complete RDP is needed. This is
the Path-Finding Reduced RDP (PFR-RDP). The PFR-RDP is
generated as follows. The image is initially subdivided into four
equal, smaller d-squares. If either the source or the destination
lies in a smaller d-square, the dyadic subdivision of this d-square
will continue, unless the finest resolution has been reached. If a
d-square contains neither the origin nor the destination, no fur-
ther partitioning is done to this d-square. The resulting parti-
tion is a partial recursive dyadic partition—not all d-squares are
partitioned to the finest resolution—and corresponds to a par-
tial quadtree. Fig. 3 shows an example of a PFR-RDP along
with the corresponding PFR-quadtree. The pseudo-code for the
PFR-RDP is given in Algorithm 1.

Algorithm 1 PFR-RDP (Path-finding reduced recursive dyadic
partitioning)

1: Set the largest scale to J = log, n, where the image size
is n by n.

2: Initialize the list dptree = [1, 1, 1]—the d-square at the
coarsest level.

3:fors=1:.J—1do
4: For d-square at scale s in dptree
5: if v, (source) or v, (destination) is in this d-square

6: In dptree, remove the line corresponding to this
d-square;

7 Partition into four equal, smaller d-squares, and insert
them as new lines in dptree

8: end if
9: end for
dptree

B. Beamlet-Like Connectivity

Recall that in the nearest neighbor graph, only the four nearest
neighbors of a cell are connected by edges. Here we introduce
another type of connectivity that takes advantage of connections
between faraway cells. We will see that such a connectivity, to-
gether with the aforementioned PFR-RDP, can reduce the com-
putational complexity of the search algorithm. For each fixed
d-square, we only consider the free cells on its boundary. A
pair of free cells on the boundary of the d-square are said to
be connected by an edge if and only if there exists a feasible
path between the two within this d-square. Note that such a def-
inition is similar to the concept of beamlets introduced in [12].
We refer to Section VI-A for the background theory on beamlet
analysis. Representative original beamlets in [12] are displayed
in Fig. 4. Fig. 5 shows several “beamlets” in the context of the
current paper attached to a 8 x 8 dyadic square. The green lines?

ZPlease refer to the electronic version of the paper for the color versions of
the figures.

1169

1
(<]
4

1 2 3 4 5 6 7 8 1 2
(a) Straight Beamlet.

3 6 7 8
(b) Non-Straight Beamlet.

Fig. 5. (a) Three straight beamlets in a 8§ X 8 image; the red circles are the end
points of each beamlet; (b) Two beamlets connecting the cells (1,5)—(4,8) and
(1,5)—(8,3); note that beamlets in the shortest-path problem may not be straight
lines. (a) Straight beamlet. (b) Non-straight beamlet.

show the corresponding shortest paths (i.e., the optimal beam-
lets) between two pairs of boundary free cells. Notice that a
beamlet in the shortest-path problem may not be a straight line
(Fig. 5(b)). The beamlet graph is now defined as follows. First,
the PFR-RDP of the given n by n image is obtained. All the free
cells on the boundaries of each d-square in the PFR-RDP are
defined to be the vertices in the beamlet graph. Two vertices in
the beamlet graph are connected under two conditions: (a) they
are nearest neighbors; or (b) they belong to the same d-square
in the PFR-RDP and there is a beamlet (i.e., a feasible path in-
side the d-square) connecting them. Within each d-square, the
weight of an edge is the length of the shortest path connecting
the two vertices. An example of a PFR-RDP partition is shown
in Fig. 1. In Fig. 1 the red grid shows the partial dyadic parti-
tion corresponding to the PFR-RDP. The red circles are the free
boundary cells, i.e., the vertices in the beamlet graph.

To compute the weights of the edges within all d-squares in
a PFR-RDP we make use of the following bottom-up fusion
algorithm.

C. Bottom-Up Fusion Algorithm

The proposed multiscale path planning strategy requires the
availability of the shortest path distances between any pair of
free boundary cells for each d-square. When s = J or J — 1,
there are one or four pixels in the d-square, respectively. Hence,
it is straightforward to compute these distances. For the gen-
eral case, recall that a d-square ¢(s; a, b) can be partitioned into
four smaller d-squares at scale s + 1. If we already know the
inter-distances between the free boundary cells within each of
the smaller d-squares, and by considering the connectivity of the
free boundary cells that belong to neighboring d-squares, we
can treat all free boundary cells of the four d-squares at scale
s + 1 as vertices in a “fused” graph, and run Johnson’s algo-
rithm [14] to compute all shortest paths. The distances between
free cells from neighboring d-squares can be computed directly.
Since there are no more than n22~* of these cells, the search al-
gorithm can be run efficiently. Fig. 6 shows how this “fusion”
of shortest distances is conducted recursively within an 8 x 8
d-square. During the first step, the inter-distances between the
free boundary cells of the four d-squares on the finer layer are
computed using Johnson’s algorithm. The green arrows show
some of these distances. The dashed lines in the second layer,

1170

corresponding to the solid grid partition, show the fusion of the
inter-distances. The dashed lines at the center of Fig. 6 indicate
the final step of the fusion algorithm which yields the inter-dis-
tances between the pair of black cells. The pseudo-code for this
bottom-up fusion algorithm is provided in Algorithm 2.

Algorithm 2 BottomUpFusion (For each d-square)

1: Read the parameters of each d-square: s (scale), a,b
(location);

2:if s = logn — 1 then

3: Compute the free boundary cells as vertices (Trivial case:
only four cells in the d-square)

4: Calculate the four nearest neighbor connectivity (edges)
within each d-square

5: Run Johnson’s algorithm on the resulting graph to obtain
all pairs of shortest paths: cgraph and pathList.

6: end if
7:if s > 1 then

graphl, pathl = BottomUpFusion(s + 1,2a¢ — 1,2b — 1)
graph2, path2 = BottomUpFusion(s + 1, 2a,2b — 1)
graph3, path3 = BottomUpFusion(s + 1,2a — 1, 2b)
graphd, path4 = BottomUpFusion(s + 1, 2a, 2b)

12: Merge graphl, ..., graph4 into Graph by adding the
connected edges between neighboring d-squares

13: Run Johnson’s algorithm on Graph and get cgraph and
tmpPathList

14: Insert the missing parts of paths in tmpPathList from
pathl, ... path4 to obtain pathList

15: return cgraph, pathlist (i.e., the beamlet graph)
16: end if

Overall, we have a bottom-up fusion algorithm that com-
putes the inter-distances between the free boundary cells of all
d-squares. In other words, we have found the shortest paths be-
tween all boundary free cells. These are exactly the edge weights
in the beamlet graph.

D. Multiscale A* Algorithm on the Beamlet Graph

In the previous section, we described how we can obtain a
beamlet-based graph structure. From this point on, we denote
the beamlet graph as BG = (V, E), where V denotes the ver-
tices, i.e., the free boundary cells of all the d-squares in the
PFR-RDP, and F denotes the edges representing the shortest
distance paths between pairs of free boundary cells.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

— : :
= 3K
[

3t ¢ ‘ o | G#— ! [}
‘ | |

4 @-1—@3——@@--@ Eﬁ@&—é
[] . [

sf o o, o0 jz 0,0 O
L I
6 @ ¥ \
***** i
7 @—l @::f—|\

|
|
Al O O .

1 2 3 4 5 6 7

Fig. 6. Bottom-up fusion in the d-square q(3,2,1) of Fig. 1. The information
fusion is conducted in a complete dyadic partition. Notice that the solid red
grid stands for the partition corresponding to the second layer of the associated
quadtree, and the dashed red grid corresponds to the partition with respect to the
third layer. The green arrows indicate the inter-distances between free boundary
cells. The blue lines show the fusion process.

By using this new graph structure, we implement a multiscale
version of the A* algorithm, henceforth called m-A* for short.
The main steps of m-A* mimic the standard A* algorithm. For
convenience, we repeat the main steps of the algorithm below.
m-A* plans a path from the source vertex v; € V to the des-
tination vertex v. € V. To do this, the algorithm stores an es-
timate g(v) of the path length from vy to each vertex v. The
algorithm also keeps an estimate of the path length from v to
the destination denoted by f(v) = g(v) + h(v,v.). Initially,
we set g(v) = oo for all vertices in V. The algorithm begins
by setting g(vs) = 0 and then places this vertex in a priority
queue, known as the OPEN list. Each element v in this queue is
ordered according to its f-value, that is, the sum of its current
path length from v, stored in g(v), and a heuristic estimate of
the path length to the destination, 4 (v, v,). The vertex having the
minimum f-value is pushed to the front of the priority queue.
To be admissible, the heuristic (v, v.) should underestimate
the cost of the optimal path from v to v, [15]. In our implemen-
tation, the heuristic estimate used was the usual L distance. It
should be emphasized, however, that this choice can be made
without loss of generality. Other stronger heuristics and/or the
use of a bi-directional search could have been used, with the re-
sults essentially remaining the same (see Section V-B).

The algorithm pops the vertex v at the front of the queue and
updates the g-values of all vertices in V' representing obstacle-
free cells that are reachable from this vertex through a direct
edge (denoted as Swucc(v)): if the value of g(v) plus the weight
of the edge between v and its neighboring cell v’ in the beamlet
graph (denoted as ¢(v, v")) is less than the current g-value of the
vertex v’, then the g-value of v’ is set to this new, lower value.
If the g-value of a neighboring vertex v’ changes, it is placed in
the OPEN list. The algorithm continues exploring all vertices in
the queue until it arrives at the destination vertex. At this stage,
if the heuristic is admissible, then the path length from v, to v,
is guaranteed to be optimal. The complete algorithm is given in
Algorithm 3.

LU et al.: BEAMLET-BASED GRAPH STRUCTURE FOR PATH PLANNING USING MULTISCALE INFORMATION 1171

Algorithm 3 Multiscale A*

1: Initialize img, vs, Ve
2: Conduct PFR — RDP and obtain dptree

3: Run the Bottom-Up Fusion algorithm on each d-square in
dptree and get beamlet graph

4:for allv € V do

5: g(v) =

6: end for

7: h(vs, ve) = heuristicEstimate(vs, v,)

8: g(vs) = 0; f(vs) = h(vs,ve)

9: CLOSE =0

10: OPEN := v, with value g(vs) + h(vs, ve)
11: while OPEN +# () do

12: v = argmin,copen(g(u) + h(u,v.))
13: remove state v from OPEN, add it into CLOSE
14: if v = v, then

15: return construct optimal path

16: end if

17: for all v' € Succ(v)

18: if v € CLOSE then

19: continue

20: end if

21: if v/ € OPEN then

22: if g(v") > g(v) + ¢(v,) then
23: g(v') = g(v) + g(v,v')

24: update v" with value g(v') + h(v', ve)
25: end if

26: else

27: insert v" into OPEN with value
f(W') = g(@') + h(v', ve)

28: end if

29: end for

30: end while

31: return failure

IV. COMPLEXITY ANALYSIS

In this section we provide a detailed analysis for the computa-
tional complexity of m-A*. First, we discuss the bottom-up fu-
sion part, and then move on to the overall complexity of m-A*.

A. Complexity of Information Fusion Part

We derive an upper bound for the algorithmic complexity
of the bottom-up fusion algorithm, i.e., we consider the worst
case. Let T'(m) denote the amount of computations required to
find the inter-distances between all pairs of free boundary cells
within an m x m d-square. A recursive relationship dividing a
cell of dimensions 2m x 2m to four equal m x m squares can
be written as follows:

T(2m) = 4T (m) + f(2m))

where f(2m) denotes the effort for solving the all-pair shortest
path problem during the information fusion step. Fig. 7 shows
an example of the fusion step within a d-square under the worst
case scenario (no obstacles). Both connections of inter-distances
between the same d-square (represented in (1) by T'(m)), and
between neighboring d-squares (represented in (1) by f(2m))
are shown in this figure.

A key step during the fusion process is the solution of the
all-pair shortest path problem on the given graph. For the graph
shown in Fig. 7, for instance, one needs to consider all boundary
pixels of the smaller d-squares as vertices in the beamlet graph.
Also note that there are at most 4(m — 1) boundary pixels per
smaller d-square. It follows that |V'| < 4 x 4(m —1). The edges
in the beamlet graph belong into two categories:

(a) Edges connecting the free boundary cells within each

smaller d-square.
(b) Edges connecting the nearest-neighbor pixels between
neighboring d-squares.
The green arrows in Fig. 7 show some of these edges. In each
d-square, there are at most (4"12_4) edges; there are at most 4m
edges connecting free cells that are nearest neighbors not in the
same d-square. Hence, we have |E| < 4(*"7%) +4m < 32m?>.

Lemma 1: For the bottom-up fusion algorithm, we have
f(m) = O(m?), where f(m) as in (1).

Proof: Johnson’s Algorithm [14] is the standard al-
gorithm for solving the all-pair shortest path problem. If
one assumes that an intermediate step of Johnson’s algo-
rithm (an implementation of the Dijkstra’s algorithm) is
done via Fibonacci heap, then the overall complexity is
OV 2log([V]) + [V]|E]) =O(m?log(m) +m?) = O(m?).
This is exactly the complexity of f(m).

To evaluate T'(m), we will need the following Master The-
orem [16, Sect. 4.3].

Theorem 2 (Master Theorem): Consider the recurrent rela-

tion of an algorithm of the form
m
b
where m is the size of the entire problem, a is the number of sub-
problems in the recursion, m /b is the size of each subproblem
(it is assumed that all subproblems are of the same size). Let
f(m) be the cost of the work done outside the recursive calls,
which includes the cost of dividing the problem, and the cost of
merging the solutions to these subproblems.

Suppose the following two conditions are satisfied:

(@) f(m) = O(m'°& 2%<) for some constant ¢ > 0, and

(b) af(m/b) < cf(m) for some constant ¢ < 1 and suffi-
ciently large m.

T(m):aT()—I—f(m)7 a>1,b>1

1172

L . s o s B S O
ds & & &1 s s

Fig. 7. Illustration for the complexity analysis of the fusion algorithm.
The three right-angle arrows provide examples of inter-distances between
free boundary cells within two smaller scale d-squares. Along the common
boundary of neighboring smaller scale d-squares, the straight arrow lines show
the fusion of the inter-distances among these four d-squares. Note that for the
purposes of complexity analysis, this figure illustrates the worst case scenario
(i.e., no obstacles exist and hence all boundary cells at both levels are free).

Then T'(m) = O(f(m)).
As a direct consequence of Theorem 2 we therefore have the
following result.
Corollary 3: For the T(m) in (1), we have T(m) =
O(f(m)) = O(m?).
Proof: Take a = 4 and b = 2, and apply Theorem 2.

B. Complexity of Searching

We now consider the order of complexity for running A*
(or Dijkstra’s) algorithm on the beamlet graph (BG), and the
4-nearest-neighbor graph (NNG), respectively. We consider the
beamlet graph first. In order to better illustrate the idea, con-
sider the PFR-RDP and the corresponding beamlet graph for
the scenario shown in Fig. 8. Recall that the vertices in the
beamlet graph are the free boundary cells in all the d-squares
in the PFR-RDP. For an n by n image, there are two scale-1
d-squares, and six scale-s d-squares when s > 2. For a d-square
at scale s, there are at most n22~% free boundary pixels. Hence,
the upper bound of the total number of vertices in the beamlet
graphis:2x2n4+6 xn+6 x (n/2)+6 % (n/4)+--- =4n+
6n + 3n + (3/2)n + - -+ < 16n. On the other hand, within a
d-square at scale s, the number of the edges is at most ("2;_5) .
At scale s, the number of connected free cells belonging to dif-
ferent d-squares is at most n22~*. Hence, the upper bound of the
number of edges is 2(%') +2n +6(%) +2 x (n/2) +6("%) +
2 x (n/4) =4n? +2n + 3n% +n + (3/4)n* + ... = 8n?.
Recall that the complexity of running Dijkstra’s algorithm with
Fibonacci heap is O(|E| + |V log |V'|) [16]. We therefore have
the following theorem.

Theorem 4: The complexity of running Dijkstra’s algorithm
on the beamlet graph is O(n?).

Proof: The previous calculation gives the following esti-
mates for the number of vertices and edges in the beamlet graph:
|V| = 16n and |E| ~ 8n?, respectively. Using the known com-

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

Fig. 8. Illustration of the beamlet graph for a 32 x 32 image. The PFR-RDP is
shown by the red grid lines. Free cells are marked by circles: these are the free
boundary cells of the d-squares in the PFR-RDP. If two free cells belonging to
different d-squares are nearest neighbors, they are also connected. All free cells
within the same d-square are considered connected, as long as a feasible path
exists.

plexity bounds of Dijkstra’s algorithm [8], the upper bound of
the complexity is O(n? + nlogn) = O(n?).

Since A* and Dijkstra’s algorithm have identical worst-case
complexity [15], the following is immediate.

Corollary 5: The complexity of running A* algorithm on the
beamlet graph is O(n?).

For comparison, in the nearest-neighbor graph we have |V| =
n? and |E| = 4n2. One can thus easily establish the following
result.

Theorem 6: If A* or the Dijkstra’s algorithm is run on the
nearest-neighbor graph, the worst-case complexity is O(4n? +
n?logn?) = O(n?logn).

The proof of the theorem is evident and is therefore skipped.
Note, from Theorem 4 and Theorem 6, that running a search
algorithm on the beamlet graph yields a reduction by a factor
logn when compared to the same algorithm being run on the
nearest neighbor graph.

C. Memory Usage

Since the beamlet-based graph structure involves pre-
processing, the memory usage for storing the precomputed
information needs to be estimated. Recall that the main step
during processing is the bottom-up fusion algorithm, which is a
recursive algorithm. In each recursion, only the free boundary
cells from the four d-squares at the immediately finer scale are
given as input to the all-pairs shortest path algorithm.

During the path-finding step, recall that in our complexity
analysis we showed that, for an n X n image, the number of
vertices in the beamlet graph has an upper bound of 167 and the
number of edges has an upper bound of 8n2. Hence, the storage
overhead for the beamlet graph is of order O(n?). Since we also
need to store all shortest paths, the additional memory required
is

logn TL22_S . s
Z 6(", Jon27x< O(n?).)
s=1

LU et al.: BEAMLET-BASED GRAPH STRUCTURE FOR PATH PLANNING USING MULTISCALE INFORMATION

TABLE 1
OVERALL COMPLEXITY COMPARISON

Complexity No Preprocessing m-A* All-pairs Computed
Preprocessing 0 o(n?) O(n*logn)
Query Time O(n?logn) 0(n?) O(logn)

To see this, recall that for a scale s d-square, the number of edges
is less than or equal to (”227) and there are 6 (or less) d-squares
ateach scale s. It therefore requires no more than 6n2~7° vertices
to record the shortest path between any two free boundary cells
within a scale s d-square. By summing over all scales, (2) re-
sults. In summary, the total storage overhead is, asymptotically,
O(n?). The memory overhead for the nearest neighbor graph is
easily computed to be O(n?), because in the nearest neighbor
graph both vertices and edges are of order O(n?) and one only
needs to consider traversability between neighboring cells.

D. Preprocessing Time

The proposed multiscale strategy combines the bottom-up fu-
sion algorithm of Section III-C with the search algorithm on the
reduced-size beamlet graph. Recall that in each d-square of the
PFR-RDP, an all-pair shortest path algorithm is solved. As seen
already, the computational complexity of this preprocessing step
is O(n?). Depending on the resolution used in the RDP, two ex-
tremes for the single-source path planning problem arise:

* Running a search algorithm (with Fibonacci Heap) on
the entire environment (on the nearest neighbor graph),
making no use of multiscale information. The overall
complexity of this method is O(n? logn).

* Running an all-pairs shortest path finding algorithm (such
as Johnson’s algorithm) on the entire environment as the
preprocessing step, which has complexity O(n*logn),
and then extract the shortest distance for the given source
and destination. The second step just involves a binary
search and has complexity O(log n). The total complexity
of this option is therefore O(n*logn).

The proposed m-A* algorithm falls in-between these two ex-
tremes (see also Table I). In terms of applications, this flexibility
can prove to be very useful. For instance, for many vehicles with
embedded autonomous capabilities (e.g., ground robots, small
UAV5s) on-board processing of the available data can quickly be-
come an implementation bottleneck during path-planning and
execution. Making use of off-line (pre-computed) information
is often helpful in practice to overcome this limitation. The pro-
posed approach can be seen in this context as a compromise
between off-line pre-processing and on-line search. Of course,
in cases where the multiscale information of the environment
is provided directly to the planner by a suitable sensor, making
use of the proposed multiscale graph structure will outperform
traditional search algorithms by orders of magnitude, as demon-
strated by both the previous complexity analysis and by our nu-
merical studies.

V. NUMERICAL STUDIES

In this section, we provide numerical experiments to compare
the performance from running the A* algorithm on the standard
nearest neighbor graph and the proposed multiscale A* on the
new beamlet graph. The comparison is based on the number of

1173

TABLE II
MULTISCALE A* ALGORITHM COMPARED TO TRADITIONAL A*. EXAMPLE I

ImageSize 64 x 64

GraphType NNG BeamletGraph Ratio
Expl 644 (19) 152 (10) 4.24 (1.90)
Exp2 654 (15) 164 (11) 3.99 (1.36)
Exp3 630 (24) 155 (15) 4.06 (1.60)
Exp4 622 (25) 174 (15) 3.56 (1.71)
Exp5 656 (21) 149 (12) 4.41 (1.75)

ImageSize 128 x 128

GraphType NNG BeamletGraph Ratio
Expl 1299 (207) 185 (97) 7.02 (2.13)
Exp2 1337 (301) 207 (87) 6.46 (3.46)
Exp3 1316 (198) 204 (96) 6.45 (2.06)
Exp4 1443 (62) 201 (57) 7.18 (1.09)
Exp5 1303 (203) 202 (95) 6.46 (2.13)

vertex expansions during the search. This is a more accurate
criterion than, say, running time, since the query time heavily
depends on the computer hardware used in each case. In these
numerical experiments, the bottom-up fusion algorithm and the
A* algorithm with Fibonacci heap were implemented in Matlab
2009(a) and C++, respectively, on an Intel Core2 Duo CPU 2.26
Ghz, with 1.89 GB of RAM, running Windows XP.

A. Comparison Based on L1 Heuristic

In this section we provide the results from numerical simu-
lations using three distinct cases of an obstacle-filled environ-
ment. In the first simulation, the probability of a certain cell (at
location (z,y), where 1 < z,y < n,)to be a free cell is assigned
to be p(z,y) = exp(—v|y — 2%/n|), where the constant v will
be specified later. The intuition of this model is that cells near
the curve y = 22 /n have higher probability to be free than cells
far away from the same curve. This gridworld simulates the sit-
uation when there is a main “corridor” in the environment.

Table II contains the simulation results when v = 1/15. The
numbers in the first two columns indicate the number of vertex
expansions in each case. The values in parentheses are the corre-
sponding running times in milliseconds. The last column shows
the ratios between the number of the expanded nodes used by
the two algorithms. Fig. 9 shows the comparison of the shortest
path from the nearest-neighbor graph and the beamlet graph,
respectively. The yellow crosses show the corresponding ex-
panded vertices in both cases. As shown in this simulation, the
m-A* algorithm clearly outperforms A* in terms of the number
of vertex expansions.

The second simulation represents a much more difficult situ-
ation for path planning, and it involves a heavily cluttered envi-
ronment (Fig. 10). The presence of a large number of randomly
distributed small obstacles will typically require a high number
of vertex expansions for all search algorithms applied on the
nearest neighbor graph.

A comparison of the vertex expansions (query time) for both
A* and m-A* is given in Table III. The table shows again the
advantage of m-A* over the traditional A* algorithm in terms
of the number of vertex expansions.

The proposed beamlet-based graph structure was also tested
on a real-world environment. Specifically, Fig. 11 shows the el-
evation map of a certain area in the US. In the figure, gray areas
are obstacles. The results of the shortest paths and the node

1174

10 20 30 40 50 60
(a) The shortest path and the expanded vertices in

the nearest neighbor graph.

10 20 30 40 50 60

(b) The shortest path and the expanded vertices in
the beamlet graph.

Fig. 9. Example I: (a) The shortest path of NNG in a 64 X 64 image; the yellow
crosses denote the expanded vertices during the search; (b) The shortest-path
and the expanded vertices in the beamlet graph for the same image.

expansions obtained using the nearest neighbor graph and the
beamlet graph are shown in the same figure. For this scenario,
the number of node expansions in the nearest neighbor graph
and the beamlet graph are 16083 and 1043, respectively, which
shows that by using the proposed graph structure, the speed of
the shortest path-finding benchmark algorithm can be improved
by an order of magnitude.

B. Comparison Using Stronger Heuristics

The beamlet graph can be viewed as a data structure that
stores a more accurate heuristic than the basic L heuristic.
Thus, the superiority of m-A* over A* is the greatest when the
baseline heuristic is the weakest. The situation may be quite dif-
ferent if the baseline heuristic is very accurate. So the question
of whether m-A* can still outperform A* with a more accurate
heuristic is relevant. Consequently, we also tested m-A* with a
very accurate heuristic, namely, a true distance heuristic (TDH)
with differential distance heuristic. In order to ensure a fair com-
parison, the number of landmarks were of the same order as the
nodes in the beamlet graph, that is, of order k = O(v/n2) =

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

10 20 30 40 50 60)
(a) The shortest path and the expanded vertices in

the nearest neighbor graph.

-.# II‘LFI.;.- L™ -:-I‘l

(b) The shortest path and the expanded vertices in
the beamlet graph.

Fig. 10. Example II: (a) The shortest path in the NNG for a 64 x 64 image; the
yellow crosses denote the expanded vertices during the search; (b) The shortest-
path and the expanded vertices in the beamlet graph for the same image.

TABLE III
MULTISCALE A* ALGORITHM COMPARED TO TRADITIONAL A *. EXAMPLE II

ImageSize 64 x 64

GraphType NNG BeamletGraph Ratio
Expl 1931 (307) 345 (260) 5.60 (1.18)
Exp2 2025 (130) 366 (87) 5.53 (1.49)
Exp3 2396 (234) 383 (159) 6.26 (1.47)
Exp4 2223 (267) 351 (46) 6.33 (5.80)
Exp5 2017 (181) 346 (143) 5.83 (1.27)

ImageSize 128 x 128

GraphType NNG BeamletGraph Ratio
Expl 7254 (164) 666 (140) 10.89 (1.71)
Exp2 7755 (320) 814 (143) 9.53 (2.24)
Exp3 6712 (217) 742 (198) 9.05 (1.10)
Exp4 7755 (320) 814 (143) 9.52 (2.24)
Exp5 7588 (299) 770 (281) 9.85 (1.06)

O(n). To this end, we randomly chose k& rows out of n rows
in the image. By symmetry, we also chose the corresponding &
columns. All the free nodes in these k rows and k columns are
considered as landmarks. This is similar to the way landmarks
are chosen in Fig. 1(b) of [3].

LU et al.: BEAMLET-BASED GRAPH STRUCTURE FOR PATH PLANNING USING MULTISCALE INFORMATION

. ¥ ; .
50 100 150 200
(a) The shortest path and the expanded vertices in
the nearest neighbor graph.

. 1 i i
50 100 150 200 250
(b) The shortest path and the expanded vertices in
the beamlet graph.

Fig. 11. Example III: (a) The shortest path in the NNG for a 256 X 256 image;
the yellow crosses denote the expanded vertices during the search; the blue
dashed line shows the shortest path. (b) The shortest-path and the expanded
vertices in the beamlet graph for the same image.

The results from the comparison between the standard A*
(with Lq distance heuristic), the A* with a true distance heuristic
(A*-TDH) and the m-A* are shown in Fig. 12. For each image
size of 16 X 16,32 x 32 and 64 x 64, we randomly constructed
five different gridworlds and run A*, A*-TDH, m-A* on each
one respectively. As shown in these figures, m-A* gives the
smallest number of node expansion among the three algorithms
even when the stronger TDH heuristic is used. Furthermore, it is
shown that the gain from m-A* is more significant as the image
size increases.

VI. DISCUSSION AND RELATED PRIOR WORK

A. Beamlets as a Predecessor

The algorithm proposed in this paper is rooted in the beamlet
theory—a multiscale methodology for linear and curvilinear
features in 2-D. Beamlets provide a framework for multiscale
analysis, in which line segments play a role analogous to the
role played by points in wavelet analysis. They add two crucial

1175

700

n=16 n=32

600
Il

400
|

500
|
o

Number of Expanded Nodes

o | o
S
o
! =
8| = | =
T O i
T T T T T T T T T
A* A*TDH m-A* A* A*TDH m-A* A* A*TDH m-A*
(a) Boxplot of comparison between A*, A*-TDH,
m-A* for Example 1.
[-
|
o
3 n=16 | n=32 n=64
2 |
3 ;
o | e
=z
o
L O |
T O _|
c O
© -
53 |
w
5 |
2 |
€ g | - =
Z © | —
'E ° ° =
| =
O E—
o -

T T T T T T T T T
A* A*TDH m-A* A* A*-TDH m-A* A* A*TDH m-A*
(b) Boxplot of comparison between A*, A*-TDH,
m-A* for Example II.

Fig. 12. (a) Summary of numerical comparison between A* with L heuristic,
A* with TDH, and m-A* for Example 1. Here n denotes the size of the grid-
world. Each comparison group is derived based on numerical results from five
randomly generated gridworlds.; (b) Summary of numerical comparison be-
tween A* with L, heuristic, A* with TDH, and m-A* for Example II. The
notation is the same as in Example I.

elements missing from wavelet processing, however: orienta-
tion and elongation information [1]. Beamlets are proven to
achieve optimal asymptotic performance in feature detection
problems [17]. They have been used to design efficient coding
algorithms for images made of curves [18], [19]. Beamlets are
numerically more efficient than traditional curve processing
algorithms, such as JBIG2 [20], because they make use of
their inherent multiscale structure in an innovative and efficient
manner. The PFR-RDP used in this article is similar to the
beamlet-decorated recursive dyadic partitioning of [1], depicted
in Fig. 13.

B. Related Work

Recent work on the shortest path finding problem bears some
similarities with our methodology and thus a comparison is war-
ranted. From the vast amount of the existing literature, we dis-
tinguish four algorithms that use multi-scale ideas to speed up
the search during execution: state abstraction strategies (AS)
[21]-[23], hierarchical A* (h-A™) [24], contraction hierarchies
(CH) [25], and true distance heuristics (TDH) [2], [3].

1176

Fig. 13. To each path in the beamlet graph in [1] corresponds a polygonal curve
in the plane.

Recall that the beamlet graph is induced from the nearest
neighbor graph, and it has a reduced number of vertices. It takes
advantage of “long-distance” interactions between vertices,
which correspond to cells that may be very far apart in the
original map. This is similar—in spirit—to the state abstraction
strategy that has been intensively analyzed in [21], [22] and
originally proposed in [23]. The strategy consists of building
heuristic functions in an abstraction space. Actions in the ab-
straction space are then refined to actions in the environment by
the A* algorithm, thereby substantially accelerating searching.
Despite the apparent similarity between m-A* and the algo-
rithms in [21] and [22] in the use of abstraction ideas, there are
nonetheless distinct differences between the two approaches.
First, their objectives are quite different. The objective of [21]
is real-time execution and adaptive graph exploration; the goal
is to determine the few next moves locally and quickly. Our
objective, instead, is to find the shortest path globally. As a
result, m-A* always guarantees an optimal solution, while the
AS in [21] only ensures sub-optimality. On the other hand,
AS works with general graphs, and not only with gridworld
graphs, which are the focus of the present paper. Most closely
related to m-A* is probably the sector abstractions (SA) of
[22]. Sector abstractions are inspired from the hierarchical path
finding A* (HPA™) algorithm of [26] and are also limited to
grid-based maps. The key idea is to divide the map into clusters
(corresponding to equally-sized squares) and generate a new
graph by using the information of the free cells belonging to
the boundary of these clusters. This bears a strong resemblance
with m-A*. However, the beamlet-like connectivity is absent
in [22], [26] and the vertices of the abstract graph are just a
subset of the original gridded map. Furthermore, m-A* adopts a
“bottom-up” fusion algorithm to organize pre-computed infor-
mation based on the self-similarity across multiple resolution
scales. This is missing from HPA* and SA.

The hierarchical A* (h-A™) algorithm of [24] builds a hier-
archical abstraction of the state space based on the “clustering”
of the “max-degree” vertex in the nearest neighbor graph. The
process is repeated until all states (i.e., vertices) have been as-
signed to some abstract state. The heuristic used in the original
graph is obtained via a shortest path search in the abstracted state
space graph. Redundant expansion of nodes is avoided, since
once the shortest path search from one vertex to the goal in the
higher abstraction graph is completed, all the heuristics of the
subsequent vertices in the path to the goal vertex, and its chil-
dren on the next abstraction level are obtained without much dif-

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

ficulty (the latter is called “h*-caching” in [24]). The proposed
beamlet-based graph also induces a hierarchical structure on the
original graph, which is obtained, however, via path-finding on
the PFR-RDP. The bottom-up fusion algorithm combines local
information at the finer (lower) levels into global information
at the upper (coarser) levels, while avoiding redundant calcula-
tions at each level, since only free boundary cells are involved
at each step. Another difference between m-A* and h-A™ is that
for the gridworld graphs we consider, there is no difference be-
tween the degrees of the vertices in the graph (that is, all vertices
have the same degree owing to the use of a topological graph),
which means that the PFR-RDP is a more appropriate tool for
building the hierarchical information structure.

In [25] the concept of contraction hierarchies (CH) is
proposed for path planning for large-scale road networks. In
[27] it is shown that hierarchical abstractions and CH have
similar overhead and performance. Contraction hierarchies is
a particularly powerful technique for road networks. There are
two basic steps involved in CH: (a) an ordering of all nodes,
(b) the contraction, i.e., the removal of certain nodes based
on the ordering, and the insertion of shortcut edges, so that
the shortest paths are preserved when the contracted nodes are
removed from the graph. CH works with any node ordering;
however, the ordering has a huge influence on preprocessing
and query performance. Although several alternatives exist, a
bidirectional search is typically used on the contracted graph to
carry out the search [4]. Although both CH and m-A* introduce
hierarchies, the former is specifically designed for roadmaps,
whereas the beamlet graph used in m-A* is more suitable for
gridworlds. The induced PFR-RDP in m-A* takes advantage
of the topological information in the gridworld, which does not
exist in the CH framework. The ordering of vertices in CH is
critical and quite complex, involving many considerations. The
PFR-RDP used in m-A*, on the other hand, is intuitive and easy
to implement. However, the PFR-RDP only makes sense when
a gridworld formulation is adopted. Despite the similarities
between CH and the beamlet graph (BG), neither of them is a
special case of the other. For an n x n image the CH has n?
levels, while the BG has logn scales. Therefore BG is a lot
simpler. Furthermore, the bottom-up fusion algorithm of m-A*
is also very different from the contraction steps used in CH.
By design, it is expected that the bottom-up fusion algorithm
should be much faster. In fact, as shown in Section IV-A, the
complexity of the bottom-up fusion algorithm is O(n?). No
order of complexity is known for the CH, due to the many
possibilities in its realization. Note however that CH would run
contraction steps n2 times. It is thus expected that, in the worst
case, the contraction steps in CH will be more than O(n?)
(given that there are n? nodes).

Other recent path-planning algorithms focus on the use of
“optimal” distance heuristics to guide the search during the A*
and thus speed up the graph search algorithm. Although the
all-pair distance would be the perfect heuristic for searching
the shortest path, the calculation and memory required would
be unrealistic. The true distance heuristic (TDH) of [2], [3] re-
duces the memory requirements by using only a subset of the
all-pairs-shortest-path information. To achieve this, the method
predetermines the distance between k “landmark” nodes (where

LU et al.: BEAMLET-BASED GRAPH STRUCTURE FOR PATH PLANNING USING MULTISCALE INFORMATION

k < n?)—also called canonical states in [2], [3]—on which
the all-pair shortest paths algorithm runs. This enables a more
precise estimate of the distance to the destination. The com-
plexity of TDH can be easily verified to be O(kN) = O(n?),
where N = n? is the number of vertices in the graph with cor-
responding memory requirements O(kn?) = O(n?), if k =
O(\/T?) (cf. Table 1 in [2]). That is, both TDH and the pro-
posed algorithm share the same order of magnitude of compu-
tation and storage complexity. However, the success of the TDH
depends crucially on the appropriate selection of the &£ canon-
ical states. In fact, as mentioned in [2] “the best number and lo-
cation of canonical states is an open problem.” The boundary
free cells obtained systematically via the PFR-RDP in m-A*
can be viewed as canonical states. In that sense, the proposed
PFR-RDP provides (at least) a partial answer to the previous
question. Most importantly, our beamlet graph is built on mul-
tiscale information, which is not evident in the TDH approach.

It is important to mention that the proposed m-A* is not tied
to any particular heuristic; any suitable heuristic from the lit-
erature will do. Instead, m-A* takes advantage of a simpler
graph to perform the search—the beamlet graph. Therefore, al-
though for the sake of simplicity, in the current implementa-
tion a unidirectional search along with the L -distance heuristic
was used, a bidirectional search could have been used instead
without much difficulty, with all the conclusions remaining es-
sentially the same. Note that many of the most recent work in
advance path-planning [4], [25], [28] all employ bidirectional
search during their execution of the A* algorithm.

Since the original submission of the paper, new related work
has been published including [29], [30], both of which incorpo-
rate similar aspects with the proposed graph search algorithm.
The method in [30] identifies rectangular empty areas and
prunes all interior nodes, leaving only the ones at the perimeter,
similarly to the boundary cells of PFR-RDP in m-A*. The au-
thors in [29] partition the original graph into disjoint subgraphs
with few border nodes (the so-called “portals”). True distances
between all pairs of portals are stored and used as admissible
heuristics. This idea is similar to the “beamlet” connectivity
between the boundary nodes of PFR-RDP used in m-A*.

VII. CONCLUSION

We have introduced an innovative beamlet-based graph
structure that facilitates path-finding in gridworlds with ob-
stacles. The main idea is the construction of a graph structure
that encodes efficiently long-distance interactions between
vertices that go beyond the four-neighbor connectivity relations
of the underlying nearest-neighbor topological graph. This is
achieved by iterative subdivisions of the entire environment
that give rise to a hierarchy of graphs, along with an innovative
bottom-up fusion algorithm that combines local information
from the lower (finer) scales to obtain global information at
the upper (coarser) scales. Both the theoretical complexity
analysis as well as the numerical examples demonstrate that the
proposed multiscale A* (m-A*) algorithm provides significant
improvements over the original A* algorithm applied on the
original nearest neighbor graph.

1177

The proposed graph structure can be viewed as the foundation
on which several extensions of existing graph search algorithms
can be based on. For instance, the multiscale graph structure in
an incremental search setting would lead to multiscale versions
of LPA™ and/or D* algorithms [31]-[34], allowing to handle
dynamic changes in the environment. For some initial results
towards this direction, see [35]. In case of motion-planning,
beamlets can be used to efficiently and naturally incorporate
curvature restrictions on the resulting paths. This is crucial for
mobile agents with limited turning capability (e.g., fixed-wing
UAVs, unmanned ground vehicles, etc). Also, the generaliza-
tion of the proposed 2-D multiscale strategy to 3-D (or higher
dimensions) is straightforward, albeit computationally more in-
volved. Finally, the recursive nature of the bottom-up fusion al-
gorithm invites the possibility for its parallelization. The poten-
tial of the parallel execution of the bottom-up fusion algorithm
would tremendously improve the overall performance of m-A*.

ACKNOWLEDGMENT

The authors would also like to thank O. Arslan for his help
with the implementation of A* with True Distance Heuristic
(TDH).

REFERENCES

[1] D. Donoho and X. Huo, “Beamlets and multiscale image analysis,”
Multiscale and Multiresolution Methods, vol. 20, pp. 149-196, Spring,
2002.

A. Felner, N. Sturtevant, and J. Schaeffer, “Abstraction-based heuris-

tics with true distance computations,” in Proc. 8th Symp. Abstraction,

Reformulatoin, Approx,, 2009, pp. 74-81.

[3] N. Sturtevant, A. Felner, M. Barer, J. Schaeffer, and N. Burch,
“Memory-based heuristics for explicit state spaces,” in Proc. Int. Joint
Conf. Artif. Intell., Pasadena, CA, Jul. 11-17, 2009, pp. 609-614.

[4] A. Goldberg and C. Harrelson, “Computing the shortest path: A*
search meets graph theory,” in Proc. 16th ACM-SIAM Symp. Discrete
Algorithms, 2005, pp. 156-165.

[5] D. de Champeaux and L. Sint, “An improved bidirectional heuristic
search algorithm,” J. ACM, vol. 24, no. 2, pp. 177-191, 1977.

[6] 1. Pohl, “Bi-directional Search,” in Machine Intelligence. Edinburgh,
U.K.: Edinburgh Univ. Press, 1971, vol. 6, pp. 127-140.

[7]1 D.Ferguson, M. Likhachev, and T. Stentz, “A guide to heuristic-based

path planning,” in Proc. Int. Workshop Planning Under Uncertainty

Auton. Syst., Int. Conf. Autom. Planning Scheduling (ICAPS), Jun.

2005, [CD ROM].

E. Dijkstra, “A note on two problems in connection with graphs,” Nu-

merische Mathematik, vol. 1, pp. 269-271, 1959.

[9] P. Hart, N. Nilsson, and B. Rafael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100-107, Jul. 1968.

[10] S. M. LaValle, Planning Algorithms.
Univ. Press, 2006.

[11] X. Huo, “Sparse Image Representation via Combined Transforms,”
Ph.D. dissertation, Dept. Statistics, Stanford Univ., Stanford, CA, Aug.
1999.

[12] D. Donoho and X. Huo, “Beamlets pyramids: A new form of multires-
olution analysis, suited for extracting lines, curves and objects from
very noise image data,” in Proc. SPIE, Jul. 2000, vol. 4119, no. 1, pp.
434-444.

[13] D. Donoho and X. Huo, “Applications of beamlets to detection and
extraction of lines, curves, and objects in very noisy images,” in Proc.
Nonlin. Signal Image Processing, Jun. 2001, [CD ROM].

[14] D. Johnson, “Efficient algorithms for shortest paths in sparse net-
works,” J. ACM, vol. 24, no. 1, pp. 1-13, 1977.

[15] P. E. Hart, N. J. Nillsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Syst. Sci.
Cybern. SSC4, vol. 4, no. 2, pp. 100-107, 1968.

[2

—

[8

[t}

Cambridge, U.K.: Cambridge

1178

[16] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge, MA: MIT Press and McGraw-
Hill, 2001.

[17] E. Arias-Castro, D. Donoho, and X. Huo, “Near-optimal detection of
geometric objects by fast multiscale methods,” IEEE Trans. Inform.
Theory, vol. 51, no. 7, pp. 2402-2425, Jul. 2005.

[18] X. Huo and J. Chen, “JBEAM: Multiscale curve coding via beamlets,”
IEEE Trans. Image Processing, vol. 14, no. 11, pp. 1665-1677, Nov.
2005.

[19] D. Donoho and X. Huo, “Beamlab and reproducible research,” Int.
J. Wavelets, Multiresolution Inform. Processing, vol. 2, no. 4, pp.
391414, 2004.

[20] P. G. Howard, F. Kossentini, B. Martins, S. Forchhammer, and W. J.
Rucklidge, “The emerging JBIG2 standard,” I[EEE Trans. Circuits Syst.
Video Technol., vol. 8, no. 7, pp. 838-848, Jul. 1998.

[21] V. Bulitko, N. Sturtevant, J. Lu, and T. Yau, “Graph abstraction in real-
time heuristic search,” J. Artif. Intell. Res., vol. 30, pp. 51-100, 2007.

[22] N. Sturtevant and R. Jansen, “An analysis of map-based abstraction
and refinement,” in Proc. 7th Int. Conf. Abstraction, Reform., Approx.,
2007, pp. 344-358.

[23] N. Sturtevant and M. Buro, “Partial pathfinding using map abstraction
and refinement,” in Proc. Nat. Conf. Artif. Intell., 2005, vol. 20, no. 3,
p- 1392.

[24] B. Larsen, E. Burns, W. Ruml, and R. Holte, “Searching without a
heuristic: Efficient use of abstraction,” in Proc. 24th AAAI Conf. Artif.
Intell. (AAAI-10), 2010, pp. 114-120.

[25] R. Geisberger, “Contraction Hierarchies: Faster and Simpler Hierar-
chical Routing in Road Networks,” Ph.D. dissertation, Institut fiir The-
oretische Informatik, Universitit Karlsruhe, , 2008.

[26] A. Botea, M. Muller, and J. Schaeffer, “Near-optimal hierarchical
pathfinding,” J. Game Development, vol. 1, pp. 1-30, 2004.

[27] N. Sturtevant and R. Geisberger, “A comparison of high-level ap-
proaches for speeding up pathfinding,” in Proc. 6th Artif. Intell.
Interactive Digital Entertainment Conf., Palo Alto, CA, Oct. 11-13,
2010, pp. 76-82.

[28] A. Goldberg, H. Kaplan, and R. Werneck, “Reach for A*: Efficient
point-to-point shortest path algorithms,” in Proc. Workshop Algorithm
Eng. Exper., 2006, pp. 129-143.

[29] M. Goldenberg, A. Felner, N. Sturtevant, and J. Schaeffer, “Portal-
based true-distance heuristics for path finding,” in Proc. 3rd Annu.
Symp. Combinatorial Search, 2010, pp. 39-45.

[30] D. Harabor and A. Botea, “Breaking path symmetries on 4-connected
grid maps,” in Proc. 6th Annu. Int. AIIDE Conf., Palo Alto, CA, Oct.
11-13, 2010, [CD ROM].

[31] S.Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,” Artif.
Intell. J., vol. 155, no. 1-2, pp. 93-146, 2004.

[32] S. Koenig, M. Likhacheyv, Y. Liu, and D. Furcy, “Incremental heuristic
search in artificial intelligence,” Artif. Intell. Mag., vol. 25, no. 2, pp.
99-112, 2004.

[33] S. Koenig and M. Likhachev, “ D* lite,” in Proc. AAAI Conf. Artif.
Intell. (AAAI), 2002, pp. 476-483.

[34] A. Stentz, “Optimal and efficient path planning for unknown and dy-
namic environments,” Int. J. Robot. Autom., vol. 10, no. 3, pp. 89-100,
1995.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012

[35] Y. Lu, X. Huo, O. Arslan, and P. Tsiotras, “An incremental, multi-
scale search algorithm for dynamic path planning with low worst case
complexity,” IEEE Trans. Man, Syst. Cybern. B, vol. 41, no. 6, pp.
1556-1570, Dec. 2011.

Yibiao Lu received the B.S. degree in applied
mathematics from the University of Science and
Technology of China, Hefei, in 2008 and is currently
pursuing the Ph.D. degree at the School of Industrial
and Systems Engineering, Georgia Institute of
Technology, Atlanta.

His research interests are applied statistics and ma-
chine learning.

Xiaoming Huo (SM’04) received the B.S. degree
in mathematics from the University of Science and
Technology, Hefei, China, in 1993 and the M.S.
degree in electrical engineering and the Ph.D. degree
in statistics from Stanford University, Stanford, CA,
in 1997 and 1999, respectively.

Since August 2006, he has been an Associate Pro-
fessor with the School of Industrial and Systems En-
gineering, Georgia Institute of Technology, Atlanta.
He represented China in the 30th International Math-
ematical Olympiad (IMO), which was held in Braun-
schweig, Germany, in 1989, and received a golden prize. His research interests
include statistics and multiscale methodology. He has made numerous contribu-
tions on topics such as sparse representation, wavelets, and statistical problems
in detectability.

Dr. Huo was a Fellow of IPAM in September 2004. He received the Georgia
Tech Sigma Xi Young Faculty Award in 2005. His work has led to an interview
by Emerging Research Fronts in June 2006 in the field of Mathematics—every
two months, one paper is selected.

Panagiotis Tsiotras (SM’02) received B.S. degree
in mechanical engineering from the National Tech-
nical University of Athens, Greece in 1986, the M.S.
degree in aerospace engineering from Virginia Poly-
technic Institute and State University, Blacksburg, in
1987, and the M.S. degree in mathematics and the
Ph.D. degree in aeronautics and astronautics from
Purdue University, West Lafayette, IN, in 1992 and
1993, respectively.

He is a Professor in the School of Aerospace En-
gineering, Georgia Institute of Technology. His re-
search interests are in optimal and nonlinear control and vehicle autonomy.

Dr. Tsiotras received the NSF CAREER Award. He is a Fellow of the AIAA.

