
Sampling-based Algorithms for Optimal Motion Planning
Using Closed-loop Prediction

Oktay Arslan1 Karl Berntorp2 Panagiotis Tsiotras3

Abstract— Motion planning under differential constraints
is one of the canonical problems in robotics. State-of-the-
art methods evolve around kinodynamic variants of popular
sampling-based algorithms, such as Rapidly-exploring Random
Trees (RRTs). However, there are still challenges remaining, for
example, how to include complex dynamics while guaranteeing
optimality. If the open-loop dynamics are unstable, exploration
by random sampling in control space becomes inefficient. We
describe CL-RRT#, which leverages ideas from the RRT#

algorithm and a variant of the RRT algorithm, which generates
trajectories using closed-loop prediction. Planning with closed-
loop prediction allows us to handle complex unstable dynamics
and avoids the need to find computationally hard steering
procedures. The search technique presented in the RRT#

algorithm allows us to improve the solution quality by searching
over alternative reference trajectories. We show the benefits of
the proposed approach on an autonomous-driving scenario.

I. INTRODUCTION

Motion planning is ubiquitous in many applications where
different levels of autonomy is desired. Given a system
that is subject to a set of differential constraints, an initial
state, a final state, a set of obstacles, and a goal region,
the motion-planning problem is to find a control input that
drives the system from its initial state to the goal region. This
problem is computationally hard to solve [1]. The motion-
planning problem is commonly solved using randomized
planners such as rapidly-exploring random trees RRT [2] or
its asymptotically optimal version RRT∗ [3]–[5]. RRT relies
on random exploration of the state space. RRT-type planners
often neglect the differential constraints, or assume the
existence of a steering procedure that connects two nodes to
each other. However, finding a steering procedure essentially
amounts to solving a two-point boundary-value problem. In
general, there are no guarantees that a solution exists [6],
but the differential constraints restrict the reachable set and
should be accounted for in applications [7]–[10].

This paper proposes CL-RRT#, which leverages ideas
from the CL-RRT [11] and the RRT# algorithms [12]–[14].
To handle differential constraints, the proposed approach
samples in the output space of the system and incrementally
grows trajectories corresponding to the closed-loop dynamics

1Oktay Arslan is a Robotics Technologist with Jet Propulsion Laboratory
at the California Institute of Technology, Pasadena, CA 91109-8099, USA,
Email: oktay.arslan@jpl.nasa.gov. He performed this research while at
Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA.

2Karl Berntorp is with Mitsubishi Electric Research Laboratories
(MERL), Cambridge, MA 02139, USA, Email: karl.o.berntorp@ieee.org.

3Panagiotis Tsiotras is with the faculty of D. Guggenheim School
of Aerospace Engineering and the Institute for Robotics and Intelligent
Machines at the Georgia Institute of Technology, Atlanta, GA 30332-0150,
USA, Email: tsiotras@gatech.edu.

of the system. In other words, we avoid the need for
complicated steering procedures, which oftentimes prohibit–
or at least complicate– the use of RRT-type planners for
systems whose dynamics cannot be neglected. Traditional
asymptotically optimal planners, such as RRT# and RRT∗,
find optimal paths by searching in a neighborhood of the
added node for connections having lowest costs. A result of
our algorithm is that we connect and rewire nodes that give
lowest costs with respect to the metric defined by the closed-
loop system. As a consequence, the proposed algorithm
provides the segments of reference trajectories that yield the
lowest-cost state trajectory of the closed-loop system.

The kinodynamic RRT incrementally grows a tree of
suboptimal but dynamically feasible trajectories in the state
space by sampling random control inputs and simulating
the system with these control inputs [2], [15]. Exploration
via control inputs can be inefficient when the dynamics
are complex and/or unstable. To remedy this, [11] proposed
CL-RRT, which uses closed-loop prediction for trajectory
generation. CL-RRT grows a tree in the reference space.
Each path of the tree represents a reference trajectory used
as an input to the closed-loop system. Each edge of the tree
is associated with a segment of a reference trajectory and a
state trajectory of the closed-loop system.

Contribution: State-of-the-art sampling-based asymptoti-
cally optimal search algorithms such as RRT∗ and RRT#

rely on a steering procedure that typically satisfies certain
conditions to connect the nodes. However, finding a steering
procedure typically requires the solution of a two-point
boundary value problem and is computationally expensive.
Analytic solutions are known only in restrictive special cases.
The proposed CL-RRT# algorithm remedies this compu-
tational bottleneck by relying on the closed-loop dynamics
instead of steering procedures to connect nodes. The idea is
similar to CL-RRT but it differs from it, in that we also
ensure asymptotic optimality with respect to the closed-loop
dynamics,

II. PROBLEM FORMULATION

Let X ⊆ Rn, Y ⊆ Rp and U ⊆ Rm. We assume that the
system dynamics can be described by a nonlinear differential
equation (i.e., the system dynamics) of the form

ẋ(t) =f(x(t), u(t)), x(0) = x0,

y(t) =h(x(t), u(t)),
(1)

where the state x(t) ∈ X , the output y(t) ∈ Y , the control
u(t) ∈ U , for all t ≥ 0 and x0 ∈ X , and f and h are smooth
(continuously differentiable) functions describing the time

evolution of the system dynamics. Let X denote the set of
all essentially bounded measurable functions mapping [0, T]
to X for any T ∈ R>0, and define Y and U similarly. The
functions in X , Y , and U are called state trajectories, output
trajectories, and controls, respectively.

Let Xobs and Xgoal, denoting the obstacle space and
the goal region, respectively, be open subsets of X . Let
Xfree also denote the free space, given by X \ Xobs. The
function h describes the output y we wish to control. We are
interested in the class of control problems in which we wish
y(t) to track a time-varying reference trajectory r(t) (output
trajectory generation problem). We assume the existence of
a tracking controller φ : (y′, y) 7→ u ∈ U such that given
a desired output value y′ ∈ Y , and a current output value
y ∈ Y of the system, it computes a control input such that
y tracks y′. This means that every reference trajectory that
is added to the graph is tracked by the controller φ.

A. Problem Statement

Given the state space X , obstacle region Xobs, goal region
Xgoal, and functions f and h as in (1), and a tracking
controller φ : (y′, y) 7→ u ∈ U , we wish to find a reference
trajectory r ∈ Y such that the corresponding unique state
trajectory x ∈ X , output trajectory y ∈ Y , and control u ∈ U ,
computed by φ; obey the differential constraints,

ẋ(t) = f(x(t), u(t)) x(0) = x0,

y(t) = h(x(t), u(t)) for all t ∈ [0, T];

avoid the obstacles, i.e., x(t) ∈ Xfree for all t ∈ [0, T];
reach the goal region, i.e., x(T) ∈ Xgoal; and minimize
J(x, u, r) =

∫ T
0
g(x(t), u(t), r(t)) dt.

B. Primitive Procedures

We follow the notation in [3] and [12]–[14] and introduce
new primitive procedures used in the proposed CL-RRT#.

Closed-loop Prediction: Given a state x ∈ Xfree, and
an output trajectory σy ∈ Y , the function Propagate :
(x, σy) 7→ σx ∈ X returns the state trajectory that is
computed by simulating the system dynamics forward in time
with the initial state x, and the reference trajectory σy .

Queue Operations: Nodes of the computed graphs are
associated with keys and priority queues are used to sort
these nodes based on the precedence relation between keys.
The following functions are implemented to maintain a given
priority queue Q:
• Q.top key() returns the highest priority of all nodes in

the priority queue Q with the smallest key value if the
queue is not empty. If Q is empty, then Q.top key()
returns a key value of k = [∞;∞].

• Q.pop() deletes the node with the highest priority in the
priority queue Q and returns a reference to the node.

• Q.update(vy, k) sets the key value of the node vy to
k and reorders the priority queue Q.

• Q.insert(vy, k) inserts the node vy into the priority
queue Q with the key value k.

• Q.remove(vy) removes the node vy from the priority
queue Q.

Exploration: Given a tuple of data structures S =
(Gy,Gσ,Q,Qgoal), where Gy and Gσ are graphs whose nodes
represent points in Y and trajectories in X , respectively, and
Q and Qgoal are priority queues that are used for ordering
of nongoal and goal nodes that represent points in Y , a goal
region in the output space Ygoal ⊂ Y , and a point y ∈ Y , the
function Extend : (S, Ygoal, y) 7→ S ′ = (G′y,G′σ,Q′,Q′goal)
includes a new node, multiple edges to Gy and multiple
nodes, edges to Gσ , updates the priorities of nodes in Q and
Qgoal and returns an updated tuple S ′. The trajectories in
the state space and the output space are stored as the edges
of Gx and Gy , respectively.

Exploitation: Given a tuple of data structures S =
(Gy,Gσ,Q,Qgoal) the function Replan : S 7→ S ′ =
(G′y,G′σ,Q′,Q′goal) rewires the parent node of the nodes in
Gy based on their cost-to-come values, includes new nodes
and edges in Gσ , if necessary. This is done by propagating
the dynamics of the system to create a new sequence of
reference trajectories, and returning the updated tuple S ′.

Construction of Solution: Given a tuple of data structures
S = (Gy,Gσ,Q,Qgoal), the function ConstrSolution :
S 7→ Tx returns a tree whose edges and nodes represent
simulated trajectories in X and the corresponding internal
states of the nodes of Gy . These trajectories are computed
by propagating the dynamics with reference trajectories that
are encoded in a tree of Gy , which is formed by the edges
between nodes of Gy and their parent nodes.

III. THE CL-RRT#ALGORITHM

To avoid steering procedures that connect two nodes, our
approach relies on simultaneous manipulation of two graphs,
the output/reference graph Gy and the state-trajectory graph
Gσ . The graph Gσ contains the state trajectories resulting
from tracking the reference trajectories from Gy . Designing
steering procedures is nontrivial for dynamical systems,
and usually requires computationally intensive optimization
steps. A reference tracking controller is easier to design and
requires lightweight computation; this makes the proposed
approach promising for real-time motion planning problems.
Since the proposed method connects nodes by simulation of
the closed-loop simulation, by construction we get dynamic
feasibility of the trajectories. To also get optimality, we
utilize the asymptotically optimal sampling-based RRT#.

RRT# consists of an exploration step and an exploitation
step. In the exploration, a graph is extended to a sampled
point, followed by a local search on neighboring nodes to
update and improve the lowest-cost path information. The
exploitation step makes sure that the information available up
to that step is fully exploited, to improve convergence speed.
The proposed CL-RRT# can be interpreted as an RRT# that
explores the set of reference paths to the tracking controller
and seeks for better reference paths by using the lowest-cost
trajectory information computed from closed-loop prediction.
Similarly, exploitation improves the reference graph Gy by
utilizing all information of the state-trajectory graph Gσ . We
will next go through the necessary steps and refer to [16] for
a complete description of the implementation.

TABLE I: The node (OutNode) and edge (OutEdge) data structures
for points and trajectories in output space, respectively, and the node
(TrajNode) and edge (TrajEdge) data structures for trajectories in
state space.

field type description
y vector ∈ Rp output point associated with this node
g real ∈ R cost-to-come value
ḡ real ∈ R one step look-ahead g-value
h real ∈ R heuristic value for the cost between y

and Ygoal

py OutNode reference to the parent output node
pσ TrajNode reference to the parent trajectory node
r trajectory ∈ Y output trajectory associated with this

edge
tail OutNode reference to the tail output node
head OutNode reference to the head output node
σ trajectory ∈ X state trajectory associated with this

node
ey OutEdge reference to the output edge

outgoing OutEdge array list of outgoing output edges
σ trajectory ∈ X state trajectory associated with this

edge
tail TrajNode reference to the tail trajectory node
head TrajNode reference to the head trajectory node

A. Details of the Data Structures

Each node vy in the graph Gy is associated with a reference
point y ∈ Rm. It is an OutNode data structure, summarized
in Table I. The data structure vy contains two estimates of
the optimal cost-to-come value between the initial reference
point and y: the cost-to-come value g and the one step look-
ahead g-value ḡ. It also keeps a heuristic value h, which
is an underestimate of the optimal cost value between y
and Ygoal, to guide and reduce the search effort. When ḡ

is updated during replanning, the reference node that yields
the corresponding minimum cost-to-come value is stored in
the parent reference node py . Lastly, pσ is the trajectory
that is computed by closed-loop prediction when the system
is simulated with the reference trajectory and the tracking
controller φ between the nodes py and vy . Its terminal state
represents the internal state associated with vy .

Each edge ey in the graph Gy is an OutEdge data
structure, summarized in Table I. Each edge ey is associated
with a trajectory r ∈ Y . It also contains two output nodes,
namely, tail and head, which represent the tail and the
head output nodes of ey , respectively.

Each node vσ in the graph Gσ is a TrajNode data
structure, summarized in Table I. Each node vσ is associated
with a trajectory σ ∈ X . It contains an output edge ey , which
corresponds to the reference trajectory that yields σ as the
closed-loop prediction. It also keeps a list of outgoing output
edges outgoing, and this list is used to compute outgoing
trajectory nodes emanating from the terminal state of σ.

Each edge eσ in the graph Gσ is a TrajEdge data
structure, summarized in Table I. Each edge eσ is associated
with a trajectory σ ∈ X . It contains two trajectory nodes,
namely, tail and head which represent the tail and the head
trajectory nodes of eσ , respectively.

B. Details of the Procedures

Algorithm 1 gives the body of the CL-RRT# algorithm,
which is conceptually similar to RRT#. First, the algorithm

initializes the tuple of data structures S that is incrementally
grown and updated as exploration and exploitation are per-
formed (Line 3). The tuple S contains the graphs Gy and
Gσ , which are used to store output nodes and state trajectory
nodes, respectively, and the priority queues Q and Qgoal. The
graph Gσ is created with no edges and vσ as its only node.
This node represents a state trajectory that contains only the
initial state xinit = x0. Likewise, the graph Gy is initialized
with no edges and vy as its only node, which represents
yinit = h(xinit, uinit). The g- and ḡ-values of vy are set to
zero. The parent trajectory node of vy is set with the pointer
to the node vσ .

Algorithm 1: The CL-RRT# Algorithm
1 CL-RRT#(xinit, Xgoal, X)
2 Ygoal := OutputMap(Xgoal);
3 S ← Initialize(xinit,Ygoal);
4 for k = 1 to N do
5 yrand ← Sample(k);
6 S ← Extend(S,Ygoal,yrand);
7 S ← Replan(S);

8 Tx ← ConstrSolution(S);
9 return Tx;

The algorithm iteratively builds a graph of collision-free
reference trajectories Gy by first sampling an output point
yrand from the obstacle-free output space Yfree (Line 5) and
then extending the graph towards this sample (Line 6), at
each iteration. The cost of the unique trajectory from the
root node to a given node vy is denoted as Cost(vy). It
also builds another graph Gσ , to store the state trajectories
computed by simulation of the closed-loop dynamics when
a reference trajectory is tracked. Once a new node is added
to Gy after Extend, Replan is called to improve the existing
solution by propagating the new information (Line 7). The
dynamic system is simulated for different reference trajecto-
ries as needed during the search process. The computed state
trajectories are added to the graph Gσ as new nodes along
with the corresponding controls.

Finally, when a predetermined maximum number of it-
erations is reached, ConstrSolution extracts the spanning
tree of Gy that contains the lowest-cost reference trajectories
(Line 8). Algorithm 2 gives the details of ConstrSolution.

1) The Extend Procedure: The Extend procedure is
given in Algorithm 3. It first extends the nearest output node
vy,nearest to the output sample y (Lines 4-5). The output
trajectory that extends the nearest output node vy,nearest
towards the output sample y is denoted as rnew. The final
output point on the output trajectory rnew is denoted as ynew.
If rnew is collision-free, then a new output node vy,new is
created to represent the new output point ynew (Line 8).

The members of the node vy,new are set as follows. First,
Near finds the set of neighbor output nodes Vnear in the
neighborhood of the new output point ynew (Line 9). Then,
the set of incoming edges Ey,pred and outgoing edges Ey,succ
of the new output node vy,new are computed by using the
information of the neighbor output nodes (Lines 10-19).

Once the new output node vy,new is created together with

Algorithm 2: The ConstrSolution Solution Procedure
1 ConstrSolution(S)
2 (Gy,Gσ,Q,Qgoal)← S;
3 (Vy, Ey)← Gy; X ← ∅;
4 foreach vy ∈ Vy do
5 σ ← vy.pσ.σ;
6 vx ← StateNode(σ.back());
7 Vx ← Vx ∪ {vx};
8 vx,parent ← find(Vx,σ.front());
9 if vx,parent = ∅ then

10 vx,parent ← StateNode(σ.front());
11 Vx ← Vx ∪ {vx,parent};
12 ex ← StateEdge(vx,parent, vx, σ);
13 Ex ← Ex ∪ {ex};
14 X ← X ∪ {σ.back()};
15 return Tx = (Vx, Ex);

the set of incoming edges Ey,pred and outgoing edges Ey,succ
connecting it to its neighbor output nodes Vnear, Extend

attempts to find the best incoming edge that yields a segment
of a reference trajectory which incurs minimum cost to get to
vy,new among all incoming edges in Ey,pred (Lines 20-34).

When a trajectory node vσ,new is created, the outgoing
state trajectories emanating from the final state of the state
trajectory vσ,new.σ are not immediately computed, for the
sake of efficiency. Instead, the algorithm keeps the set of
candidate outgoing output trajectories, that is, the edges in
Ey,succ, in a list vσ,new.outgoing, and the simulation of the
system for these output trajectories is postponed until the
head output node of the output edge vσ,new.ey is selected
for the Bellman update during the Replan procedure. Once
the new state trajectory node vσ,new and the edge between the
predecessor state trajectory node vσ,pred and itself are created
(Lines 27-28), they are added to the set of nodes and edges
of the graph Gσ , respectively (Lines 29-30). If the incoming
output edge ey between the predecessor output node vy,pred
and the new output node vy,new yields a collision-free state
trajectory σ that incurs a cost less than the current cost of
vy,new, then, the ḡ-value of vy,new is set with new lower cost,
vy,pred and vσ,new are made the new parent output node and
the new parent state trajectory node of vy,new (Lines 31-34).

After the creation of the new output node vy,new, it is
added to the graph Gy together with all of its collision-
free output edges, and all trajectory nodes and edges created
during the simulation of the system dynamics are added to
Gσ . Lastly, the priority queues, Q and Qgoal are updated
accordingly by using the information of the new output node
vy,new, that is, reordering of the priorities after insertion of
vy,new to the queue Q and reordering the goal output nodes
in Qgoal if vy,new is a goal output node (Lines 38-39).

2) The Replan Procedure: The Replan procedure is
given in Algorithm 4 (see [12]). It improves the cost-to-come
values of the output nodes by operating on the nonstationary
and promising nodes of the graph Gy . It pops the most
promising nonstationary node from the priority queue Q, if
there are any, and this node is made stationary by assigning
its ḡ-value to its g-value (Lines 5-6). Then, the g-value of the

Algorithm 3: The Extend Procedure#

1 Extend(S, Xgoal, y)
2 (Gy,Gσ,Q,Qgoal)← S;
3 (Vy, Ey)← Gy; (Vσ, Eσ)← Gσ;
4 vy,nearest ← Nearest(Gy ,y);
5 rnew ← Steer(vy,nearest.y,y);
6 if ObstacleFree(rnew) then
7 ynew ← rnew.back();
8 vy,new ← OutNode(ynew);
9 vy,new.h← ComputeHeuristic(ynew,Ygoal);

10 Vnear ← Near(Gy ,ynew,|Vy|) ∪ {vy,nearest};
11 Ey,succ ← ∅; Ey,pred ← ∅;
12 foreach vy,near ∈ Vnear do
13 r ← Steer(ynew,vy,near.y);
14 if ObstacleFree(r) then
15 ey ← OutEdge(vy,new,vy,near,r);
16 Ey,succ ← Ey,succ ∪ {ey};
17 r ← Steer(vy,near.y,ynew);
18 if ObstacleFree(r) then
19 ey ← OutEdge(vy,near,vy,new,r);
20 Ey,pred ← Ey,pred ∪ {ey};

21 V ′σ ← ∅; E′σ ← ∅;
22 foreach ey ∈ Ey,pred do
23 vy,pred ← ey.tail;
24 vσ,pred ← vy,pred.pσ;
25 xpred ← vσ,pred.σ.back();
26 σ ← Propagate(xpred,ey .r);
27 if ObstacleFree(σ) then
28 vσ,new ← TrajNode(σ,ey ,Ey,succ);
29 eσ ← TrajEdge(vσ,pred,vσ,new,σ);
30 V ′σ ← V ′σ ∪ {vσ,new};
31 E′σ ← E′σ ∪ {eσ};
32 if vy,new.ḡ > vy,pred.g+ Cost(σ) then
33 vy,new.ḡ← vy,pred.g+ Cost(σ);
34 vy,new.py ← vy,pred;
35 vy,new.pσ ← vσ,new;

36 Vy ← Vy ∪ {vy,new};
Ey ← Ey ∪ Ey,succ ∪ Ey,pred;

37 Vσ ← Vσ ∪ V ′σ; Eσ ← Eσ ∪ E′σ;
38 Gy ← (Vy, Ey); Gσ ← (Vσ, Eσ);
39 Q ← UpdateQueue(Q,vy,new);
40 Qgoal ← UpdateGoal(Qgoal,vy,new,Xgoal);

41 return S ← (Gy,Gσ,Q,Qgoal);

output node vy is used to improve the ḡ-values of its neighbor
output nodes. To do this, Replan computes all outgoing state
trajectories emanating from internal state of the output node
v (Lines 9–16). All newly computed, obstacle-free, state
trajectory nodes and edges are added to Gσ (Line 18).

In Lines 19–27, for each outgoing state trajectory σ,
Replan adds up its cost, incurred by reaching to the suc-
cessor output node vy,succ to the g-value of vy , compare it
with the current ḡ-value of vy,succ, and if the outgoing state
trajectory edge σ yields a lower cost than vy,succ, the ḡ-value
of vy,succ is set with new lower cost, and vy and vσ,succ are
made the new parent output node and the new parent state
trajectory node of vy,succ, respectively (Lines 23-25).

The auxiliary procedures in Extend and Replan can be
found in [16].

Algorithm 4: Replan Procedure#

1 Replan(S, Xgoal)
2 (Gy,Gσ,Q,Qgoal)← S;
3 (Vσ, Eσ)← Gσ;
4 while Q.top key() ≺ Qgoal.top key() do
5 vy ← Q.pop();
6 vy.g← vy.ḡ;
7 vσ ← vy.pσ;
8 x← vσ.σ.back();
9 foreach ey ∈ vσ.outgoing do

10 vy,succ ← ey.head;
11 σ ← Propagate(x,ey .r);
12 if ObstacleFree(σ) then
13 vσ,succ ←

TrajNode(σ,ey ,outgoing(Gy ,vy,succ));
14 eσ ← TrajEdge(vσ ,vσ,succ,σ);
15 Vσ ← Vσ ∪ {vσ,succ};
16 Eσ ← Eσ ∪ {eσ};

17 vσ.outgoing← ∅;
18 Gσ ← (Vσ, Eσ);
19 foreach vσ,succ ∈ succ(Gσ ,vσ) do
20 σ ← vσ,succ.σ;
21 vy,succ ← vσ,succ.ey.head;
22 if vy,succ.ḡ > vy.g+ Cost(σ) then
23 vy,succ.ḡ← vy.g+ Cost(σ);
24 vy,succ.py ← vy;
25 vy,succ.pσ ← vσ,succ;
26 Q ← UpdateQueue(Q,vy,succ);
27 Qgoal ←

UpdateGoal(Qgoal,vy,succ,Xgoal);

28 return S ← (Gy,Gσ,Q,Qgoal);

C. Properties of the Algorithm

CL-RRT# provides both dynamic feasibility and asymp-
totic optimality guarantees, that is, the lowest-cost reference
trajectory computed by the algorithm converges to the opti-
mal reference trajectory, almost surely. The former property
is an immediate result of using closed-loop prediction during
the search phase. During the extension of the graph Gy , if
some segments of a reference trajectory cannot be tracked,
the corresponding state trajectory is not stored in the graph
Gσ . Optimality is due to the property of the RRT# algo-
rithm [12]. The proposed algorithm incrementally grows a
graph Gy in the output space in a similar fashion as the RRG
algorithm [5]. Therefore, the lowest-cost path encoded in Gy
converges to the optimal output trajectory in the output space
almost surely. In addition, the lowest-cost output trajectory
encoded in the graph Gy is extracted at the end of each
iteration in a similar fashion as the RRT# algorithm. Given
the cost function that associates each edge in Gy with a
nonnegative cost value being monotonic and bounded, the
proposed algorithm is asymptotically optimal [3].

IV. NUMERICAL STUDY

We evaluate the proposed algorithm on a simulated
autonomous-driving example. The goal is to traverse a circuit
while minimizing the Euclidean trajectory length. We com-
pare the proposed CL-RRT# algorithm against CL-RRT

(a) (b)

(c) (d)

(e) (f)

Fig. 1: The evolution of the solution trees for reference paths (a), (c), (e)
and state trajectories (b), (d), and (f), computed by CL-RRT#. The trees
are at 1000, 2000, and 3000 iterations, respectively.

[11] and CL-RRT∗, which can be found as a special case
of the proposed algorithm, CL-RRT#, similarly to the
differences between RRT∗and RRT# [12].

The vehicle is described by a kinematic single-track
model. Note that there is no analytic solution to the steering
procedure assumed in RRT∗ and RRT# for this vehicle
model. The system dynamics are given by

ṗx = v cos(ψ + β)/ cos(β),

ṗy = v sin(ψ + β)/ cos(β),

ψ̇ = v tan(u1)/L, v̇ = u2,

where L is the wheel base, β is the body slip angle of the
velocity vector relative to the vehicle-fixed frame, and u1,
u2 are the controls for the steering angle and translational
velocity, respectively. Each input takes values in an interval,
that is, ui ∈ [uli, u

u
i]. A pure-pursuit controller tracks a given

reference path [17]. The heading command is generated by
following a look-ahead point on a given reference path. The
speed command is assumed given as a desired speed vcrs,
which is tracked by a proportional controller.

Fig. 1 shows the trees at different stages when using the
proposed algorithm. The vehicle is initially located at the
black square with zero heading angle and zero speed. The
task is to move to the red square. From Figs. 1(a), 1(c), and

(a) (b)

(c) (d)

(e) (f)
Fig. 2: The evolution of the solution trees for reference paths and state
trajectories computed by CL-RRT∗, with same notation as in Fig. 1.

0 5 10 15 20 25 30 35

Time [s]

225

230

235

240

245

250

255

260

265

270

275

C
o
s
t
[m

]

CL-RRT*
CL-RRT#
CL-RRT

Fig. 3: Value of the cost function over the computation time. The black
marker indicates the end of the 3000 iterations for CL-RRT.

1(e), CL-RRT# grows a graph in the output space. The path
corresponding to the lowest-cost trajectory is shown in blue.
Figs. 1(b), 1(d), and 1(f), show the corresponding state. Fig. 2
shows the reference and state trajectories for CL-RRT∗.
CL-RRT# reaches a lower-cost trajectory than CL-RRT∗

for the same number of iterations. This is most clearly seen in
the turns in (b), (d), and (f) figures, where CL-RRT# takes
sharper turns. Fig. 3 shows path length over computation
time for the different algorithms. The proposed CL-RRT#

returns a lower-cost solution for the same computation time.
CL-RRT gets stuck at its first solution.

V. CONCLUSION

We presented CL-RRT#, a new asymptotically optimal
motion-planning algorithm that uses closed-loop prediction
for trajectory generation. The approach is a hybrid of
CL-RRT and RRT#. It grows a graph of reference trajec-
tories, used as inputs to a low-level tracking controller, and
chooses the one that yields the lowest-cost state trajectory
of the closed-loop system. CL-RRT# provides dynamic
feasibility by construction and ensures asymptotic optimal-
ity. CL-RRT# avoids the need for steering procedures to
connect nodes in the graph, instead relying on the closed-
loop dynamics to provide the necessary state connections.
Our approach is therefore applicable to a range of dynamical
systems where the dynamics and/or kinematics is important
to consider, such as vehicles or underactuated robots.

Acknowledgment: The portion of the work not done at
Mitsubishi Electric Research Labs has been supported, in
part, by ARO MURI award W911NF-11-1-0046 and ONR
award N00014-13-1-0563.

REFERENCES

[1] J. H. Reif, “Complexity of the movers problem and generalizations,”
in IEEE Conf. Foundations of Computer Science, 1979, pp. 421–427.

[2] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robotics Research, vol. 30, no. 7, pp. 846–
894, 2011.

[4] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime motion planning using the RRT*,” in IEEE Int. Conf.
Robotics and Automation, Shanghai, China, May 2011.

[5] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in 49th IEEE Conf.
Decision and Control, Atlanta, GA, Dec. 2010.

[6] R. Vinter, Optimal Control. Boston, MA: Birkhäuser, 2010.
[7] O. Arslan, E. A. Theodorou, and P. Tsiotras, “Information-theoretic

stochastic optimal control via incremental sampling-based algorithms,”
in IEEE Symp. Adaptive Dynamic Programming and Reinforcement
Learning, Orlando, FL, Dec. 2014.

[8] J. Leonard et al., “A perception-driven autonomous urban vehicle,” J.
Field Robotics, vol. 25, no. 10, pp. 727–774, 2008.

[9] J. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. In-
oue, “Dynamically-stable motion planning for humanoid robots,”
Autonomous Robots, vol. 12, no. 1, pp. 105–118, 2002.

[10] K. Berntorp and S. D. Cairano, “Joint decision making and motion
planning for road vehicles using particle filtering,” in IFAC Symp.
Advances in Automotive Control, Kolmården, Sweden, June 2016.

[11] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. P.
How, “Motion planning in complex environments using closed-loop
prediction,” in AIAA Guidance, Navigation, and Control Conf., 2008.

[12] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-
based algorithms for optimal motion planning,” in IEEE Int. Conf.
Robotics and Automation, Karlsrühe, Germany, May 2013.

[13] ——, “Dynamic programming guided exploration for sampling-based
motion planning algorithms,” in IEEE Int. Conf. Robotics and Automa-
tion, Seattle, WA, May 2015.

[14] ——, “Dynamic programming principles for sampling-based motion
planners,” in ICRA Optimal Robot Motion Planning Workshop, Seattle,
WA, May 2015.

[15] S. M. LaValle and J. J. Kuffner, Jr., “Randomized kinodynamic
planning,” Int. J. Robotics Research, vol. 20, no. 5, pp. 378–400, May
2001.

[16] O. Arslan, K. Berntorp, and P. Tsiotras, “Sampling-based Algorithms
for Optimal Motion Planning Using Closed-loop Prediction,” ArXiv
e-print: 1601.06326, Jan. 2016.

[17] O. Amidi, “Integrated mobile robot control,” Carnegie Mellon Univer-
sity, Robotics Institute, Tech. Rep. CMU-RI-TR-90-17, May 1990.

	I Introduction
	II Problem Formulation
	II-A Problem Statement
	II-B Primitive Procedures

	III The CL-RRT#Algorithm
	III-A Details of the Data Structures
	III-B Details of the Procedures
	III-B.1 The Extend Procedure
	III-B.2 The Replan Procedure

	III-C Properties of the Algorithm

	IV Numerical Study
	V Conclusion
	References

