
Reduced Complexity Multi-Scale Path-Planning on Probabilistic Maps

Florian Hauer1 Panagiotis Tsiotras2

Abstract— We present several modifications to the previously
proposed MSPP algorithm that can speed-up its execution
considerably. The MSPP algorithm leverages a multi-scale
representation of the environment in n dimensions encoded in
tree structure constructed by recursive dyadic partitioning of
the search space. We first present a new method to compute
the graph neighbors in order to reduce the complexity of each
iteration, from O(|V |2) to O(|V | log |V |). We then show how to
delay expensive intermediate computations until we know that
new information will be required, hence saving time by not
operating on information that is never used during the search.
Finally, we present a way to remove the very expensive need
to calculate a full multi-scale map with the use of sampling
and derive an upper bound on the probability of failure as a
function of the number of samples.

I. INTRODUCTION

Path-planning algorithms rely on perception algorithms to
map the environment and localize the agent in the map.
Commonly used data structures to represent perceived en-
vironments include multiresolution representations resulting
from many common perception algorithms [2], [8]. The use
of hierarchical multiresolution data structures is motivated
by several observations: First, information collected about
the environment is not uniform, as each sensor has its
own range, resolution and noise properties. The informa-
tion used by perception algorithms is then naturally multi-
scale; estimation and inference is often used to extract the
best information out of noisy measurements, leading to a
probabilistic representation of the environment [8]. Second,
on-board computational resources might be limited, thus
not allowing an agent to systematically use all perceived
information. Furthermore, precise information about the en-
vironment far away from the agent might not be valid,
or may even be irrelevant, if the robot is far away from
the obstacle. A multi-scale representation of the collected
data allows to choose the resolution for each region of the
space as needed. For planning purposes, for instance, local
information is typically important over the short-term (e.g.,
obstacle avoidance), while far away information affects only
long-term objectives such as reaching a goal or exploring the
environment.

Several approaches have been used in the past to in-
corporate multiscale information during planning. Bottom-
up approaches use the information at the finest resolution
and then combine it in increasingly coarser resolutions.
Top-down approaches solve the path-planning problem at

1PhD candidate, School of Aerospace Engineering, Georgia Institute of
Technology, Atlanta, GA 30332-0150, Email:fhauer3@gatech.edu

2Professor, School of Aerospace Engineering and Institute for Robotics
and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA
30332-0150, Email:tsiotras@gatech.edu

Support for this work has been provided by ARO MURI award W911NF-
11-1-0046 and ONR award N00014-13-1-0563

the coarser resolution and then progressively increase the
resolution of the solution [5], [7]. Using both approaches
can lead to fast optimal algorithms, as shown in [6]. But the
preprocessing of the data required by this approach is too
expensive (in terms of time and memory) for online applica-
tions. Another approach consists of using the information at
different resolutions at the same time. This idea is explored
in [1], where areas near the current vehicle are represented
accurately, while farther-away areas are coarsely-encoded
by using a transformation on the wavelet coefficients. The
approach is shown to be complete and very fast.

More recently, the MSPP algorithm [4] extended the work
of [1] to n dimensions in a reformulation using 2n trees
instead of wavelets. The notion of ε-obstacles guaranteeing
completeness for any value of the threshold ε was also
introduced in the same paper. In this paper, we propose
several modifications to the MSPP algorithm introduced
in [4] to accelerate computations and extend the range
of potential applications. Neighbor checking, a bottleneck
operation of the MSPP algorithm, is reworked to reduce its
complexity from O(|V |2) to O(|V | log |V |). The order in
which operations are executed is also modified in order to
minimize the computations. The full reduced graph is not
computed, only its nodes are computed and the edges are
calculated on-the-fly. Finally, we introduce a way to work
without a multi-scale map, but instead we use a predicate to
determine whether a point of the search space is an obstacle
or not. This modification allows us to remove the expensive
map creation step. It also saves memory, since the full multi-
scale map does not need to be known in advance. The trade-
off here is giving up completeness for the sake of increased
runtime performance and memory reduction.

II. NOTATION AND PREVIOUS WORK

A. Multiresolution World Representation

The environment W ⊂ Rd is assumed to be a d-
dimensional grid world. Without loss of generality, we as-
sume that each elementary cell of the grid world is a unit
hypercube and there exists an integer ` > 0 such that the
world is contained within a hypercube of side length 2`. The
world W is encoded as a tree T = (N ,R) representing the
multi-scale information, with N being the set of nodes and
R being the set of edges describing their relations. Nodes of
T are represented by two indices, k and p, corresponding to
the depth of the node nk,p in the tree and the position of the
center of the node in the search space. A node nk,p represents
a hypercube in the search space W centered at p and of size
2k, and is denoted by H(nk,p). The children of the node nk,p
are denoted by nk−1,qi , i ∈ [1, 2d] where qi = p+2k−2ei and
where ei is each of the 2d (d-dimensional) vectors generated

2016 IEEE International Conference on Robotics and Automation (ICRA)
Stockholm, Sweden, May 16-21, 2016

978-1-4673-8026-3/16/$31.00 ©2016 IEEE 83

by [±1,±1, . . . ,±1]. A node is called a leaf of T if it has
no children.

The information V (nk,p) contained in each node nk,p ∈
N is the probability of the existence of an obstacle in the
space represented by the node, computed by

V (nk,p) =
Volume of obstacles in H(nk,p)

Volume of H(nk,p)
. (1)

B. The Path-Planning Problem

Two nodes in T are neighbors if their corresponding
hypercubes share a hyperface, specifically, their intersection
is a hypercube of dimension d−1. A necessary and sufficient
condition for two nodes nk1,p1 and nk2,p2 to be neighbors is
that both of the following two conditions are satisfied:
• The expression ‖p1 − p2‖∞ = 2k1−1 + 2k2−1 holds,
• There exists a unique i ∈ [1, d], such that |(p1−p2)i| =
2k1−1 + 2k2−1, where (p1 − p2)i is the ith component
of the vector.

In the case of a 2-D or a 3-D environment with a uniform
grid, the previous two conditions imply 4-connectivity or 6-
connectivity, respectively.

We define a path π = (nk1,p1 , nk2,p2 , . . . , nkN ,pN) in T
to be a sequence of nodes nki,pi ∈ N , each at corresponding
position pi and depth ` − ki, such that two consecutive
nodes of the sequence are neighbors. A path is called a
finest information path (FIP) if all its nodes are leafs of T .
Leaf nodes represent the best resolution, and hence the finer
information contained in the tree T .

Given ε ∈ [0, 1), a node nk,p ∈ N is an ε-obstacle if

V (nk,p) ≥ 1− 2−dkε. (2)

A path π is ε-feasible if none of its nodes are ε-obstacles.
Given the representation of W encoded in the tree T , the

problem is to find an ε-feasible FIP between two nodes in
the tree, nstart, representing the starting node, and ngoal,
representing the goal node, and to report failure if no such
path exists.

C. The MSPP Algorithm

The MSPP algorithm is a backtracking algorithm that
iteratively builds a solution from the starting node nstart
until the goal node ngoal is reached. At each iteration i, a
local representation Gi of the environment, called the reduced
graph, is computed and the best path to the goal on this graph
is used as a heuristic to decide which direction to follow. The
current candidate solution built by the algorithm at iteration
i is denoted by πistart. Therefore, πistart is an ε-feasible FIP
from nstart to nki,pi , the node reached by the algorithm at
iteration i. The best path from nki,pi to the goal on the
reduced graph Gi is denoted by πgoal

i . The reduced graph Gi
is computed by first identifying its vertices (corresponding
to nodes of T) via a top-down exploration of T . The first
element of πgoal

i is used to build the global solution πistart.
If the path πgoal

i does not exist, the algorithm backtracks.
The main lines of the MSPP algorithm are shown in

Algorithm 1. Refer to [4] for the full details of the MSPP
algorithm.

Algorithm 1: The MSPP Algorithm - Simplified for
clarity

Data: Tree T , Start node nstart, Goal node ngoal
Result: ε-feasible FIP from nstart to ngoal or failure

1 i← 0, nki,pi ← nstart,π0
start ← [nki,pi];

2 while Goal not found AND no failure do
3 (G̃i, vstart,i, vgoal,i)←ReducedGraph(T ,nki,pi);
4 πgoal

i ←ShortestPath(G̃i, vstart,i, vgoal,i);
5 if exists(πgoal

i) then
6 nki+1,pi+1

←firstElement(πgoal
i);

7 πi+1
start ← [πistart nki+1,pi+1

];
8 else
9 backtrack;

10 i← i+ 1;

III. FAST NEIGHBOR COMPUTATION - MSPP-FN

In the original MSPP algorithm [4], neighbors for the
reduced graph are computed by testing whether every pair of
vertices satisfies the neighborhood properties. As shown in
[4], this step is the main bottleneck during each iteration,
having complexity O(|V |2), where |V | is the number of
vertices. In this section we propose a new way to compute
neighbors so that the complexity is reduced from O(|V |2)
to O(|V | log |V |).

A. Tree Data Structure For Vertices

In order to perform fast searches over the vertices of the
reduced graph, we keep them in a tree structure. Let Ti define
this tree structure. As the original tree T is traversed to select
nodes for Gi, Ti is constructed by copying every element of
T traversed by the selection process, except for ε-obstacles.
Ti is then a tree with the same structure as T , but its branches
are shorter. In other words, Ti is a pruned version of T whose
leave nodes are the vertices of Gi.

Note that, for implementation, Ti does not change signif-
icantly between two consecutive iterations, so it is compu-
tationally cheaper to modify Ti−1 than to create a new data
structure at each iteration. Memory allocation is the most
expensive operation when creating new nodes. Modifying
Ti−1 allows to only have to allocate memory for nodes of Ti
that did not exist in Ti−1. The copy process is then modified
to add nodes only if they do not already exist, and remove
excessive nodes when reaching a node corresponding to a
vertex of Gi. The pseudo-code is given in Function 1. The
vertex list is also removed since the information is already
contained in Ti. The function GetRGFastNeighbor is
called with the root of T , the root of Ti (created during
initialization) and the current node nki,pi .

B. Same Size Neighbors

Generating neighbors is easy when the nodes have the
same size, so we will consider this case first. Given a node
nk,p, we want to find all its neighbors having the same size
that correspond to vertices of Gi. Same size implies the same
depth in T , so every neighbor will have the same depth index

84

Function 1: GetRGFastNeighbor()
Data: Node nk,p (in T), Node tk,p (in Ti), Current

node nki,pi
1 if (‖p− pi‖2 −

√
d
2 2ki ≥ α2k OR isLeaf(nk,p)) AND

doesNotContainPath(nk,p) then
2 if nk,p is not a ε-obstacle then
3 Remove all descendants of tk,p;
4 else
5 Remove tk,p and its descendants;

6 else
7 foreach (m, q) index of children of (k, p) do
8 if tm,q does not exist then
9 Create tm,q child of tk,p;

10 GetRGFastNeighbor(nm,q,tm,q,nki,pi);

vertex of Gi. The pseudo-code is given in Function ??. The
vertex list is also removed since the information is already
contained in Ti. The function GetRGFastNeighbor is
called with the root of T , the root of Ti (created during
initialization) and the current node nki,pi .

Function 1: GetRGFastNeighbor()
Data: Node nk,p (in T), Node tk,p (in Ti), Current

node nki,pi
1 if (‖p− pi‖2 −

√
d
2 2ki ≥ α2k OR isLeaf(nk,p)) AND

doesNotContainPath(nk,p) then
2 if nk,p is not a ε-obstacle then
3 Remove all descendants of tk,p;
4 else
5 Remove tk,p and its descendants;

6 else
7 foreach (m, q) index of children of (k, p) do
8 if tm,q does not exist then
9 Create tm,q child of tk,p;

10 GetRGFastNeighbor(nm,q,tm,q,nki,pi);

B. Same Size Neighbors
Generating neighbors is easy when the nodes have the

same size, so we will consider this case first. Given a node
nk,p, we want to find all its neighbors having the same size
that correspond to vertices of Gi. Same size implies the same

p pnhb,1

pnhb,2

pnhb,3

pnhb,4
d1

d2

Fig. 1: Generating neighbors for the construction of Gi.
Same size neighbors case: H(nk,p) is the center square
and the pnhb,i are the generated position candidates for the
neighbors.

depth in T , so every neighbor will have the same depth index
k. Also, the neighbor conditions and the fact that the nodes
are centered on a grid, imply that only one dimension of
the position vector can be changed at a time, that is, the
neighbors’ positions pnhb,i can only be

pnhb,i = p+ 2kbi, 1 ≤ i ≤ 2d

with

bi =

{
di if i ≤ d,
−di otherwise,

where di is the ith vector of the standard basis of Rd. If
pnhb,i is within the bounds of the search space, nk,pnhb,i

is in Ti and nk,pnhb,i
is a leaf of Ti, then nk,pnhb,i

is a
valid neighbor of nk,p. Figure ?? shows in the center the
hypercube corresponding to nk,p and the neighbor candidates
around it. The red arrows represent the vectors 2kbi.

Searching the tree Ti can be done on average in
O(log |V |), and the number of candidates to check is 2d.

C. Larger Neighbors

Consider now the case of finding the larger neighbors of
nk,p. The previous result can still be used, but it will generate
points inside larger neighbors instead of their positions. The

p pnhb,1

d1

d2

Fig. 2: Generating neighbors for the construction of Gi.
Larger neighbors case: H(nk,p) is the smaller square around
p and pnhb,1 is the first generated position candidate for
the neighbors. The dashed squares represents the hypercubes
corresponding to nodes visited during the search for pnhb,1
in the tree.

search through the tree works as follows. It starts with the
root of the tree, representing the entire environment, as the
current node. As long as the current node has children (recall
that our data structure assumes that they either all exist or
none of them exists), the child whose hybercube contains the
searched point pnhb,i is selected as the current node. That
is, at each step, the search process selects the node at the
next level of resolution whose hypercube contains pnhb,i.
The search stops if either the current node is at pnhb,i or
the current node does not have children. At the end of the
process, the current node is a neighbor of nk,p and if it is
a leaf, then it is also a vertex of Gi. A larger node could
contain p and then not be a neighbor, but since nk,p exists,
that node would have children and the search process will
never stop in such a situation.

Figure ?? shows, in dashed lines, the last four nodes that
would be explored while searching for pnhb,1. If nk,pnhb,1

does not exist, the algorithm will stop at one of its ancestors,
which will be a neighbor of nk,p. Note that the search cannot
stop at the largest ancestor shown, since it contains nk,p, so
all the children exist.

D. Smaller Neighbors

The last case to consider is when there are smaller
neighbors of nk,p. The search for pnhb,i in Ti will return

vertex of Gi. The pseudo-code is given in Function 1. The
vertex list is also removed since the information is already
contained in Ti. The function GetRGFastNeighbor is
called with the root of T , the root of Ti (created during
initialization) and the current node nki,pi .

Function 1: GetRGFastNeighbor()
Data: Node nk,p (in T), Node tk,p (in Ti), Current

node nki,pi
1 if (‖p− pi‖2 −

√
d
2 2ki ≥ α2k OR isLeaf(nk,p)) AND

doesNotContainPath(nk,p) then
2 if nk,p is not a ε-obstacle then
3 Remove all descendants of tk,p;
4 else
5 Remove tk,p and its descendants;

6 else
7 foreach (m, q) index of children of (k, p) do
8 if tm,q does not exist then
9 Create tm,q child of tk,p;

10 GetRGFastNeighbor(nm,q,tm,q,nki,pi);

B. Same Size Neighbors

Generating neighbors is easy when the nodes have the
same size, so we will consider this case first. Given a node
nk,p, we want to find all its neighbors having the same size
that correspond to vertices of Gi. Same size implies the same

vertex of Gi. The pseudo-code is given in Function ??. The
vertex list is also removed since the information is already
contained in Ti. The function GetRGFastNeighbor is
called with the root of T , the root of Ti (created during
initialization) and the current node nki,pi .

Function 1: GetRGFastNeighbor()
Data: Node nk,p (in T), Node tk,p (in Ti), Current

node nki,pi
1 if (‖p− pi‖2 −

√
d
2 2ki ≥ α2k OR isLeaf(nk,p)) AND

doesNotContainPath(nk,p) then
2 if nk,p is not a ε-obstacle then
3 Remove all descendants of tk,p;
4 else
5 Remove tk,p and its descendants;

6 else
7 foreach (m, q) index of children of (k, p) do
8 if tm,q does not exist then
9 Create tm,q child of tk,p;

10 GetRGFastNeighbor(nm,q,tm,q,nki,pi);

B. Same Size Neighbors
Generating neighbors is easy when the nodes have the

same size, so we will consider this case first. Given a node
nk,p, we want to find all its neighbors having the same size
that correspond to vertices of Gi. Same size implies the same

p pnhb,1

pnhb,2

pnhb,3

pnhb,4
d1

d2

Fig. 1: Generating neighbors for the construction of Gi.
Same size neighbors case: H(nk,p) is the center square
and the pnhb,i are the generated position candidates for the
neighbors.

depth in T , so every neighbor will have the same depth index
k. Also, the neighbor conditions and the fact that the nodes
are centered on a grid, imply that only one dimension of
the position vector can be changed at a time, that is, the
neighbors’ positions pnhb,i can only be

pnhb,i = p+ 2kbi, 1 ≤ i ≤ 2d

with

bi =

{
di if i ≤ d,
−di otherwise,

where di is the ith vector of the standard basis of Rd. If
pnhb,i is within the bounds of the search space, nk,pnhb,i

is in Ti and nk,pnhb,i
is a leaf of Ti, then nk,pnhb,i

is a
valid neighbor of nk,p. Figure ?? shows in the center the
hypercube corresponding to nk,p and the neighbor candidates
around it. The red arrows represent the vectors 2kbi.

Searching the tree Ti can be done on average in
O(log |V |), and the number of candidates to check is 2d.

C. Larger Neighbors

Consider now the case of finding the larger neighbors of
nk,p. The previous result can still be used, but it will generate
points inside larger neighbors instead of their positions. The

p pnhb,1

d1

d2

Fig. 2: Generating neighbors for the construction of Gi.
Larger neighbors case: H(nk,p) is the smaller square around
p and pnhb,1 is the first generated position candidate for
the neighbors. The dashed squares represents the hypercubes
corresponding to nodes visited during the search for pnhb,1
in the tree.

search through the tree works as follows. It starts with the
root of the tree, representing the entire environment, as the
current node. As long as the current node has children (recall
that our data structure assumes that they either all exist or
none of them exists), the child whose hybercube contains the
searched point pnhb,i is selected as the current node. That
is, at each step, the search process selects the node at the
next level of resolution whose hypercube contains pnhb,i.
The search stops if either the current node is at pnhb,i or
the current node does not have children. At the end of the
process, the current node is a neighbor of nk,p and if it is
a leaf, then it is also a vertex of Gi. A larger node could
contain p and then not be a neighbor, but since nk,p exists,
that node would have children and the search process will
never stop in such a situation.

Figure ?? shows, in dashed lines, the last four nodes that
would be explored while searching for pnhb,1. If nk,pnhb,1

does not exist, the algorithm will stop at one of its ancestors,
which will be a neighbor of nk,p. Note that the search cannot
stop at the largest ancestor shown, since it contains nk,p, so
all the children exist.

D. Smaller Neighbors

The last case to consider is when there are smaller
neighbors of nk,p. The search for pnhb,i in Ti will return

Fig. 1: Generating neighbors for the construction of Gi.
Same size neighbors case: H(nk,p) is the center square
and the pnhb,i are the generated position candidates for the
neighbors.

depth in T , so every neighbor will have the same depth index
k. Also, the neighbor conditions and the fact that the nodes
are centered on a grid, imply that only one dimension of
the position vector can be changed at a time, that is, the
neighbors’ positions pnhb,i can only be

pnhb,i = p+ 2kbi, 1 ≤ i ≤ 2d

with

bi =

{
di if i ≤ d,
−di otherwise,

where di is the ith vector of the standard basis of Rd. If
pnhb,i is within the bounds of the search space, nk,pnhb,i

is
in Ti and nk,pnhb,i

is a leaf of Ti, then nk,pnhb,i
is a valid

neighbor of nk,p. Figure 1 shows in the center the hypercube
corresponding to nk,p and the neighbor candidates around it.
The red arrows represent the vectors 2kbi.

Searching the tree Ti can be done on average in
O(log |V |), and the number of candidates to check is 2d.

C. Larger Neighbors

Consider now the case of finding the larger neighbors of
nk,p. The previous result can still be used, but it will generate
points inside larger neighbors instead of their positions. The

p pnhb,1

d1

d2

Fig. 2: Generating neighbors for the construction of Gi.
Larger neighbors case: H(nk,p) is the smaller square around
p and pnhb,1 is the first generated position candidate for
the neighbors. The dashed squares represents the hypercubes
corresponding to nodes visited during the search for pnhb,1
in the tree.

search through the tree works as follows. It starts with the
root of the tree, representing the entire environment, as the
current node. As long as the current node has children (recall
that our data structure assumes that they either all exist or
none of them exists), the child whose hybercube contains the
searched point pnhb,i is selected as the current node. That
is, at each step, the search process selects the node at the
next level of resolution whose hypercube contains pnhb,i.
The search stops if either the current node is at pnhb,i or
the current node does not have children. At the end of the
process, the current node is a neighbor of nk,p and if it is
a leaf, then it is also a vertex of Gi. A larger node could
contain p and then not be a neighbor, but since nk,p exists,
that node would have children and the search process will
never stop in such a situation.

Figure 2 shows, in dashed lines, the last four nodes that
would be explored while searching for pnhb,1. If nk,pnhb,1

does not exist, the algorithm will stop at one of its ancestors,
which will be a neighbor of nk,p. Note that the search cannot
stop at the largest ancestor shown, since it contains nk,p, so
all the children exist.

Fig. 1: (a) Generating neighbors for the construction of Gi.
Same size neighbors case: H(nk,p) is the center square and
the pnhb,i are the generated position candidates for the neigh-
bors; (b) Generating neighbors for the construction of Gi.
Larger neighbors case: H(nk,p) is the smaller square around
p and pnhb,1 is the first generated position candidate for
the neighbors. The dashed squares represents the hypercubes
corresponding to nodes visited during the search for pnhb,1
in the tree.

k. Also, the neighbor conditions and the fact that the nodes
are centered on a grid, imply that only one dimension of
the position vector can be changed at a time, that is, the
neighbors’ positions pnhb,i can only be

pnhb,i = p+ 2kbi, 1 ≤ i ≤ 2d

with

bi =

{
di if i ≤ d,
−di otherwise,

where di is the ith vector of the standard basis of Rd. If
pnhb,i is within the bounds of the search space, nk,pnhb,i

is
in Ti and nk,pnhb,i

is a leaf of Ti, then nk,pnhb,i
is a valid

neighbor of nk,p. Figure 1 shows in the center the hypercube
corresponding to nk,p and the neighbor candidates around it.
The red arrows represent the vectors 2kbi.

Searching the tree Ti can be done on average in
O(log |V |), and the number of candidates to check is 2d.

C. Larger Neighbors
Consider now the case of finding the larger neighbors of

nk,p. The previous result can still be used, but it will generate
points inside larger neighbors instead of their positions. The
search through the tree works as follows. It starts with the
root of the tree, representing the entire environment, as the
current node. As long as the current node has children (recall
that our data structure assumes that they either all exist or
none of them exists), the child whose hybercube contains the
searched point pnhb,i is selected as the current node. That
is, at each step, the search process selects the node at the
next level of resolution whose hypercube contains pnhb,i.
The search stops if either the current node is at pnhb,i or
the current node does not have children. At the end of the
process, the current node is a neighbor of nk,p and if it is
a leaf, then it is also a vertex of Gi. A larger node could
contain p and then not be a neighbor, but since nk,p exists,
that node would have children and the search process will
never stop in such a situation.

Figure 1(b) shows, in dashed lines, the last four nodes that
would be explored while searching for pnhb,1. If nk,pnhb,1

does not exist, the algorithm will stop at one of its ancestors,
which will be a neighbor of nk,p. Note that the search cannot
stop at the largest ancestor shown, since it contains nk,p, so
all the children exist.

D. Smaller Neighbors
The last case to consider is when there are smaller

neighbors of nk,p. The search for pnhb,i in Ti will return
a node that is not a leaf. In this case, the exploration of

p pnhb,1

d1

d2

Fig. 2: Generating neighbors for the construction of Gi.
Smaller neighbors case: H(nk,p) is the left square and pnhb,1
is the first generated position candidate for the neighbors.
The larger dashed square is H(nk,pnhb,1

) and the blue squares
correspond to the descendant of nk,pnhb,1

that are neighbors
of nk,p.

children of pnhb,i can lead to the neighbors. Note that pnhb,i
was generated by moving in the direction bi, but since the
neighbors are smaller, the move was too large, and hence
neighbors of nk,p are leaf nodes, descendant of pnhb,i in the
direction −bi.

Figure 2 shows what happens for smaller neighbors. The
larger dashed square is the hypercube corresponding to the
candidate neighbor pnhb,1, but that node is not a leaf, so it is
not a vertex of Gi. Exploring its children (until leaf nodes)
in the direction −b1 = −d1, will lead to all its descendants
that are neighbor with nk,p, and in Gi, since they will be leaf
nodes. The neighbors are drawn in blue in Figure 2.

85

E. Computing All Neighbors in Gi
When looking for all neighbors, nodes can be treated in

any order, in particular, from smallest to largest. All neighbor
pairs can then be found by looking for larger neighbors for
each node ordered from the smallest to the largest. Finding
larger and same size neighbors is done in O(log |V |) for
each of the |V | nodes, so finding all neighboring pairs in Gi
is then be done in O(|V | log |V |).

Finding all neighbors of a given node nk,p can be done
using the pseudo-code in Function 2. For each direction
bi, we compute the candidate neighbor position pnhb,i and
search in Ti for the corresponding node. If the node is a leaf,
it means that a larger or same size neighbor has been found;
otherwise, the leaf descendants, in the direction −bi, of the
node found are smaller size neighbors.

Function 2: findNeighbors()
Data: Node nk,p

1 neighbors=∅;
2 foreach i in [1, 2d] do
3 nm,q=find(Ti,pnhb,i);
4 if isLeaf(nm,q) then
5 neighbors=neighbors ∪ nm,q;
6 else
7 addLeafInDir(nm,q , -bi, neighbors);

8 return neighbors;

Function 3: addLeafInDir()
Data: Node nk,p, Direction b, List neighbors

1 foreach i in [1, 2d] do
2 if bT ei > 0 then
3 n=child(nk,p,i);
4 if isLeaf(n) then
5 neighbors=neighbors ∪ n;
6 else
7 addLeafInDir(n, b, neighbors);

IV. MULTI-SCALE PATH PLANNING WITHOUT FULL
INFORMATION MAP - MSPP-S

Although in 2D or 3D geometric workspaces, the multi-
scale map is often the result of perception algorithms, there
may exist cases where we may only have access to a predi-
cate about whether a point of the search space is an obstacle
or not. A robotic arm, for example, is usually parameterized
by the position of each joint; given a configuration, the spatial
position of each link can be computed, and self-collision
or collision with obstacles is checked in the geometric
workspace. It is assumed in this section that we have such a
predicate, say isObstacle(s), that informs us if a point s of
the search space is an obstacle.

In the proposed approach, sampling is used to estimate the
obstacle probabilities of the nodes in Gi. Since we are using
an estimate instead of the exact node probability values,

completeness of the algorithm is not ensured. Note, however,
that if a large enough number of samples is drawn, the
estimated probabilities will be close to their actual values,
and loss of completeness is very unlikely. An upper bound
on the probability of failure is derived in Section VI.

Similarly to the original MSPP algorithm, the proposed
algorithm, MSPP-S (for MSPP with sampling), decomposes
the space using a grid, which has fine resolution near the
current position, and the resolution becomes increasingly
coarser farther away. An empty tree data structure Ti is
created to represent that grid. For each node nk,p of the par-
tition, the predicate can be used for a given number Nsamples

of random points drawn in the search space corresponding
to the node. An estimate of the probability of obstacles can
then be calculated from those results and used to fill up the
tree Ti. The value of the node is approximated by

V̂ (nk,p) =
Number of obstacles sampled

Nsamples
.

Similarly to the data structure used for neighbor checking,
it tunrs out that it is less costly to modify the data structure
from the previous iteration than to recreate a new data-
structure at each iteration. Moreover, in that case, some
information will already exist in the data structure, and
sampling only needs to be done for the newly added nodes.

The pseudo-code for the vertex selection is given in
Function 4 and the edges can be computed as described in
Section III-E.

Function 4: GetRGVerticesWithSampling()
Data: Node tk,p (in Ti), Current node nki,pi

1 if (‖p− pi‖2 −
√
d
2 2ki ≥ α2k AND

doesNotContainPath(tk,p) then
2 Remove all descendants of tk,p;
3 if nk,p has not been sampled yet then
4 Sample Nsamples in H(nk,p);
5 Estimate V̂ (nk,p);

6 else
7 foreach (m, q) index of children of (k, p) do
8 if tm,q does not exist then
9 Create tm,q child of tk,p;

10 GetRGVerticesWithSampling(tm,q ,nki,pi);

V. MINIMAL REDUCED GRAPH CONSTRUCTION

Constructing Gi can be costly and only part of the in-
formation might be used at each iteration to solve for the
shortest path. In this work, it is assumed that the planning
problem on Gi is solved using the A∗ algorithm although
this is not restrictive. In the A∗ algorithm, nodes are kept in
a priority queue, called OPEN , ordered by f -values, where
f = g+h with g the cost-to-go and h an admissible heuristic
to the goal. While OPEN has elements, the first element
is removed and for each of the neighbors, if they have not
been closed yet, the g-value is updated, and it is added to the

86

OPEN priority queue. The algorithm stops when the first
element of the OPEN priority queue is the goal.

In the A∗ algorithm, knowing the neighbors of a node
is only useful when that node is taken out of the OPEN
queue. Similarly, the obstacle probability is only needed to
calculate the g-value of a node.

By delaying those calculations until the necessary informa-
tion is required, improvement in execution speed is expected.
The following changes allow to save computations in the new
algorithm:
• the ReducedGraph function only computes the nodes

of the reduced graph
• during the A∗ algorithm, neighbors of a node are

computed when the node is selected from the OPEN
priority queue to be explored. If sampling is being used,
sampling is only made the first time the g-value is
calculated.

At the end, the algorithm will have only calculated the
neighbors for the nodes in the CLOSE list, and estimated
the obstacle probability for nodes in OPEN ∪CLOSE. In
the worst case, the A∗ algorithm will explore every vertex
and every edge, so all neighbors will be calculated and all
nodes will be sampled similarly to the naı̈ve case. But, in
general, the number of neighbors calculated and the number
of node sampled will be largely reduced compared to the
naı̈ve case. This is confirmed by the numerical examples in
the Section VII.

VI. PROBABILISTIC BOUNDS OF MSPP-S
Since the estimate V̂ (nk,p) is used instead of the actual

obstacle probability V (nk,p), a bad estimate could lead to
missing solutions and losing completeness of the algorithm.
In particular, if V̂ (nk,p) overestimates V (nk,p), the node
nk,p might wrongly be evaluated as a ε-obstacle, which
would prevent the algorithm from finding any path passing
through nk,p, and potentially missing the only solution, thus
breaking the completeness of the algorithm. In this section,
we derive an analytic worst case bound for the probability
of failure of the MSPP-S algorithm.

Definition 1. Given ε, γ > 0, a node nk,p is a ε, γ-obstacle
if V̂ (nk,p) ≥ 1− 2−dkε+ γ.

Let M(nk,p) be the event that the node nk,p is a ε, γ-
obstacle and is not a ε-obstacle. We refer the reader to [3]
for the proofs of the following results.

Proposition 1. Let ε, γ > 0 and n the number of sampled
points in a node nk,p. Then P

(
M(nk,p)

)
≤ e−2γ

2n.

Proposition 2. Let a node nk,p. If k ≥ kmax = d 1d log2 ε
γ e,

then nk,p cannot be a ε, γ-obstacle and M(nk,p) never
happens.

Proposition 3. Let a node nk,p. If k ≤ kmin = b 1d log2 nc,
then computing V (nk,p) is less expensive than computing
V̂ (nk,p). So ε-obstacles can be used and M(nk,p) never
happens.

In the sequel we will assume that the MSPP-S algorithm
uses ε, γ-obstacles when k > kmin and ε-obstacles other-
wise. We also assume that the algorithm evaluates V̂ (nk,p)

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

n

P
(f
a
il
u
re
)

Fig. 3: Bound on the probability of failure with the param-
eters ` = 5, d = 1, ε = 90%, γ = 0.35% and Z = 2.

at most once for each node. This value it is evaluated only
when is needed and then the value is kept in memory.

Proposition 4. Given ε, γ, n > 0, an upper bound on the
probability of failure of MSPP-S is given by

P (failure) ≤ 1−
(
1− e−2γ

2n
)nbocc

, (3)

where

nbocc =
2d(`−kmin) − 2d(`−kmax+1)

2d − 1
. (4)

Suppose now that ν independent solutions exist. Then the
previous upper bound can be reduced to

P (failure) ≤
(
1−

(
1− e−2γ

2n
)nbocc/ν)ν

. (5)

Figure 3 shows the upper bound on the probability of
failure as a function of the number of sampled points n for a
given set of parameters of the algorithm. Drops correspond
to an increase in kmin, thus reducing nbocc. The decrease
between drops corresponds to better estimation due to more
samples. As kmin reaches kmax− 1, nbocc goes to 0 and the
probability of failure becomes 0.

These upper bounds are, of course, potentially conserva-
tive since in most cases, only part of the nodes nk,p with
kmin < k < kmax are evaluated. In addition if M(nk,p)
happens for a node that is not part of the solution, the
solution will still be found by the algorithm. Finally, in
typical environments, large areas of free space exists, thus
multiplying the number of possible solutions and largely
reducing the probability of failure. In practice, failure of the
MSPP-S algorithm has not been observed.

VII. RESULTS

A. Comparison in Random Environments

In this section, we compare the original MSPP algorithm
against the proposed MSPP-FN and MSPP-S algorithms and
also against A∗ run on a uniform grid. Obstacle maps were
randomly generated and then used to solve path-planning
problems via these four algorithms. The problem was solved
for dimensions ranging from 2 to 5 with a tree depth of
5, that is, for search spaces ranging from 22×5 = 1024 to
25×5 ' 3× 107.

87

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

n

P
(f
a
il
u
re
)

Fig. 4: Bound on the probability of failure with the param-
eters ` = 5, d = 1, ε = 90%, γ = 0.35% and Z = 2.

C. Probability of failure of MSPP-S

We assume here the MSPP-S algorithm uses ε, γ-obstacles
when k > kmin and ε-obstacles otherwise. We also assume
that the algorithm evaluates V̂ (nk,p) at most once for each
node, it is evaluated when the value is needed and then the
value is kept in memory.

Proposition 4. Given ε, γ, n > 0, an upperbound on the
probability of failure of MSPP-S is given by

P (failure) ≤ 1−
(
1− exp(−2γ2n)

)nbocc
, (7)

where

nbocc =
2d(`−kmin) − 2d(`−kmax+1)

2d − 1
. (8)

D. Upperbound when multiple independent solutions exist

Proposition 5. Suppose Z independent solutions exists, then
the upperbound is reduced to

P (failure) ≤
(
1−

(
1− exp(−2γ2n)

)nbocc/Z)Z
. (9)

Fig 4 shows the upperbound on the probability of failure
as a function of the number of sampled points n for a
given set of parameters of the algorithm. Drops correspond
to an increase in kmin, thus reducing nbocc. The decrease
between drops corresponds to better estimation due to more
samples.As kmin reaches kmax− 1, nbocc goes to 0 and the
probability of failure becomes 0. The upperbounds derived
are very conservative in the sense that:
• in most cases, only part of the nodes nk,p with kmin <
k < kmax are evaluated;

• if M(nk,p) happens for a node that is not part of
the solution, the solution will still be found by the
algorithm;

• if multiple solutions exist but are not independent, the
probability is still largely reduced, but not exponen-
tially;

• in typical environement, large areas of free space exists,
thus multiplying the number of possible solutions and
largely reducing the probability of failure.

In practise, failure of the MSPP-S algorithm has not been
observed.

VII. RESULTS

A. Comparison in Random Environemnts

In this section, we compare the original MSPP algorithm
against the proposed MSPP-FN and MSPP-S and also against
the A∗ run on a uniform grid. Obstacle maps were randomly
generated and then used to solve path-planning problems
via these four algorithms. The problem was solved for
dimensions ranging from 2 to 5 with a tree depth of 5,
that is, for search spaces ranging from 22×5 = 1024 to
25×5 ' 3 × 107. Figure 5 shows the average execution

2 3 4 5
100

101

102

103

104

105

106

107

Dimension of the search space

E
xe

cu
tio

n
Ti

m
e

(i
n

m
s)

A∗

MSPP
MSPP-FN

Fig. 5: Comparison of the execution time of the A∗, MSPP
and MSPP-FN algorithms. The results are shown in logarith-
mic scale.

time (in log scale) of the MSPP, the MSPP-FN and the A∗

algorithms on the randomly generated maps. In this figure,
the time to create the map is not taken into account in order
to compare the pure performance of the planning algorithms,
that is, it is just the time to find a path on an already existing
map.

For the smaller search spaces, we see very few differences
between all the algorithms, as expected. As the dimension
and the size of the search space grow however, the MSPP
algorithm becomes much faster than the A∗, by more than
two orders of magnitude in dimension 5. By the same token,
the MSPP-FN algorithm is even faster (by 50%) over the
baseline MSPP algorithm in dimension 5.

In Figure 6, the cost of creating the map is taken into
account. This is done in order to compare the results of
using the MSPP-S algorithm. Three algorithms are compared
here, the A∗ algorithm with the construction of the graph, the
MSPP algorithm with the construction of the multi-scale map
and the MSPP-S algorithm. Similarly to the previous case,
on a small search space, there is little or no improvement. As
the problem dimension increases, however, the improvement
gets much better. The MSPP-S algorithm is three orders
of magnitude faster than creating a map and using the A∗

algorithm, and more than ten times faster than constructing
a multi-scale map and using the original MSPP algorithm.

2 3 4 5
100

101

102

103

104

105

106

107

Dimension of the search space

E
xe

cu
tio

n
Ti

m
e

(i
n

m
s)

Map + A∗

Map + MSPP-FN
MSPP-S

Fig. 6: Comparison of the time to construct the map and
run the A∗ or MSPP-FN algorithm versus the time to run
the MSPP-S algorithm for which a map does not need to be
computed. The results are shown in logarithmic scale.

Fig. 7: Initial and final pose of the planning problem for the
PR2 arm.

B. Application to a Robot Arm
The planning algorithm was used to plan a trajectory for an

arm of the PR2 robot. Planning was done in the configuration
space using 4 joints of the arm. Figure 7 shows the initial
configuration and the desired final configuration; the robot
needs to move a book from the top shelf to the second shelf.
The depth of the tree was set to 5, creating a search space
of size 24×5 ' 3× 107.

The path-planning problem was solved three times to
compare the variants of the algorithm: First, the multi-scale
map was built by exploring the entire search-space and the
MSPP algorithm was used to find the solution. Building
the map was the most time-consuming process. It takes on
average 4 minutes and 52 seconds and solving the path-
planning problem takes on average 47 seconds. Using the
MSPP-FN algorithm on the same map, the problem was
solved in 4 seconds on average.

VIII. CONCLUSIONS

In this paper, we have introduced several modifications and
extensions to the original MSPP algorithm, first presented in
[3], to increase its computational efficiency. The resulting
multi-scale path-planning algorithms, called MSPP-FN and
MSPP-S offer several non-trivial improvements over the

previous MSPP algorithm. First, the complexity of each
iteration of the algorithm is reduced by changing the manner
by which the adjacency relationships in the reduced graph are
computed at each iteration. Second, the range of applications
of the algorithm has been widened, by allowing the use of
an obstacle predicate rather than accurate prior knowledge of
a full information multi-scale map. This extension results in
much fewer requirements in terms of memory allocation and
theoretical bounds on the probability of failure were derived.
Third, reordering the operations performed by the algorithm
allows one to minimize computations by avoiding informa-
tion that is not needed during execution. We have compared
the original MSPP algorithm to the proposed MSPP-FN and
MSPP-S algorithms and found runtime improvements by
over 50%. Both algorithms outperform A∗ by more than two
orders of magnitude.

REFERENCES

[1] R. V. Cowlagi. Hierarchical Motion Planning for Autonomous Aerial
and Terrestrial Vehicles. PhD thesis, Georgia Institute of Technology -
School of Aerospace Engineering, 2011.

[2] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3-D Mapping
With an RGB-D Camera. IEEE Transactions on Robotics, 30(1):177–
187, Feb 2014.

[3] F. Hauer, A. Kundu, J. M. Rehg, and P. Tsiotras. Multi-scale perception
and path planning on probabilistic obstacle maps. In Robotics and
Automation (ICRA), 2015 IEEE International Conference on, pages
4210–4215. IEEE, 2015.

[4] S. Kambhampati and L. S. Davis. Multiresolution path planning for
mobile robots. IEEE Journal of Robotics and Automation, 2(3):135–
145, 1986.

[5] Y. Lu, X. Huo, and P. Tsiotras. Beamlet-like data processing for accel-
erated path-planning using multiscale information of the environment.
In 49th IEEE Conference on Decision and Control (CDC), pages 3808–
3813, Atlanta, Georgia USA, December 15–17, 2010.

[6] D. K. Pai and L.-M. Reissell. Multiresolution rough terrain motion
planning. IEEE Transactions on Robotics and Automation, 14(1):19–
33, 1998.

[7] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard.
OctoMap: A probabilistic, flexible, and compact 3D map representation
for robotic systems. In ICRA 2010 Workshop on Best Practice in 3D
Perception and Modeling for Mobile Manipulation, Anchorage, Alaska,

May 3–8, 2010.

Fig. 4: (a) Comparison of the execution time of the A∗,
MSPP and MSPP-FN algorithms; (b) Comparison of the time
to construct the map and run the A∗ or MSPP-FN algorithm
versus the time to run the MSPP-S algorithm for which a
map does not need to be computed. All results are shown in
logarithmic scale.

Figure 4(a) shows the average execution time (in log scale)
of the MSPP, the MSPP-FN and the A∗ algorithms on the
randomly generated maps. In this figure, the time to create
the map is not taken into account in order to compare the
pure performance of the planning algorithms, that is, it is
just the time to find a path on an already existing map.

For the smaller search spaces, we see very few differences
between all the algorithms, as expected. As the dimension
and the size of the search space grow however, the MSPP
algorithm becomes much faster than the A∗, by more than
two orders of magnitude in dimension 5. By the same token,
the MSPP-FN algorithm is even faster (by 50%) over the
baseline MSPP algorithm in dimension 5.

In Figure 4(a) the cost of creating the map is taken into
account. Three algorithms are compared, namely, the A∗

algorithm with the construction of the graph, the MSPP
algorithm with the construction of the multi-scale map and
the MSPP-S algorithm. Similarly to the previous case, on
a small search space, there is little or no improvement. As
the problem dimension increases, however, the improvement
gets much better. The MSPP-S algorithm is three orders
of magnitude faster than creating a map and using the A∗

algorithm, and more than ten times faster than constructing
a multi-scale map and using the original MSPP algorithm.

B. Application to a Robot Arm

Fig. 5: Initial and final pose of the planning problem for the
PR2 arm.

The planning algorithm was used to plan a trajectory for an
arm of the PR2 robot. Planning was done in the configuration
space using 4 joints for each arm. Figure 5 shows the initial
configuration and the desired final configuration; the robot
needs to move a book from the top shelf to the second shelf.
The depth of the tree was set to 5, creating a search space
of size 24×5 ' 3× 107.

The path-planning problem was solved three times in order
to compare the variants of the algorithm: First, the multi-
scale map was built by exploring the entire search-space and
the MSPP algorithm was used to find the solution. Building
the map was the most time-consuming process. It takes on
average 4 minutes and 52 seconds and solving the path-
planning problem takes on average 47 seconds. Using the
MSPP-FN algorithm on the same map, the problem was
solved in 4 seconds on average.

VIII. CONCLUSIONS

In this paper, we have introduced several modifications and
extensions to the original MSPP algorithm, first presented in
[4], to increase its computational efficiency. The resulting
multi-scale path-planning algorithms, called MSPP-FN and
MSPP-S offer several non-trivial improvements over the
previous MSPP algorithm. First, the complexity of each
iteration of the algorithm is reduced by changing the manner
by which the adjacency relationships in the reduced graph are
computed at each iteration. Second, the range of applications
of the algorithm has been broadened, by allowing the use
of an obstacle predicate. Third, reordering the operations
performed by the algorithm allows one to minimize com-
putations by avoiding information that is not needed during
execution. We have compared the original MSPP algorithm
to the proposed MSPP-FN and MSPP-S algorithms and
found runtime improvements by over 50%. Both algorithms
outperform A∗ by more than two orders of magnitude.

REFERENCES

[1] R. V. Cowlagi. Hierarchical Motion Planning for Autonomous Aerial
and Terrestrial Vehicles. PhD thesis, Georgia Institute of Technology -
School of Aerospace Engineering, 2011.

[2] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3-D Mapping
With an RGB-D Camera. IEEE Transactions on Robotics, 30(1):177–
187, Feb 2014.

[3] H. Florian and P. Tsiotras. Reduced complexity multi-scale path-
planning on probabilistic maps. http://arxiv.org/abs/1602.04800, Febru-
ary 2016.

[4] F. Hauer, A. Kundu, J. M. Rehg, and P. Tsiotras. Multi-scale perception
and path planning on probabilistic obstacle maps. In Robotics and
Automation (ICRA), 2015 IEEE International Conference on, pages
4210–4215. IEEE, 2015.

[5] S. Kambhampati and L. S. Davis. Multiresolution path planning for
mobile robots. IEEE Journal of Robotics and Automation, 2(3):135–
145, 1986.

[6] Y. Lu, X. Huo, and P. Tsiotras. Beamlet-like data processing for accel-
erated path-planning using multiscale information of the environment.
In 49th IEEE Conference on Decision and Control (CDC), pages 3808–
3813, Atlanta, Georgia USA, December 15–17, 2010.

[7] D. K. Pai and L.-M. Reissell. Multiresolution rough terrain motion
planning. IEEE Transactions on Robotics and Automation, 14(1):19–
33, 1998.

[8] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard.
OctoMap: A probabilistic, flexible, and compact 3D map representation
for robotic systems. In ICRA 2010 Workshop on Best Practice in 3D
Perception and Modeling for Mobile Manipulation, Anchorage, Alaska,

May 3–8, 2010.

88

