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Abstract— In this paper we review some recent results on a
new multiresolution hierarchical path planning algorithm for
mobile agents with limited on-board computational resources.
The proposed approach assumes that the agent (e.g., UAV) has
detailed knowledge of the environment and the obstacles only
in its vicinity. Far away obstacles are only partially known. The
algorithm uses the Fast Lifting Wavelet Transform (FLWT) to
construct a graph representation of the environment, whose
dimension is commensurate to the on-board computational
resources of the agent. The adjacency list of this graph can
be efficiently constructed directly from the approximation
and detail wavelet coefficients without the need to resort to a
separate quadtree decomposition, thus further speeding up the
whole process. The optimal path is found by implementing a
standard graph search algorithm such as Dijkstra’a algorithm
or A∗.

Keywords: Mobile agent, wavelet decomposition, path
planning, collision avoidance, adjacency matrix, UAVs

I. INTRODUCTION

Autonomous operation of UAVs requires both trajectory
design (planning) and trajectory tracking (control) tasks to
be completely automated. Given the short response time
scales of modern aerial vehicles, these are challenging tasks
using existing route optimizers. On-board, real-time path
planning is particulary challenging for small UAVs, which
may not have the on-board computational capabilities (CPU
and memory) to implement some of the sophisticated path-
planning algorithms proposed in the literature (Fig. 1). In
most applications so far this problem is bypassed by pro-
viding navigation way points that have been computed off-
line on the ground, or on-line by a more capable supervis-
ing/leader agent.

In a typical mission the UAV may be presented with
a large amount of information collected using a plethora
of diverse sensors (e.g., cameras, radars, laser scanners,
satellite imagery) having different ranges and resolutions.
A computationally efficient path planning algorithm should
therefore be able to blend together the information provided
by all these sensors, and focus its computational resources on
the part of the path (spatial and temporal) that needs it most.
In a nutshell, a computationally efficient algorithm suitable
for on-line implementation should be able to combine short-
term tactics (reaction to unforeseen threats) with long-term
strategy (planning towards the ultimate goal).

Several multi-resolution or hierarchical algorithms have
been proposed in the literature to alleviate the computational
burden associated with path planning over a complex, un-
structured, and partially known environment [1], [2], [3],
[4], [5], [6], [7]. The majority of those algorithms use some
form of quadtree decomposition of the environment. One
drawback of quadtree-based decompositions is that a finer

resolution is used close to the boundaries of all obstacles,
regardless of their distance from the agent. This tends to
waste computational resources.

Fig. 1. Autonomous path generation and tracking for a small-scale
UAV is limited by the available on-board computational resources.
A practical path-planning algorithm for such small UAVs has to
incorporate the limitations imposed by the hardware early on in the
design process.

Recently, we proposed a computationally efficient, hi-
erarchical path-planning algorithm for autonomous agents
navigating in a partially known environment W using an
adaptive, discrete, cell-based approximation of W . The in-
novation of our approach hinges on using district levels of
fidelity (resolution) of W at different distances from the
agent’s current position. The motivation for this approach
is simple: first, the agent’s immediate reaction to an obstacle
or a threat is needed only at the vicinity of its current
position. Far away obstacles or threats do not (or should
not) have a large effect on the vehicle’s immediate motion.
Therefore, it is not prudent from a computational point of
view to find a solution with great accuracy over large ranges
or over a very long time horizon. The most accurate and
reliable information of the environment is required only at
the vicinity of the vehicle.

We use the wavelet transform to perform the required
multi-resolution decompositions of the environment. The



wavelet transform provides a very fast decomposition1 of a
function at different levels of resolution. In addition, the use
of wavelet transform has the added benefit of allowing the
construction of the associated cell connectivity relationship
directly from the wavelet coefficients, thus eliminating the
need for quadtrees (see Section III-A).

We employ the hierarchical path planning principle to find
the optimal path on the topological graph G induced by the
previous wavelet-based cell decomposition. Namely, the path
may contain mixed nodes at all resolution levels except at the
finer resolution level, where it is assumed that nodes can be
confidently resolved as either free or occupied. Hierarchical
path planning is known to be more flexible than methods
that search only through free nodes [9].

Since the range and resolution levels can be chosen by
the user, the proposed algorithm results in search graphs of
known a priori complexity. The algorithm is hence scalable
and can be tailored to the available computational resources
of the agent.

In the sequel W ⊂ R
2 denotes the working environment

that includes the free space and the obstacles, F = W\O
is the obstacle-free configuration space that contains all the
feasible states of the agent, and O ⊂ W is the obstacle space.

II. A MULTIRESOLUTION DECOMPOSITION OF W
A. The 2D wavelet transform

The idea behind the theory of the wavelet transform is
to represent a function f ∈ L2(R) as a summation of
elementary basis functions φJ,k and ψj,k as follows

f(x) =
∑
k∈Z

aJ,kφJ,k(x) +
∑
j≥J

∑
k∈Z

dj,kψj,k(x), (1)

where φj,k(x) = 2j/2φ(2jx−k) and ψj,k = 2j/2ψ(2jx−k).
In the ideal case both φ(x) (scaling function) and ψ(x)
(mother wavelet) have compact support, or they decay very
fast outside a small interval so they can capture localized
features of f . The first summation in (1) gives a low
resolution or coarse approximation of f . The second term
in (1) gives the difference (details) between the original
function and its low resolution approximation. For example,
when analyzing a signal at the coarsest level (low resolution)
only the general, most salient features of the signal will be
revealed. The index j denotes the resolution level. For each
increasing index j, a higher, or finer resolution term is added,
which adds more and more details. The expansion (1) thus
reveals the properties f at different levels of resolution [10],
[11], [12].

This idea can be readily extended to the two-dimensional
case by introducing the following families of functions

Φj,k,�(x, y) = φj,k(x)φj,�(y) (2)

Ψ1
j,k,�(x, y) = φj,k(x)ψj,�(y) (3)

Ψ2
j,k,�(x, y) = ψj,k(x)φj,�(y) (4)

Ψ3
j,k,�(x, y) = ψj,k(x)ψj,�(y) (5)

1The computational complexity of the wavelet transform is of order O(n)
where n is the input data [8]. This is better even than the Fast Fourier
Transform which has complexity of order O(n log2 n).

Given a function f ∈ L2(R2) we can then write

f(x, y) =
∑

k,�∈Z

aJ,k,�ΦJ,k,�(x, y)

+
3∑

i=1

∑
j≥J

∑
k,�∈Z

di
j,k,�Ψ

i
j,k,�(x, y),

(6)

where, for the case of orthonormal wavelets the approxima-
tion coefficients are given by2

aj,k,� =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)Φj,k,�(x, y) dxdy, (7)

and the detail coefficients by

di
j,k,� =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)Ψi

j,k,�(x, y) dxdy. (8)

The key property of wavelets used in this paper is the fact
that the expansion (6) induces the following decomposition
of L2(R2)

L2(R2) = VJ ⊕Wdetail
J ⊕Wdetail

J+1 ⊕ · · · (9)

where VJ = span{ΦJ,k,�}k,�∈Z and similarly Wdetail
j =

span{Ψ1
j,k,�,Ψ

2
j,k,�,Ψ

3
j,k,�}k,�∈Z for j ≥ J .

In this paper we use Haar wavelets for reasons that will
become apparent below. Each scaling function φj,k(x) and
wavelet function ψj,k(x) in the Haar system is supported on

the dyadic interval Ij,k
�
= [k/2j , (k + 1)/2j ] of length 1/2j

and does not vanish in this interval [10], [13]. Subsequently,
we may associate the functions Φj,k,� and Ψi

j,k,� (i = 1, 2, 3)

with the rectangular cell cjk,�

�
= Ij,k × Ij,�.

B. Wavelet decomposition of the risk measure

Without loss of generality, in the sequel we take W =
[0, 1]× [0, 1], which is described using a discrete (fine) grid
of 2N × 2N dyadic points. The finest level of resolution
Jmax is therefore bounded by N . It follows from the previous
discussion that the Haar wavelet decomposition of a function
f defined over W at resolution level J ≥ Jmin, given by

f(x, y) =
2Jmin−1∑

k,�=0

aJmin,k,� ΦJmin,k,�(x, y)

+
3∑

i=1

J−1∑
j=Jmin

2j−1∑
k,�=0

di
j,k,�Ψ

i
j,k,�(x, y)

(10)

induces a cell decomposition of W of square cells of size
1/2J × 1/2J .

Assume now that we are given a function rm : W �→ [0, 1]
that represents the “risk measure” at the location x = (x, y).
For instance, one may choose

rm(x) =
{

(dmax − miny∈O ‖x − y‖∞)/dmax, if x ∈ F ,
1, if x ∈ O,

(11)

2In the more general case of biorthogonal wavelets projections on the
space spanned by the dual wavelets and dual scaling functions should be
used in (7) and (8).



where dmax
�
= maxx∈F miny∈O ‖x−y‖∞. Alternatively, one

may think of rm as the probability that (x, y) ∈ O.

We construct approximations of W at distinct levels of
resolution Jmin ≤ j ≤ Jmax at ranges rj from the current
location of the agent x0 = (x0, y0), in the sense that
resolution j is used for all points inside the neighborhood

N (x0, rj)
�
= {x ∈ W : ‖x0 − x‖∞ ≤ rj}. (12)

The situation is depicted in Fig. 2. The choice of Jmax is

Fig. 2. Multiresolution representation of the environment according
to the distance from the current location of the agent.

dictated by the requirement that at this level all cells can
be resolved into either free or occupied cells. The choice of
Jmin as well as the values of rj are typically dictated by the
on-board computational resources. The choice of the norm
in (12) is dictated by the use of Haar wavelet transform in
the sequel.

Let now I(j)
�
= {0, 1, . . . , 2j − 1} and let

K(j)
�
= {k ∈ I(j) : Ij,k ∩ [x0 − r(j), x0 + r(j)] 
= ∅}, (13a)

L(j)
�
= {� ∈ I(j) : Ij,� ∩ [y0 − r(j), y0 + r(j)] 
= ∅}. (13b)

The wavelet decomposition of rm, given by

rm(x, y) =
∑

k,�∈I(Jmin)

aJmin,k,� ΦJmin,k,�(x, y)

+
3∑

i=1

Jmax−1∑
j=Jmin

∑
k∈K(j)

�∈L(j)

di
j,k,�Ψ

i
j,k,�(x, y),

(14)

induces, via a slight abuse of notation, the following cell
decomposition on W

Cd = ∆CJmin
d ⊕ · · · ⊕ ∆CJmax

d . (15)

where, ∆Cj
d is a union of cells cjk,� of dimension 1/2j×1/2j .

C. Fast lifting wavelet transform (FLWT)

Implementing the wavelet transform in practice requires
dealing with a discrete signal. The most efficient implemen-
tation to date involves the use of filter banks. Figure 3 shows

+ anan

ḡ

h̄ ↓ 2

↓ 2

↑ 2

↑ 2 g̃

h̃

dn−1

an−1

Fig. 3. A typical one-stage filter bank used to implementing the discrete
wavelet transform.

a discrete signal an filtered by two complementary high- and
low-pass (decomposition) filters ḡ and h̄ before it is down-
sampled. The result of this operation are the next coarser
approximation and detail coefficients an−1 and dn−1, each
containing half as many samples as the input signal an.
For the inverse transform, first the signals an−1 and dn−1

are upsampled by inserting zeroes between every sample.
Subsequently, the two signals are filtered by the low- and
high-pass (reconstruction) filters g̃ and h̃, respectively, and
the two filtered signals are added together. This results in
perfect reconstruction of the original signal. Details can be
found, for instance, in Refs. [14], [15].

The fast lifting wavelet scheme originally introduced in
Refs. [16] and [17] is a new method for constructing wavelets
directly in the time domain, avoiding the use of Fourier anal-
ysis. Moreover, the scheme can be extended to construct the
so-called second generation wavelets; the latter have certain
benefits for handling boundary effects, irregular samples, and
arbitrary weight functions [15].

The typical lifting decomposition scheme is depicted in
Fig. 4. The first block in this decomposition splits the original
signal an into two disjoint sets of samples containing the odd
and the even indexed samples (Lazy wavelet). Because the
even and odd subsets are correlated to each other locally,
each signal is lifted by the opposite signal after passing
through corresponding operators P and U (dual and primal
lifting, or prediction and update, respectively). Finally, the
results are normalized by constants ka and kd to end up
with a coarser approximation and detail coefficients, an−1

and dn−1, respectively.

For the case of the unnormalized Haar transform, the dual
lifting does nothing more but calculate the difference of two
signals

dn−1,k = an,2k+1 − an,2k, (16)

whereas the primal lifting calculates the coarse approxi-
mation coefficients having the same average value as the
original signal, by updating the even set using the previously
calculated detail signals as follows

an−1,k = an,2k + dn−1,k/2. (17)

It has been proved that all classical wavelet transforms can
be implemented using the lifting scheme [18]. Most interest-
ingly, the inverse transform is readily found by reversing the
order of the operations and by flipping the signs.

The lifting scheme has a number of algorithmic advan-
tages, such as faster computation speed (twice as fast as
the usual discrete wavelet transform), in-place calculation
of the coefficients (that saves memory), immediate inverse
transform, generality for extension to irregular problems, and
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Fig. 4. One step decomposition using the lifting scheme with the lazy
wavelet.

so on. In particular, the lifting scheme fits many applications
where the input data consists of integer samples, such as
in image compression and processing. Unlike the typical
wavelet transform where floating number arithmetic is im-
plicitly assumed, the lifting scheme can be easily modified
to map integers to integers, and is reversible, allowing
perfect reconstruction [19]. This reconstruction is possible by
adopting the sequential transform [20] by modifying Eq. (17)
as follows

dn−1,k = an,2k+1 − an,2k,

an−1,k = an,2k + �dn−1,k/2�. (18)

where, �·� is a rounding operator. In the sequel, we use the
fast lifting Haar transform with integer arithmetic on each
sample of integer values.

III. THE CONNECTIVITY GRAPH

A. Computation of Adjacency List from the FLWT

To the cell decomposition (15) we assign a topological
graph G, whose nodes represent the cells cjk,� in the decom-
position (15). In this section we show that the connectivity
matrix of the graph G can be computed efficiently directly
from the wavelet coefficients of the FLWT. Equivalently, the
cell decomposition associated with the wavelet coefficients
can be used to construct the corresponding graph structure.

Since the scaling function Φj,k,� and the wavelet functions
Ψi

j,k,� (i = 1, 2, 3) of the 2D Haar wavelet are associated
with a square cell cjk,�, the corresponding approximation and
nonzero detail coefficients encode the necessary information
regarding the cell geometry (size and location). Recall that
the approximation coefficients are the average values of
the risk measure over the cells, and the detail coefficients
determine the size of each cell. To this end, consider a cell
cj0k,� at level j0, whose dimension is 1/2j0 × 1/2j0 and is
located at (k, �). A cell will be called an independent cell if
it is associated with one non-zero approximation coefficient
aj0,k,�, while the corresponding detail coefficients di

j,k,� (i =
1, 2, 3) at level j0 ≤ j ≤ Jmax are zero. Otherwise, the cell is
marked as a parent cell and is subdivided into four leaf cells
at level j0+1. If a leaf cell cannot be subdivided further, it is
classified as an independent cell. In Fig. 5 the parent cell cj0k,�
is subdivided into three independent cells at level j0+1 with
each non-zero approximation coefficient in the quadrants I,
II, and III (all zero detail coefficients). For quadrant IV, the

cj0+1
k′,�′ cj0+1

k′+1,�′

cj0+1
k′,�′+1

cj0+2
k′′,�′′ cj0+2

k′′+1,�′′

cj0+2
k′′,�′′+1

cj0+2
k′′+1,�′′+1

cj0k,�

I II

III IV

Fig. 5. Multi-resolution cell subdivision across different levels.

(x, y)
2r

Fig. 6. Recursive raster scan for identifying independent cells.

cell is further subdivided into four independent leaf cells at
level j0 + 2.

Assume now that we are given a Haar wavelet transform of
the risk measure function rm up to level Jmin. The coarsest
level of the cell dimension is set to Jmin. In Fig. 6 the initial
coarse grid is drawn on the left. The agent is located at
x = (x, y) and the high resolution horizon is r. Recalling
the expression (13), we distinguish cells at distinct resolution
levels by starting from a coarse cell cj0k,� and by determining
if the cell either partially intersects or totally belongs to the
set N (x, r). The cell cj0k,� is easily ascertained to satisfy
this property by choosing the indices such that (k, �) ∈
(K(j0),L(j0)). If the cell needs to be subdivided into higher
resolution cells, the inverse fast lifting wavelet transform is
first performed on the current cell (local reconstruction) in
order to recover the four approximation coefficients at level
j0 + 1 and the corresponding detail coefficients. We then
adopt the raster scan method (zigzag search: I→II→III→IV)
to examine each cell inside the parent cell overlapping with
N (x, r). This procedure is recursively repeated until the max-
imum resolution level Jmax is reached. Figure 6 illustrates
the recursive raster scan search. Once a cell is recognized as
an independent cell, we assign a node in the graph with the
node cost being the approximation coefficient representing
the average risk measure over the cell. In addition, the detail
coefficients associated with the current cell are all set to zero;
this provides the necessary connectivity information between
the cells.

After a cell has been identified as an independent cell, we
search the adjacent cells in order to establish the adjacency
relationship with the current cell. Note that two adjacent cells
that have been identified as independent are linked to one
another, so the raster scan method searches only adjacent
cells along the direction: left, top-left, top, and top-right. In
addition, because we deal with cells of different dimensions,
it is required to devise a generic method to find the adjacency
relationship between them.
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Fig. 7. Basic connectivity properties with respect to the location of the
leaf cell.
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cj0+2
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IV

Fig. 8. Searching an adjacent cell along the left direction.

Figure 7 illustrates the basic connectivity relationship
assigned to each leaf cell inside a parent cell. The dashed
arrow represents the external connection from a leaf cell
beyond the parent cell, and the solid arrow represents internal
connection between leaf cells inside the parent cell. Both
connections implicitly assume that the adjacent cell could
vary in levels from that of parent cell to Jmax (external
connection), or from that of current cell to Jmax (internal
connection).

A leaf cell inherits its external connection properties from
the cell which contains the leaf cell, and as a leaf cell of
the top-most parent cell. Figure 8 shows this inheritance
property. The current cell is chosen to be cj0+2

I . This cell
is a leaf cell of the parent cell cj0+1

IV which further becomes
a leaf cell of the top-most parent cell cj0k,�. The cell cj0+1

IV
is located on the fourth quadrant inside the top-most parent
cell cj0k,� and has the internal connectivity whose property is
inherited to the cell cj0+2

I for left, top-left, and top directional
search. The search along each direction will end up with
the adjacency relationship between neighboring cells. As
depicted in Fig. 8, the left directional search finds one
adjacent cell from the current cell along the left direction by
bookkeeping the associated detail coefficients of the opposite
cell, which determines the level of the opposite independent
cell by j0 + 1.

The previous algorithm expands the search to the higher
levels if the opposite cell is not an independent cell, that is,
if it is comprised of finer cells. This expansion subsequently
forces a search of cells of finer dimension which are, of

cj0k,�

cj0+2
I

cj0+1
IV

(a) Search top-left

cj0k,�

cj0+2
I

cj0+1
IV

(b) Search top

Fig. 9. Expanded adjacency search algorithm.

Fig. 10. Cell subdivision over different levels.

course, neighboring to the current cell. Subsequently, the
detail coefficients are examined in order to locate the next
finer cell which is adjacent to the current cell. For the top-left
search direction, as illustrated in Fig. 9(a), the cell at level
j0+2 located at the top-left corner of the current cell is found
as an independent adjacent cell. Another example is shown
in Fig. 9(b). There are two independent cells at level j0 + 3
and one at level j0 + 2 which are adjacent to the current
cell at level j0 + 2. The adjacency relationship is found
accordingly, by examining and expanding the opposite cell,
with the corresponding detail coefficients. Finally, Fig. 10
shows an example of a graph structure constructed from the
wavelet coefficients. The dashed lines show the connectivity
between the cells in the graph.

B. Cost Assignment

We associate each node v of G to some point x ∈ cjk,�.
Without loss of generality, we choose the center of the cell
cjk,�. Let cellG(v) denote the center of the corresponding cell
in this case. If x ∈ cjk,� we will write v = nodeG(x).

To each edge (u, v) of G we assign a cost as follows

J (u, v) = rm(cellG(v)) + α‖cellG(u) − cellG(v)‖2. (19)

where α ≥ 0 is a weight constant. The first term in (19)
is proportional to the probability that the terminal node is
occupied by an obstacle and the second term penalizes the
(Euclidean) distance between cellG(u) and cellG(v).



Suppose now that we are given a path of q consecutive,
adjacent nodes in G as follows P = (v0, v1, . . . , vq). We can
then assign a cost to each node in the path P , induced by
the two-node transitioning cost, iteratively, via

H(vi) = H(vi−1) + J (vi−1, vi), i = 1, . . . , q. (20)

The value of H(vk) represents the (accumulated) cost of the
path from v0 to vk (k ≤ q). The shortest path problem is
then to find a path that minimizes the accumulated cost from
the initial to the destination node, or determine that such a
path does not exist.

IV. MULTIRESOLUTION PATH PLANNING

Once the adjacency list is known, the proposed multireso-
lution path planning algorithm proceeds as follows. Starting
from x(t0) = x0 at time t = t0, we construct using the
approach of Section II, a cell decomposition Cd(t0) of W .
Let the corresponding graph be G(t0) and let v0

1 ∈ G(t0)
and v0

f ∈ G(t0) be the initial and final nodes, respectively
such that v0

1 = nodeG(t0)(x0) and v0
f = nodeG(t0)(xf ). Using

Dijkstra’s algorithm (or any other similar algorithm) we find
a path P(t0) in G(t0) of free and mixed nodes from v0

1 to
v0

f assuming that such a path exists. Let P(t0) be given by
the ordered sequence of l0 nodes as follows

P(t0) = (v0
1 , v

0
2 , · · · , v0

l0−1, v
0
l0 = v0

f ).

It is assumed that v0
2 is free owing to the high resolution

decomposition of W close to x0. The agent subsequently
moves from v0

1 to v0
2 . Let now t1 be the time the agent

is at the location x(t1) = cellG(t0)(v
0
2) and let Cd(t1) be

the multiresolution cell decomposition of W around x(t1)
with corresponding topological graph G(t1). Applying again
Dijkstra’s algorithm we find a (perhaps new) path in G(t1)
from v1

1 = nodeG(t1)(x(t1)) to v1
f = nodeG(t1)(xf ) if such a

path exists. Let P(t1) be given by the ordered sequence of
l1 nodes as follows

P(t0) = (v1
1 , v

1
2 , · · · , v1

l1−1, v
1
l1 = v1

f ).

The agent subsequently moves to x(t2) = cellG(t1)(v
1
2) at

time t2.

In general, assume the agent is at location x(ti) at time
ti. We construct a multiresolution decomposition Cd(ti) of
W around x(ti) with corresponding graph G(ti). Dijkstra’s
algorithm yields a path P(ti) in G(ti) of mixed and free noes
of length li,

P(ti) = (vi
1, v

i
2, · · · , vi

li−1, v
i
li = vi

f ),

where vi
1 = nodeG(ti)(x(ti)) and vi

f = nodeG(ti)(xf ) if such
a path exists. The process is continued until some time tf
when ‖x(tf ) − xf‖ < 1/2Jmax , at which time the algorithm
terminates. At the last step the agent moves from x(tf ) to
xf .

Note that the actual path x(t0), x(t1), . . . , x(tf ) fol-
lowed by the agent is given by the sequence of nodes
nodeG(t0)(x(t0)), nodeG(t1)(x(t1)), . . . , nodeG(tf )(x(tf )).

Several improvements and refinements of the previous
baseline path-planning algorithm are possible. First, for
dynamically changing environments the use of D∗ in lieu
of Dijkstra’s algorithm should speed up the calculation of

the shortest path. Second, we can postpone the calculation
of the time-consuming path search over G(ti) until the agent
visits node vi

1+q where q > 1. This is especially true if
the node vi

1+r corresponds to the finest resolution scale in
the cell decomposition at time ti. By construction, all nodes
vi
1, v

i
2, . . . , v

i
r−1 in the path P(ti) also represent cells in

the finest resolution and hence the path from vi
1 to vi

r is
composed only of free cells.

V. SIMULATION RESULTS

In this section we present simulation results of the pro-
posed algorithm for a non-trivial scenario. The environment
is assumed to be square of dimension 512×512 units. Hence
N = 9 is the finest resolution possible. For simplicity, only
two levels of resolution have been chosen to represent the
environment. Inside an area of 100×100 unit cells we employ
a high resolution approximation and outside this area we
employ a low resolution approximation of W .

The environment W is an actual topographic (elevation)
map of a certain US state with fractal-like characteristics,
shown in Fig. 11. The initial and final positions of the agent
are also shown in this figure. The objective is for the agent
(e.g., a UAV) to follow a path from A to B while flying
as low as possible, and below a certain elevation threshold.
Areas with bright colors in Fig. 11 correspond to areas of
low risk (elevation in this case) and darker colors correspond
to areas of high risk (elevation in this case) that should be
avoided. Solving the path-planning problem on-line at this
resolution is computationally prohibitive.

The results from the multiresolution path-planning al-
gorithm using a fine resolution level Jmax = 5, and a
low resolution at level Jmin = 3 are shown in Fig. 12.
Specifically, Fig. 12 shows the evolution of the path at
different time steps as the agent moves to the final des-
tination. Figure 12(a) shows the agent’s position at time
step t = t15 along with the best proposed path to the
final destination at that time. Similarly, Fig. 12(b) shows the
agent’s position at time step t = t50 along with the best
proposed path to the final destination at that time. As seen
in Fig. 12(c), the actual path followed by the agent differs
significantly from the one predicted in either Figs. 12(a) or
12(b). This is due to the fact that at time t15 and t50 the
agent does not have complete information outside the high
resolution zone, and the predicted path actually penetrates
the obstacle space O. At time t50, for example, the agent –
being far from any obstacle – fails to anticipate the upcoming
collision. As the agent gets closer to the obstacle however,
and new information is gathered, the existence of the obstacle
forces the agent to redirect its path. The agent reaches the
final destination xf in a collision free manner, as seen in
Fig. 12(c). The actual path followed lies completely inside
areas of low elevation level, which verifies the collision-free
nature of the path.

VI. EXPERIMENTAL TEST-BED

A UAV platform based on the airframe of an off-the-self
R/C model airplane (see Fig. 1) has been developed, and
is used to implement the hierarchical, wavelet-based path-
planning algorithm described above. The development of
the hardware and software was done completely in-house
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Fig. 11. Plot of risk measure (elevation) for the whole configuration
space using a 512 × 512 unit cell resolution. The blue color
corresponds to areas of obstacles. The initial configuration of the
agent is denoted by A and the desired final configuration is denoted
by B.

by Georgia Tech graduate and undergraduate students. The
overall architecture of the UAV system is shown in Fig. 13.
The main subsystems are the UAV autopilot, the ground
station, and the interconnection between the two. The on-
board autopilot is equipped with a microcontroller, sensors
and actuators, along with the communication devices that
allow full functionality for autonomous control. The micro-
controller (Rabbit RCM-3400 at 30 MHz, 512 KB RAM)
provides data acquisition, processing, and communication
with the ground station. The microcontroller board is shown
in Fig. 1. It also runs the main control software. The on-
board sensors include three-axis angular rate sensors, three-
axis accelerometers, a three-axis magnetic compass, a GPS
sensor, an engine RPM sensor, absolute and differential
pressure sensors, battery voltage, fuel level and temperature
sensors.

The ground station consists of a laptop computer with
a wireless communication modem. The laptop runs a
Windows-based Graphical User Interface (GUI) program,
shown in Fig. 14. The ground station program provides real-
time flight information by displaying all relevant system
parameters, sensor readings, etc. A graphical dashboard
representing a virtual horizon, altitude and speed has been
adopted in the GUI panel to show graphically all relevant
information. A map of the area of the UAV’s operation can
be overlaid on the map panel in order to provide the user
with the navigational details of the airplane via GPS data.

A hardware-in-the-loop simulation (HILS) environment
has also been developed to validate the UAV autopilot
hardware and software development. A full 6-dof nonlinear
dynamic model is used in conjunction with a linear approx-
imation of the aerodynamic forces and moments, along with
realistic Earth gravitational (WGS-84) and magnetic field
models. Detailed models for the sensors and actuators have
also been incorporated, along with the capability of real-
time 3-D visualization. An R/C transmitter is connected to
the 6-dof simulator program emulating remote pilot stick
commands. Six channel commands are recorded: four chan-
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(c) t = tf

Fig. 12. Path evolution and replanning. Figures on the left
show the currently tentative optimal path obtained from Dijkstra’s
algorithm, based on the available multiresolution approximation of
the environment at different time steps. Figures on the right show
the actual path followed by the agent.

nels for control surface commands (δa, δe, δt and δr) and
two auxiliary commands for toggling between autonomous
control mode and remote pilot mode. Four independent
computer systems are used in the hardware-in-the-loop simu-
lation (HILS) as illustrated in Fig. 15: a 6-dof simulator, the
flight visualization computer, the autopilot microcontroller,
and the ground station computer console. Further details on
the UAV platform, autopilot and HILS set-up can be found
in [21], [22] and [23].

CONCLUSIONS

Autonomous path-planning for small UAVs imposes se-
vere restrictions on control algorithm development, stem-
ming from the limitations imposed by the on-board hard-
ware and the requirement for on-line implementation. In
this work we have proposed a method to overcome this
problem by using a new hierarchical, multi-resolution path
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was developed in-house by Georgia Tech students.

Fig. 14. The ground station GUI program.

planning scheme. The algorithm computes at each step a
multiresolution representation of the environment using the
wavelet transform. The idea is to employ high resolution
close to the agent where is needed most, and a coarse
resolution at large distances from the current location of
the agent. As an added benefit, the adjacency matrix of the
resulting cell decomposition can be computed directly from
the nonzero detail coefficients of the wavelet transform. The
algorithm is scalable and can be tailored to the available
computational resources of the agent. Several extensions of
the baseline methodology presented here are possible, and
will be addressed in the future.
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