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Abstract
In this paper, we deal with a pursuit-evasion differential game between multiple pursuers and
multiple evaders in the three-dimensional space under dynamic environmental disturbances
(e.g., winds, underwater currents). We first recast the problem in terms of partitioning the
pursuer set and assign each pursuer to an evader. We present two algorithms to partition the
pursuer set from either the pursuer’s perspective or the evader’s perspective. Within each
partition, the problem is reduced into a multi-pursuer/single-evader game. This problem is
then addressed through a reachability-based approach. We give conditions for the game to
terminate in terms of reachable set inclusions. The reachable sets of the pursuers and the
evader are obtained by solving their corresponding level set equations through the narrow
band level set method. We further demonstrate why fast marching or fast sweeping schemes
are not applicable to this problem for a general class of disturbances. The time-optimal
trajectories and the corresponding optimal strategies can be retrieved afterward by traversing
these level sets. The proposed scheme is implemented on problems with both simple and
realistic flow fields.
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1 Introduction

There is a plethora of work in the literature that deal with multiplayer pursuit-evasion prob-
lems. In general, these are difficult problems to solve analytically, owing to the delicate
nature of the problem itself [15]. Different techniques have been utilized to simplify and
subsequently deal with this problem. Single integrator kinematics are commonly assumed
in most multiplayer pursuit problems. Under such an assumption, the pursuit problem can
be further divided into group-pursuit and relay-pursuit problems. A group-pursuit problem
refers to the case where several (or all) pursuers act simultaneously to capture the target(s),
whereas in a relay-pursuit problem only one pursuer actively chases each target. In the cate-
gory of group-pursuit problems, conditions for target interception between multiple pursuers
and a single evader in the simplest form is studied by Pshenichnyi [27]. The result is extended
to simultaneous k-capture in [6] and ε-capture in [16], where capture occurs when a pursuer is
within an ε distance from the evader. Conditions for guaranteed evasion and the correspond-
ing evading strategies are studied in [8] and [14]. Pursuit-evasion between one evader and
countably many pursuers is investigated in [13]. In terms of relay-pursuit problems, gener-
alized Voronoi diagrams have been utilized to assign active pursuers dynamically to capture
the evader. Capture is achieved through a relay of the pursuers in a multi-pursuer/one-evader
problem [2,3]. This idea has also been applied in [30] to deal with known environmental
disturbances and in [10] for cooperative relay tracking of targets. Some results exist for
cases with more general dynamics for the agents (pursuers/evaders), but extra assumptions
are made for the problem to be tractable. Pursuit-evasion between a group of pursuers and
a single evader with linear time-varying dynamics is studied in [26] and was generalized
later on to the case of multiple evaders [4]. Group pursuit of a target under the so-called soft
capture, where capture occurs only when at least one pursuer and the target have identical
orientation, velocity, and acceleration, is investigated in [25] under the assumption of linear
time-invariant dynamics. Amultiplayer extension of the classical Homicidal Chauffeur game
[15] is discussed in [7], where a chain formation of faster, yet less maneuverable, pursuers is
utilized to ensure capture of a single slower, but agile evader. However, no optimality analysis
of such strategy is given.

In this paper, we consider a multi-pursuer/multi-evader pursuit-evasion problem of agents
having single integrator kinematics under a known external dynamic flow field in the 3D
Euclidean space. The reason we consider dynamic environmental conditions is that the pres-
ence of time-varying or spatially varying flows may significantly affect the vehicles’ motion
and the corresponding strategy. This is the case, for example, when either the pursuers or
the evaders (or both) are small autonomous underwater vehicles (AUV) or small unmanned
aerial vehicles (UAV).We solve this problem through a two-step approach.We first recast the
problem as a partition of the pursuer set and assign each pursuer to an evader. Subsequently,
the original problem is separated into a collection of sub-games involving multiple pursuers
and one evader. We find the optimal trajectories of the agents in each sub-game through a
reachable set method. Specifically, we utilize the level set method [24,28] to generate the
reachable sets of both the evader and the pursuers and retrieve the corresponding optimal con-
trol actions at the current location of the agents by backward propagation of their respective
reachable sets.

The major contributions of the paper are summarized below:

(a) We provide a two-step approach to deal with the multi-pursuer/multi-evader pursuit-
evasion problem under a dynamic flow field in the 3D Euclidean space. The approach
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leads to a decomposition of the original problem into a pursuer assignment problem in
which the subsequent multi-pursuer/one-evader games are much easier to solve.

(b) We propose two algorithms for the pursuer assignment problem.One is from the pursuer’s
perspective and is valid for pursuers with different capacity and general flow fields. The
other algorithm relies on the generation of the Zermelo–Voronoi diagram (ZVD), which
is more efficient in cases when the number of pursuers is higher than the number of
evaders, but assumes identical pursuers and a time-invariant flow field. A method to
generate the ZVD is also presented.

(c) We extend the result in [31] to solve the multi-pursuer/one-evader game under a dynamic
flow field in the 3D Euclidean space.

(d) We utilize the narrow band level method to solve the level set equations arising from the
propagation of the reachable sets of the pursuers and the evaders, as well as the backward
reachable set of the pursuers. We also demonstrate why fast marching or fast sweeping
schemes are not applicable to our problem under general disturbances.

2 Problem Formulation

We consider a pursuit-evasion game under an external flow field between n pursuers and m
evaders. Henceforth, we will refer to the pursuers and the evaders collectively as “agents”.
The dynamics of the pursuers Pi , i ∈ I, and the evaders E j , j ∈ J , where I = {1, 2, . . . , n}
and J = {1, 2, . . . ,m}, are given by

Ẋ i
P = uiP + w(Xi

P , t), Xi
P(t0) = Xi

P0
, (1)

Ẋ j
E = u j

E + w(X j
E , t), X j

E(t0) = X j
E0

, (2)

where Xi
P ∈ D ⊂ R

3 denotes the position of the i th pursuer and X j
E ∈ D ⊂ R

3 denotes the
position of the j th evader. Here D is a compact subset of R3 that denotes the user-specified
region of interest to the problem and uiP is the control input (i.e., velocity) of the i th pursuer
such that uiP ∈ U i

P , for all i ∈ I. The set U i
P consists of all measurable functions whose range

is included in the setUi
P = {u ∈ R

3, |u| � ūiP}, where | · | represents the Euclidean norm and
ūiP , i ∈ I, are constants. If uiP ∈ U i

P , we say that u
i
P is an admissible control for the i th pursuer.

Similarly, u j
E is the control input of the j th evader such that u j

E ∈ U j
E , where U j

E consists
of all measurable functions whose range is included in the set U j

E = {u ∈ R
3, |u| � ū j

E}.
We say that u j

E is an admissible control of the j th evader if u j
E ∈ U j

E . In (1), w(X , t) ∈ R
3

represents an exogenous dynamic flow, but it could also represent an endogenous drift owing
to the nonlinear dynamics of the agent. It is reasonable to assume that the magnitude of this
flow is bounded from above by some constant, that is, there exists a constant w̄ such that
|w(X , t)| ≤ w̄, for all (X , t) ∈ D × [t0,∞). In order to ensure existence and uniqueness of
solutions of the differential equations (1) and (2), it will be assumed thatw(X , t) is Lipschitz
continuous in X and piecewise continuous in t .

The pursuers aim to intercept the evaders and minimize the overall time-to-capture,
if possible, whereas the evaders try to avoid capture as long as possible. It is assumed
that all the players have perfect knowledge of the dynamics of the system given
by (1) and (2), the constraint sets Ui

P and U j
E , as well as the current state X̄ =

[X1T
P , X2T

P , . . . , XnT
P , X1T

E , , X2T
E , . . . , XmT

E ]T ∈ R
3(n+m). The game begins at time t = t0 with

initial positions Xi
P0

, i ∈ I, and X j
E0

, j ∈ J , for the pursuers and the evaders, respectively,
and terminates when each evader coincides with at least one of the pursuers, in which case
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capture occurs. That is, capture implies that for each j ∈ J , there exists i j ∈ I and a terminal
time T j ≥ t0 such that Xi j

P (T j ) = X j
E(T j ). The overall time-to-capture is then denoted as

T o = max j∈J T j .
We assume that each pursuer can capture at most one evader, that is, once a pursuer

captures an evader, the pursuer does not re-enter the game to chase another evader. Such
an assumption is valid in cases where the pursuers are disposable (such as missiles) or the
number of pursuers is large. Subject to this assumption, and in accordance with the previous
notion of capture, it can be seen that a necessary condition for the game to terminate is
n ≥ m. In other words, there should be more pursuers than evaders for all the evaders to be
captured. Henceforth, we assume that this condition holds, that is, there are more pursuers
than evaders.

The original problem is intractable due to the existence of the external flow field and the
large number of possible pairings between the evaders and the pursuers. Therefore, instead
of attempting to solve this problem head on, we propose to decompose the problem into two
steps. In the first step, we apply a partition to the set of pursuers by assigning each pursuer to
an evader at the beginning of the game. In the second step, the pursuit-evasion game between
each evader and its assigned (paired) pursuer(s) is solved to obtain the optimal trajectories
and controls of the pursuer(s) and the evader. The problems in these two steps are formally
stated as follows.

Problem 1 Given the system described by (1) and (2), find a partition {I j } j∈J of the pursuer

set I such that, for each i ∈ I j , it follows that T ∗(Xi
P0

, X j
E0

) ≤ T ∗(Xi
P0

, Xk
E0

) for all
k ∈ J , where T ∗(Xi

P0
, X) denotes the minimum time-to-reach from Xi

P0
to X ∈ R

3 under
the dynamics of the i th pursuer.

Problem 2 For some j ∈ J , consider a pursuit-evasion game in the presence of an external
flow field between multiple pursuers Pi , i ∈ I j and evader E j . The dynamics of the pursuers
are given by (1), where i ∈ I j . The pursuers aim to intercept the evader whose dynamics is
given by (2). Without loss of generality, let I j = {1, . . . , k}. The game begins at initial time
t0 = 0 with initial positions X̄0 = [X T

E0
, X1T

P0
, X2T

P0
, . . . , XkT

P0
]T, and terminates when at least

one of the pursuers reaches the location of the evader. The objective is to find the open-loop
representation [5] of the optimal strategies of the pursuers and the evader.

3 Problem Analysis

3.1 Pursuer Assignment

As mentioned in Sect. 2, we decompose the problem into two steps. The first step assigns
each pursuer to an evader, and the second step solves the pursuit-evasion game between each
evader and its assigned pursuers in the presence of the external flow field. In this subsection,
we focus on the first step, that is, obtaining a pursuer assignment such that each pursuer is
paired with an evader.

Before we present the algorithms to solve Problem 1, we start our analysis by introducing
some basic definitions and facts about reachable sets.

Definition 1 [29] The reachable set R(X0, t) at time t ≥ t0 of a system of the form (1) or
(2) starting at initial condition X(t0) = X0 is the set of all points that can be reached by the
agent at time t .
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In particular, the reachable set of the i th pursuer at time τ ≥ t0, denoted byRi
P(X

i
P0

, τ ), is
the set of all points X ∈ R

3 such that there exists a trajectory satisfying (1) for all t ∈ [t0, τ ]
with XP(t0) = Xi

P0
and XP(τ ) = X .

Definition 2 [20] The boundary of the reachable set is the reachability front.

The reachability front of the i th pursuer at time t ≥ t0 will be denoted by ∂Ri
P(X

i
P0

, t).
The following theorem, due to Filippov, gives the conditions to ensure the compactness

of the reachable sets of the players.

Theorem 1 [17] Given a control system

Ẋ = f (X , t, u), X(t0) = X0,

with u taking values in U, assume that its solutions exist on a time interval [t0, t f ] for all
controls u and that for every pair (X , t) the set { f (X , t, u) : u ∈ U } is compact and convex.
Then the reachable set R(X0, t) is compact for each t ∈ [t0, t f ].

Filippov’s theorem can be applied to the systems affine in controls given by (1) and (2)
and a given time interval [t0, t f ]. For such systems, the sets {uiP + w(Xi

P , t) : uiP ∈ Ui
P} and

{u j
E+w(X j

E , t) : uiE ∈ U j
E } are compact and convex for each (Xi

P , t) and (X j
E , t), respectively.

Under the previous assumptions on w(X , t), the solutions exist for the differential equations
(1) and (2) on the time interval [t0, t f ]. Hence, it can be concluded that the reachable sets

of the pursuers and the evaders, denoted by Ri
P(X

i
P0

, t) and R j
E(X j

E0
, t), respectively, are

compact, thus closed and bounded in R
3, for each t ∈ [t0, t f ]. The compactness of the

reachable sets ensures the existence of a minimum-time optimal control for each player to
reach the boundary of its reachable set.

Given the previous definitions, we present the following proposition.

Proposition 1 Given the system described by (1) and (2), and the partition {I j , j ∈ J } of the
pursuer set I introduced in Problem 1, then i ∈ I is part of the partition I j if t ij = mink∈J t ik ,

where tik := inf{t ∈ [t0,∞) : Xk
E0

∈ Ri
P(X

i
P0

, t)}, that is, t ik is the first time such that Xk
E0

is
inside Ri

P(X
i
P0

, t).

Proof It can be easily seen that the proposition is true as long as t ij = T ∗(Xi
P0

, X j
E0

). Indeed,

let {I ′
j , j ∈ J } be a partition of the pursuer set I such that i ∈ I ′

j if t
i
j = mink∈J t ik .

Then {I ′
j } coincides with {I j } when t ij = T ∗(Xi

P0
, X j

E0
). Therefore, it suffices to show that

t ij = T ∗(Xi
P0

, X j
E0

).

Consider now the definition ofRi
P(X

i
P0

, t). SinceRi
P(X

i
P0

, t) contains all the points the i th
pursuer can reach at time t starting from Xi

P0
, and since t ij is defined as the first time such that

X j
E0

∈ Ri
P(X

i
P0

, t ij ), it can be seen that t
i
j is the minimum time-to-reach from Xi

P0
to X j

E0
. In

otherwords, t ij = T ∗(Xi
P0

, X j
E0

). Assume now, on the contrary, that t ij 	= T ∗(Xi
P0

, X j
E0

), then

we have two cases to consider. First, t ij < T ∗(Xi
P0

, X j
E0

) and second, t ij > T ∗(Xi
P0

, X j
E0

).

Suppose that t ij < T ∗(Xi
P0

, X j
E0

). This clearly contradicts the fact that T ∗(Xi
P0

, X j
E0

) is

the minimum time-to-reach from Xi
P0

to X j
E0
. If, on the other hand, t ij > T ∗(Xi

P0
, X j

E0
), it

follows that X j
E0

∈ Ri
P(X

i
P0

, T ∗(Xi
P0

, X j
E0

))which means that capture occurs at a time prior

to t ij . This contradicts the definition t ij = inf{t ∈ [t0,∞) : X j
E0

∈ Ri
P(X

i
P0

, t)}. Finally, the
assumption t ij 	= T ∗(Xi

P0
, X j

E0
) leads to a contradiction and thus t ij = T ∗(Xi

P0
, X j

E0
). 
�
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The previous proposition provides us with an approach to obtain the partition of the
pursuer set through propagation of their reachable sets. Specifically, we propose the following
Algorithm 1 to find the partition {I j , j ∈ J } of the pursuer set I.

Algorithm 1 Initial pursuer assignment through reachable sets
For each pursuer Pi , i ∈ I:
(a) Propagate its reachable set from the initial position and time.
(b) Stop the propagationwhen the initial position of an evader (say Ek ) enters the reachable set of this pursuer.
(c) Place i in the cell Ik .

Notice that in the aforementioned pursuer assignment algorithm, the reachable set of each
pursuer needs to be propagated forward in time in order to find the assignment for all pursuers.
This may require a lot of computation when the number of pursuers is large. On the other
hand, when the problem has identical pursuers, the assignment can be determined from the
perspective of the evaders. Specifically, Problem 1 can be solved by generating the so-called
Zermelo–Voronoi Diagram (ZVD) from the initial positions of the evaders and by assigning
pursuers to the evader whose Zermelo–Voronoi cell contains those pursers. The definition of
ZVD is given as follows.

Definition 3 [2] A Zermelo–Voronoi Diagram (ZVD) is a partition of the space for a given
(finite) set of generators, such that each element in this partition is associated with a particular
generator in the following sense: an agent that resides in a particular set of the partition at
a given time instant can arrive at the generator associated with this set faster than any other
agent that may be located anywhere outside this set at the same time instant. Each set of the
partition associatedwith one generator is also called a Zermelo–Voronoi cell of that generator.

From the definition of the ZVD, it is clear that if a pursuer resides in the Zermelo-Voronoi
cell of an evader at time t = t0, then the pursuer can reach the initial position of this evader
faster than it can reach the initial position of any other evader. Therefore, the partition of the
pursuer set defined in Problem 1 can be achieved by determining which Zermelo-Voronoi
cell each pursuer resides in. The corresponding algorithm is summarized in Algorithm 2. It
is clear that the key step in Algorithm 2 is to generate the ZVD. This is discussed in greater
detail in Sect. 4.2.

Algorithm 2 Initial pursuer assignment through ZVD
(a) Generate the ZVD from the initial positions of the evaders.
(c) For each pursuer Pi , i ∈ I, place i in the cell Ik if pursuer Pi resides in the Zermelo–Voronoi cell of

evader Ek .

Remark 1 We hereby assume that there is always a sufficient number of pursuers such that
I j 	= ∅, for all j ∈ J . This assumption ensures that each evader can be actively chased by at
least one pursuer. For cases where this assumption is not satisfied, it can be seen later on that
there may exists pursuers who are assigned to an evader but are not involved in the active
pursuit of that evader. We can then assign some of these inactive pursuers to the evaders who
do not yet have any pursuers assigned to them. This scheme will not be discussed further, so
as not to distract from the key results of this paper.
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3.2 Multi-Pursuers/One-Evader Game

In this subsection, we utilize the reachable set analysis to find conditions for capture of
the evader and also derive the corresponding optimal controls and the trajectories of the
agents in the sub-game between multiple pursuers and one evader. Reachable sets provide a
quick snapshot of all possible future trajectories of the agent and thus succinctly encode all
possible future positions of the agent under any possible control action. Knowledge of the
reachable set of each pursuer and the evader can then be used to draw conclusions about the
potential meeting of the two at some future time (or not). In this paper, we use this intuition
behind the information conveyed by the reachable set of each player to solve the pursuit-
evasion problem under minimal assumptions about the maximum number of agents and the
environment they operate in. Since the computation of the reachable sets for each pursuer can
be done independently from the other pursuers, the proposed method is decentralized and
scales well with the number of pursuers, something that is not the case with more traditional
approaches that require directly the solution of a HJI partial differential equation [5].

The evader plays a game against the pursuers and we would like to find the set of terminal
points of all “safe” evader trajectories, that is, the set of all terminal points of the evader at
time t , whose trajectories do not pass through any reachable sets of the pursuers at any time
in the interval [t0, t]. The formal definition of such set is given as follows.

Definition 4 Given the reachable sets of the pursuers, we define the usable reachable set of
the evader at time t ≥ t0 as

R�
E(XE0 , t) =

{
X ∈ D : X = XE(t) and XE(τ ) /∈

n⋃
i=1

Ri
P(X

i
P0

, τ ),∀τ ∈ [t0, t]
}
. (3)

From this definition, it is clear thatR�
E(XE0 , t) ⊆ RE(XE0 , t). The definition implies that

R�
E(XE0 , t) is the set of all terminal points of the evader at time t , whose trajectories do not

pass through any reachable sets of the pursuers at any time in the interval [t0, t].
Suppose now that at some time tc > t0, and for some i ∈ I, we have that RE(XE0 , tc) ⊆

Ri
P(X

i
P0

, tc). It follows that, for each uE ∈ UE , there exists uiP ∈ U i
P such that Xi

P(tc) =
XE(tc). In other words, capture of the evader is guaranteed at time tc by the i th pursuer. Note
that R�

E(XE0 , tc) = ∅ in this case.
If, on the other hand, for some te > t0, we have that R�

E(XE0 , te) 	= ∅, it follows that
there exists uE ∈ UE such that capture can be avoided in the time interval [t0, te], no matter
how the pursuers choose their (admissible) controls. In other words, ifR�

E(XE0 , te) 	= ∅, the
game will not terminate in the time interval [t0, te].

The previous observations lead to the following theorem, which is the main theoretical
result of this paper. It is used later on in order to develop an efficient numerical algorithm for
solving the pursuit-evasion game with multiple pursuers in the presence of a known dynamic
flow field.

Theorem 2 Let T = inf{t ∈ [t0,+∞] : R�
E(XE0 , t) = ∅}. If T < ∞, then capture of

the evader is guaranteed for any time greater than T , while the evader can always escape
within a time smaller than T . Hence, T is the time-to-capture if both players play optimally.
Furthermore, let X f denote the location where the evader is captured by at least one of the
pursuers. Then we have that

X f ∈ X =
{
X ∈ D : X = XE(T ) and XE(τ ) /∈

n⋃
i=1

Ri
P(X

i
P0

, τ ),∀τ ∈ [t0, T )

}
. (4)
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Proof The proof is almost identical to the proof of the main theorem in [31], and is thus
omitted. 
�

From the previous theorem, it can be seen that capture is guaranteedwhenR�
E(XE0 , t) = ∅

for some t ∈ [t0,∞). Furthermore, R�
E(XE0 , t) can be computed by keeping track of the

reachable sets of the pursuers and the evader at all times prior to the capture time. However,
under some constraints on the speeds of the players, this criterion can be replaced with an
instantaneous condition which is easier to check and implement. We present the simplified
condition on the capture of the evader as follows.

Proposition 2 [31] If v̄ ≤ mini∈I ūi , the set R�
E(XE0 , t) satisfies

R�
E(XE0 , t) = RE(XE0 , t)

∖ n⋃
i=1

Ri
P(X

i
P0

, t), (5)

for all t ≥ t0. In such cases, the condition R�
E(XE0 , t) = ∅ is equivalent to the condition

RE(XE0 , t) ⊆
n⋃

i=1

Ri
P(X

i
P0

, t). (6)

The previous expression states that in the case when v̄ ≤ mini∈I ūi the optimal time-
to-capture is the first time instant when the union of the reachable sets of the pursuers⋃n

i=1 Ri
P(X

i
P0

, t) completely covers the reachable set of the evader RE(XE0 , t). If v̄ > ūi ,
for some i ∈ I (the relativemaximumspeed of the evader is larger than that of the i th pursuer),
the relation (5) may not always hold. Some admissible evader trajectories may temporarily
enter the reachable set of the i th pursuer and exit later on. This is not allowable. To eliminate
this possibility, in such cases R�

E(XE0 , t) can be determined by treating the reachable set of
the i th pursuer as a dynamic “forbidden” region for the evader [19,21]. That is, whenever the
reachable set of the evader intersects the reachable set of any of the pursuers, we can either
stop the evolution of the intersected part of the evader’s reachable set or let it evolve at the
same speed as the reachable set of the pursuer. This way, we can ensure that the terminal
points of the admissible trajectories of the evader that temporarily enter the reachable set of
the pursuer and exit later on are not included in the usable reachable set of the evader.

4 Numerical Construction

4.1 Narrow Band Level Set Method

Upon constructing the reachable sets of the pursuers and the evaders by numerically solving
their corresponding Hamilton–Jacobi (HJ) equations, one may be tempted to utilize the fast
marchingmethod [28], which is a well-known and efficient approach to track the evolution of
a closed surface as a function of timewith speed in the normal direction along the propagating
surface. However, one prerequisite to using the fast marching method is that each grid point
should not be revisited after the level set propagation. This condition is not satisfied in our
problemdue to the existence of the external flowfield. Such phenomenon can be demonstrated
in the following two-dimensional example [1]. The reachable sets of the pursuer at time
t = 1, 3, 5 are depicted in Fig. 1. As shown in Fig. 1a, the pursuer (shown by the red dot)
starts at P0 = [81, 50]T at time t = 0. Therefore, P0 ∈ RP(P0, 0). However, P0 /∈ RP(P0, 1),
as is depicted in Fig. 1a, where the orange region represents the reachable set of the pursuer



Dynamic Games and Applications

Fig. 1 a Reachable set of pursuer at time t = 1. b Reachable set of pursuer at time t = 3. c Reachable set of
pursuer at time t = 5

at time t = 1. The initial position of the pursuer is outside the reachable set at t = 1 and is
still outside the reachable set at t = 3, as shown in Fig. 1b. Later on, at t = 5, P0 reenters
the reachable set RP(P0, 5), as illustrated in Fig. 1c. This indicates that P0 is revisited by
the reachable set.

The previous observation forces us to utilize a more sophisticated method to construct the
reachable sets, while retaining some level of efficiency. In particular, we apply the narrow
band level set method [24,28] to construct the reachable sets of all players.

The level set method evolves the reachability front by embedding it as a hyper-surface
in a higher dimension, where time is the additional dimension. The level set formulation
provides an implicit representation of the front, which offers several advantages over an
explicit representation [24,28]. The standard level set method would initialize with a mesh
grid and update the value on every grid point to correspond to the motion of the surface.
Instead of this full matrix approach, we adopt a more efficient method known as the narrow
band approach that performs an update of the value in a neighborhood of the zero-level set
[12,22,28]. This approach can save a lot of computation effort with regard to the operation on
the entire computational domain. In particular, the narrow band method saves computation
by limiting the set of the grid over which the Hamilton–Jacobi equation is solved, and it also
reduces the cost of computing the signed distance function at fewer grid points.

The choice of the implicit function for this embedding to represent the reachability front.
is not unique. The signed distance function is one of the most common choices and will be
utilized in this paper. Its definition is given as follows.

Definition 5 The signed distance function ϕ(X) with respect to a set R is defined as

ϕ(X) =
⎧⎨
⎩

min
Y∈∂R

|X − Y |, if X /∈ R,

− min
Y∈∂R

|X − Y |, if X ∈ R.
(7)

Recall that, for any c ∈ R, the c-level set of a ϕ is the set {X : ϕ(X) = c}. We hereby
utilize the signed distance function from the reachable set to track the evolution of the fronts
of the reachable sets of all agents. This is achieved by expressing the reachable front at
time t as the zero-level set of the corresponding signed distance function. Assuming that the
signed distance function with respect to the i th pursuer reachable setRi

P(X
i
P0

, t) at time t is
φi

P(X , t), then the evolution of the reachable front ∂Ri
P(X

i
P0

, t) is governed by the viscosity
solution of the Hamilton–Jacobi equation [18,20]

∂φi
P(X , t)

∂t
+ ū|∇φi

P(X , t)| + ∇φi
P(X , t)w(X , t) = 0, (8)



Dynamic Games and Applications

with initial condition φi
P(X , t0) = |X − Xi

P0
|. Note thatRi

P(X
i
P0

, t) = {X ∈ D : φi
P(X , t) ≤

0} and ∂Ri
P(X

i
P0

, t) = {X ∈ D : φi
P(X , t) = 0}.

Similarly, the reachable front ∂RE(XE0 , t) of the evader is computed by solving the
Hamilton–Jacobi equation

∂φE(X , t)

∂t
+ v̄|∇φE(X , t)| + ∇φE(X , t)w(X , t) = 0, (9)

with initial condition φE(X , t0) = |X − XE0 |, where φE(X , t) is the signed distance function
with respect to the reachable set RE(XE0 , t) of the evader at time t .

In the case where the condition in Proposition 2 is not satisfied, we need to track
∂R�

E(XE0 , t) in order to determine the optimal time-to-capture. Instead of propagating
∂R�

E(XE0 , t) directly, we propagate an intermediate reachable front ∂R̃E(XE0 , t) which can
be computed by solving the following modified version of the Hamilton–Jacobi equation

∂φ̃E(X , t)

∂t
+ ṽ(t) |∇φ̃E(X , t)| + ∇φ̃E(X , t)w(X , t) = 0, (10)

where

ṽ(t) =
{
min
i∈I ūi , if min

i∈I φi
P(X , t) < 0,

v̄, otherwise,
(11)

and initial condition φ̃E(X , t0) = |X − XE0 |.
The main idea here is to treat the reachable sets of the pursuers as moving obstacles and

propagate R̃E(XE0 , t) with the maximum speed of the evader v̄ for the parts that fall outside
the union of the reachable sets of the pursuers, and to keep pace with the propagation of the
reachable set of the slowest pursuer when the front of the evader enters any reachable set of
the pursuers. By doing this, we make sure that the front of the evader does not grow out of
the union of the reachable sets of the pursuers. The parts of the reachable front of the evader
that do not encounter the reachable sets of the pursuers remain unaffected by the change of
speed from v̄ to ṽ, since these changes are only performed for points inside the reachable
sets of the pursuers.

Let R̃E(XE0 , t) = {X ∈ D : φ̃E(X , t) ≤ 0}. At every time instant t , by construction,
R̃E(XE0 , t) excludes all the points X such that X = XE(t) and X /∈ ⋃n

i=1 Ri
P(X

i
P0

, t), while
X ∈ ⋃n

i=1 Ri
P(X

i
P0

, τ ), for some τ ∈ [t0, t). It follows that

R�
E(XE0 , t) = R̃E(XE0 , t)

∖ n⋃
i=1

Ri
P(X

i
P0

, t).

Moreover, since Ri
P(X

i
P0

, t) = {X ∈ D : φi
P(X , t) ≤ 0}, the usable reachable set of the

evader can also be represented in a form that is more suitable for numerical calculations, that
is,

R�
E(XE0 , t) = {X ∈ D : φ̃E(X , t) ≤ 0 and min

i∈I φi
P(X , t) ≥ 0}.

4.2 Generation of ZVD

In this subsection, we discuss how to numerically generate the ZVD at the initial time step
with the evaders as generators. Once the ZVD is generated, it can, in turn, be utilized in
Algorithm 2 to determine the initial partition of the pursuers.
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To this end, consider the dynamics of the pursuer given by

Ẋ P = uP + w(XP), XP(t0) = XP0 , (12)

where uP ∈ UP , for all i ∈ I. It is assumed here that all the pursuers are identical (which
results in dropping the superscript i), and the dynamic flow is time invariant, for reasons that
will become clear soon after. We take Eq. (12) and reverse the time direction by replacing t
with τ = T ∗(XP0 , Xend) − t , where Xend denotes some terminal position of the pursuer. We
thus obtain the retrograde evolution of the states as follows

X̊ P = −uP − w(XP), (13)

where ( ˚ ) denotes the derivative with respect to the retrograde time τ . Notice that (13) is
valid owing to the fact that T ∗(XP0 , Xend) does not show up explicitly in (13), which results
from the previous time-invariant flow assumption.

Given (13), our next step is to find away to generate thebackward reachable setR j
P(X

j
E0

, t)

of the pursuer at time t , starting from the initial position X j
E0

of the evader E j , j ∈ J . The

setR j
P(X

j
E0

, t) contains all the initial positions of the pursuer X ∈ D that can reach X j
E0

with

minimum time T ∗(X , X j
E0

) ≤ t . Similar to the approach utilized in Sect. 4.1, it is assumed

that the signed distance function with respect toR j
P(X

j
E0

, t) is denoted byψ
j
P(X , t), then the

evolution of its reachable front is governed by the viscosity solution of the Hamilton–Jacobi
equation

∂ψ
j
P (X , t)

∂t
+ ū|∇ψ

j
P(X , t)| − ∇ψ

j
P (X , t)w(X) = 0, (14)

with initial condition ψ
j
P (X , t0) = |X − X j

E0
|.

Note that the backward reachable set can be described as R
j
P(X

j
E0

, t) = {X ∈ D :
ψ

j
P (X , t) ≤ 0}. Furthermore, for each X ∈ D, the minimum time-to-reach can be calculated

as
T ∗(X , X j

E0
) = inf{t ∈ [t0,+∞] : X ∈ R

j
P(X

j
E0

, t)}. (15)

Let the augmented representation of the ZVDwith respect to the generators {X j
E0

, j ∈ J } be
denoted as {(X , k)}, where X ∈ D and k ∈ J is the indicator of which Zermelo–Voronoi cell
X resides in. Then the ZVD can also be written as {(X , argmin j∈J T ∗(X , X j

E0
))}, per Defini-

tion 3. Therefore, the ZVD can be generated through the propagation of R j
P(X

j
E0

, t), j ∈ J
and comparison of T ∗(X , X j

E0
) for each j ∈ J to decide which Zermelo–Voronoi cell X

belongs to, for all X ∈ D.

4.3 Pursuer Classification

For problems with a large number of pursuers, it is very likely that not all pursuers are
involved in the optimal capture. In certain applications, such as when the pursuers are subject
to energy or fuel limitations, or when they play a dual role as pursuers and guards of a certain
region of responsibility, it may be beneficial that some of the pursuers remain inactive. In
group-pursuit problems involving several pursuers, we may therefore classify the pursuers
according to their level of involvement as either active or inactive.

In particular, we can divide the pursuer set into two distinct subsets. One subset consists of
all active pursuers, while the second subset contains the inactive pursuers that do not chase



Dynamic Games and Applications

Fig. 2 a Level sets of four pursuers and one evader at time T . b Level sets of three pursuers and one evader
at time T . Level set of pursuer P4 is removed to show the reachable set of the evader is not fully covered by
the union of reachable sets of P1, P2 and P3

the evader. We also refer to the pursuers in the latter subset as guards, since they remain
inactive during the optimal pursuit when the evader stays along its optimal trajectory or join
the chase if the evader plays suboptimally and deviates from its original trajectory. Once
the capture point X f is found, the active pursuers can be identified as the pursuers whose
boundary of the reachable sets at time T intersects X f , while the rest of the pursuers are
guards.

The classification of the pursuer set into active pursuers and guards can be demonstrated by
the situation depicted in Fig. 2a. As shown in this figure, the reachability fronts of pursuers P1,
P2 and P3 at the capture time T coincide at the terminal position X f . These three pursuers
need to reach X f at time T to ensure capture of the evader. Hence, these are the active
pursuers. On the other hand, pursuer P4 cannot reach X f within time T , but its reachable
set covers a portion of the reachable set of the evader. This can been seen in Fig. 2b where
the reachable set of pursuer P4 is removed to show that the reachable set of the evader is
not fully covered by the union of reachable sets of P1, P2 and P3 at time T . Therefore, P4
acts as a guard. It is also worth noting that if one would like to account for the possibility
that the evader may not maneuver optimally, then the process of classifying active pursuers
and guards should be repeated at each time step. Otherwise, a pursuer that has been initially
classified as a guard might remain inactive even if the evader moves toward it and away from
the active pursuers.

4.4 Time-Optimal Paths

In this section, we show how the optimal controls of the evaders and the active pursuers, as
well as their corresponding optimal trajectories, can be retrieved from the computed level
sets.

We first consider the active pursuers. Since they can reach X f at time T , it is clear that
X f resides on the boundary of their reachable sets, otherwise capture would have occurred
earlier. Therefore, when φi

P ’s are differentiable, the optimal trajectory for each active pursuer
satisfies [20]
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dXi∗
P

dt
= ūi

∇φi
P

|∇φi
P |

+ w(Xi∗
P , t), Xi∗

P (0) = Xi
P0

, i ∈ IA, (16)

where IA ⊆ I denotes the index set of the active pursuers. The corresponding optimal
controls of the active pursuers are thus

ui∗P = ūi
∇φi

P

|∇φi
P |

, i ∈ IA. (17)

In order to find the optimal trajectories of the active pursuers, we propagate backward the
dynamics (16) starting from X f until it reaches Xi

P0
, i ∈ IA.

As for the evader, there are two possible outcomes after the termination of the evolution
of the reachable sets of the pursuers and the evader. One possibility is that at the terminal
time T , X f resides on ∂R̃E(XE0 , T ) (or ∂RE(XE0 , T ) when v̄ ≤ mini∈I ūi ). In this case, it
follows that the boundary of the reachable set of the evader is not fully covered for all t < T .
When differentiable, the optimal trajectory of the evader is then unique and it satisfies the
differential equation

dX
∗
E

dt
= v̄

∇φE

|∇φE | + w(X
∗
E , t), X

∗
E(0) = XE0 . (18)

The corresponding optimal control for the evader is given by

u∗
E = v̄

∇φE

|∇φE | . (19)

Similar to the case of the pursuers, we propagate backward the dynamics (18) starting from
X f until the trajectory reaches XE0 to find the optimal trajectory of the evader.

Itmay also happen that X f lies in the interior of R̃E(XE0 , T ) (or the interior ofRE(XE0 , T )

when v̄ ≤ mini∈I ūi ). This situation occurs when there exists tc ∈ (t0, T ) such that
∂RE(XE0 , t) ⊂ ⋃n

i=1 Ri
P(X

i
P0

, t), for all t ∈ [tc, T ]. However, some part of the interior
ofRE(XE0 , t)may not be covered until time T . In this case, the optimal control of the evader
is not necessarily unique. In particular, the control of the evader can be chosen from the set

U∗
E =

{
uE ∈ UE : X satisfies (2) and X(τ ) /∈

n⋃
i=1

Ri
P(X

i
P0

, τ ),∀τ ∈ [t0, T ]
}
. (20)

It follows that an optimal evading strategy for the evader is valid, as long as it can bring the
evader to X f at time T , without getting captured by any of the pursuers prior to time T .

5 Simulation Results

In this section, we present simulation results for the multiplayer pursuit-evasion problem
under distinct flow fields.

We first consider a state-dependent wind field that resembles the shape of a hurricane
whose wind field snapshot can be found in [11]. Letting X = [x, y, z]T ∈ R

3, this much
simplified approximation model is generated by letting

w(X) =
√

z

h
A(X − Xs), X ∈ D, (21)
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Fig. 3 An analytical flow field
that approximates a hurricane

where

A =
⎡
⎣ 0.2 0.3 0

−0.15 0.1 0
0 0 0

⎤
⎦ . (22)

In (21), Xs = [55, 40, 0] denotes the location of the flow singularity and D = [0, 128]3
represents the 3D space. Also in (21), h = 128 denotes the height of the 3D space, and A
is a 3 × 3 matrix, whose structure captures the local characteristics of the flow singularity.
Notice that due to the chosen value of A, the flow field along the z axis is zero. Also, for
each fixed z, the flow field in the xy-plane approximates the velocity field of a vortex with a
linear vector field from the Rankine model [9]. The multiplier

√
z/h scales the magnitude of

the flow field along the z axis so that the flow intensifies as the height increases. The vector
field of the external flow field is depicted in Fig. 3.

Here we address a five-pursuers/two-evaders problem. At time t0 = 0, the five pursuers
are located at X1

P0
= [60, 20, 30]T, X2

P0
= [70, 60, 50]T, X3

P0
= [90, 80, 70]T, X4

P0
=

[50, 80, 60]T and X5
P0

= [25, 70, 45]T, respectively. Their corresponding maximum speeds
are given by ū1 = 30, ū2 = 30, ū3 = 40, ū4 = 50 and ū5 = 40. The initial locations of the
evaders are given by X1

E0
= [50, 50, 40]T, X2

E0
= [70, 90, 75]T and their maximum speeds

are v̄1 = 20, v̄2 = 15, respectively. Note that, in this example, the maximum speed of the
evaders is smaller than the speed of the pursuers. Therefore, we only need to propagate the
reachability front of the evaders and pursuers in order to recover R�

E(XE0 , t).
We start the simulation by propagating the reachability front of each pursuer until it

coincides with one of the evaders to decide which evader the pursuer is assigned to. In this
example, P1, P2 and P5 are assigned to evader E1 and P3, P4 are assigned to evader E2.

For each sub-game, we utilize the reachable set algorithm to find the optimal terminal
time for the evader to be captured by the pursuers. The optimal time-to-capture for the first
sub-game between P1, P2, P5 and E1 is T1 = 1.20 and the optimal time-to-capture of the
second sub-game is T2 = 0.76. So the overall time-to-capture is To = 1.20. The reachable
fronts of the pursuers and the evaders at their corresponding capture time, as well as the
optimal trajectories of the active pursuers and the evaders, are shown in Fig. 4. The red,
yellow and purple color surfaces represent the reachable fronts of the pursuers P1, P2 and P5
at the terminal time T1, respectively. The union of the reachable sets of these pursuers fully
cover the reachable set of the evader E1 at time T1 denoted by the blue surface and the evader
is captured at XT1 . The red dashed and blue lines represent the optimal trajectories of the
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Fig. 4 Pursuit-evasion between 5
pursuers and 2 evader in an
analytical flow field

Fig. 5 A realistic flow field from
MATLAB

pursuers and evaders, respectively. Black arrows on the background represent the external
flow field.

Next, we apply our algorithm to a pursuit-evasion problem using aMATLAB default wind
dataset [23]. The external flow field generated from this dataset is depicted in Fig. 5. Through
this example, we demonstrate that the proposed algorithm can handle scenarios with complex
spatial flow fields.

The initial positions of the pursuers and the evaders are set as X1
P0

= [45, 20, 30]T,
X2

P0
= [55, 45, 45]T, X3

P0
= [50, 70, 35]T, X4

P0
= [45, 95, 40]T and X1

E0
= [70, 40, 40]T,

X2
E0

= [60, 90, 30]T, respectively. Their corresponding maximum speeds are given by ū1 =
40, ū2 = 30, ū3 = 30, ū4 = 35 and v̄1 = 15, v̄2 = 20. After propagation of the reachable
sets of the pursuers, it is determined that P3, P4 will go after E1 while E2 will be actively
chased by P1 and P2. Capture of E1 occurs at time T1 = 1.00 and E2 is captured at time
T2 = 0.98. The optimal paths of the pursuers and the evaders are depicted in Fig. 6. The
reachability fronts of the pursuers P1 through P4 are illustrated in purple, green, red and
yellow colors. Similarly, the reachability fronts of the evaders E1, E2 are depicted by blue
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Fig. 6 Pursuit-evasion between 4
pursuers and 2 evaders in a
realistic wind field

Fig. 7 Pursuer assignment
through Algorithm 1 and the
optimal trajectories of
pursuit-evasion between 20
pursuers and 10 evaders
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and magenta surfaces. The optimal trajectories of the pursuers and evaders are shown as red
dashed and blue lines, respectively.

Finally, consider an example between 20 identical pursuers and 10 evaders under an state-
dependent flow field. The external flow field in this case is given by

w(X) =
√

z

h2
B(X − Xs2), X ∈ D2 (23)

where

B =
⎡
⎣ 0.1 0.1 0

−0.1 0.1 0
0 0 0

⎤
⎦ . (24)

In (21), Xs2 = [90, 80, 0], D2 = [0, 200]3 and h2 = 200.
We apply both Algorithms 1 and 2 to assign each pursuer to an evader. The results can

be found in Figs. 7 and 8, respectively. The paired pursuers and evaders are illustrated in
opposite colors. The ZVD is also depicted in Fig. 8 to highlight the assignment of pursuers.
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Fig. 8 Pursuer assignment
through Algorithm 2 and the
corresponding ZVD of
pursuit-evasion between 20
pursuers and 10 evaders

In both cases, P1 is assigned to evader E1. P3, P4 and P5 are assigned to evader E2. P6, P7
and P17 are assigned to evader E3. Also, E4 is paired with P10. E5 is paired with P2, P8
and P9. E6 is paired with P13. Furthermore, P11 and P15 are assigned to evader E7. P14 is
assigned to evader E8. P16 and P18 are assigned to evader E9. At last, P12, P19 and P20 are
assigned to evader E10. The resulting multi-pursuers/one-evader sub-games are then solved
to find optimal trajectories of the active pursuers and evaders, which are also depicted in
Fig. 7. Among all the pursuers, P2 P5, P6, P12 and P20 are identified as guards.

6 Conclusion

In this paper, we have considered differential games between multiple pursuers and multiple
evaders in a three-dimensional space subject to an external dynamic flow field. The problem
is divided into a pursuer assignment problem where a partition of the pursuer set is formed
in order to pair the pursuers with the evaders and solve the subsequent sub-game between
each evader and its assigned pursuers. Reachability set analysis is utilized for both problems
and the narrow band level set method is adopted to propagate the reachable sets of all the
players. It is also demonstrated why the narrow band level set method is chosen over the
fast marching or fast sweeping schemes, which are not applicable to the differential game
problem under general disturbances.

The pursuer assignment problem is first achieved by pairing each pursuer with the evader
that first enters the reachable set of this pursuer among all the evaders. An algorithm is
presented to partition the pursuer set through the generation of the ZVD from the initial
positions of the evaders under the identical pursuer and time-invariant flow field assumption.
The second algorithm is preferred in cases where the number of pursuers are much larger
than that of the evaders. A numerical method to generate the ZVD from the propagation of
backward reachable sets of the pursuers is also presented. Furthermore, when the maximum
speed of the evader is less than the maximum speed of each pursuer, a simplified criterion
to capture the evader is derived. Depending on whether a pursuer guards some part of the
reachable set of the evader or actively chases the evader, the pursuers can be classified as
guards or active pursuers. The optimal trajectories and controls of the pursuers and the evaders
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are retrieved by backward propagation along the corresponding levels of the reachable sets.
The proposed solution scheme is demonstrated by applying it to multiplayer pursuit-evasion
games taking place both in artificial flow fields and realistic wind fields.
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