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Abstract We consider the following differential game of pursuit and evasion involving two
participating players: an evader, which has limited maneuverability, and an agile pursuer.
The agents move on the Euclidean plane with different but constant speeds. Whereas the
pursuer can change the orientation of its velocity vector arbitrarily fast, that is, he is a
“pedestrian” á la Isaacs, the evader cannot make turns having a radius smaller than a specified
minimum turning radius. This problem can be seen as a reversed Homicidal Chauffeur game,
hence the name “Suicidal Pedestrian Differential Game.” The aim of this paper is to derive
the optimal strategies of the two players and characterize the initial conditions that lead
to capture if the pursuer acts optimally, and areas that guarantee evasion regardless of the
pursuer’s strategy. Both proximity-capture and point-capture are considered. After applying
the optimal strategy for the evader, it is shown that the case of point-capture reduces to a
special version of Zermelo’s Navigation Problem (ZNP) for the pursuer. Therefore, the well-
known ZNP solution can be used to validate the results obtained through the differential game
framework, as well as to characterize the time-optimal trajectories. The results are directly
applicable to collision avoidance in maritime and Air Traffic Control applications.
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1 Introduction

The literature on differential/dynamic games of pursuit and evasion is extensive. An interest-
ing discussion on the historical background of problems of pursuit and evasion can be found
in [20]. Isaacs [9], in his seminal work on the extension of game theory to the framework
of differential games, studied several examples of pursuit and evasion. In the classical paper
[8], the authors examined conditions under which capture is possible in a two-player linear-
quadratic pursuit–evasion game: if both players are subject to single integrator dynamics and
have no control constraints, then the necessary and sufficient condition for interception is
that the speed of the pursuer is higher than that of the evader.

There are several special cases of two-player pursuit–evasion scenarios, including restric-
tions on the space where the agents canmove (e.g., [23], and the Lion andMan problem [30]),
or problems with stochastic dynamics (see, for example, [32]). Two-player pursuit–evasion
with curvature constraints were addressed in Isaacs’ Homicidal Chauffeur problem [9,13]
and the Game of Two Cars [14]. For the stochastic versions of these games see [25] and [33],
respectively. A general solution for problems of restricted player maneuverability was pre-
sented in [6], wherein necessary and sufficient conditions for capture, regardless of the initial
conditions of the players, were derived. Reference [6] states that a pursuer is guaranteed to
capture the evader regardless of initial conditions only if she is faster than the evader, and
does not have a major maneuverability disadvantage against the evader. These results were
extended for motion in the three-dimensional space in [28]. Regardless of whether maneu-
verability restrictions are considered or not, the conditions leading to capture may be relaxed
at the expense of including more pursuers in the game (see for example [4,27]).

In this paper, we consider an asymmetric version of the Game of Two Cars [14]. In
the original formulation of the problem, both players have the same speed and the same
maneuverability restrictions, i.e., they are identical, and capture occurs when the distance
between the players becomes less than a constant, which is known as the “kill zone.” The
Game of Two Cars has been extensively studied in the literature. As with any pursuit–evasion
game in which different initial conditions lead to different game outcomes, an essential part
of the solution of the game is the determination of the barrier [9]. Simply put, the barrier is
the surface that separates initial states of the game that lead to capture under optimal play,
from states in which capture is impossible, as long as the evader plays optimally, and evasion
is guaranteed. Further details on the concept of the barrier can be found in [24]. The barrier
surface is in fact a semipermeable surface, that is, a surface whose crossing can be instigated
only by suboptimal player action. An interesting fact concerning families of semipermeable
surfaces is that they are determined solely by the motion dynamics and the imposed control
constraints [10]. Thus, differential games sharing the samedynamics exhibit common families
of semipermeable surfaces, regardless of their target set and outcome functional. In the case
of Homicidal Chauffeur dynamics, such as in the present paper, those families have been
identified in [26], where a numerical algorithm for the calculation of the Value function level
sets is proposed. The approach in [26] is quite general and captures several variations of the
problem. However, as shown in this paper, such a numerical approach is not necessary for
our problem since the barrier surface can be computed in closed form.

The ramifications of the results that emerged from the analysis of the Game of Two Cars in
applications of collision avoidance have been recognized in [18]. Their usefulness as analytic
solutions to validate numerical algorithms was also highlighted in [19]. Several extensions
and generalizations of this game appear in the literature under the name maritime collision
avoidance [3,15–17,21,22,31]. In this game setting, the two agents have different constant
speeds and different minimum turning radii. Analytic expressions for the barriers do exist
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[17], but practical implementation is problematic because of the underlying assumptions:
the exact maneuvering capability of the opponent is assumed to be known a priori, and a
continuous measurement of her instantaneous orientation is also necessary.

Motivated by these technical difficulties, in this paper, we propose the investigation of
the following variation of the Game of Two Cars, termed herein as the Suicidal Pedestrian
Game: the two agents move with different constant speeds, and the evader is subject to
maneuverability restrictions, while the pursuer is assumed to be completely agile. This leads
to a game state of reduced dimensionality that utilizes the least amount of information on the
characteristics of the pursuing agent. In this setting, the case in which the pursuer is not just
more agile, but also faster than the evader, results in global capturability, i.e., the pursuer is
always able to capture the evader regardless of the initial relative positioning of the agents [6].
We will therefore focus our analysis mainly on the more interesting case in which the evader
is at least as fast as the pursuer. Furthermore, since the pursuer can change her orientation
arbitrarily fast, the only target set that makes sense in this case is a circular target set, i.e.,
a circular “kill zone.” This target set is collocated with the evader’s instantaneous position.
One can view this problem also as an inverse to the classical Homicidal Chauffeur problem,
wherein the pursuer is faster but has maneuverability restrictions, and attempts to intercept
a completely agile but slower evader by bringing her into her “kill zone.” The title of the
paper is inspired by this “role reversal” in the Homicidal Chauffeur game. The results of this
paper are directly applicable to maritime collision avoidance and to Air Traffic Control, in
the sense that a safe region around ownship is delineated such that it is guaranteed that, even
in the worst case scenario of malicious behavior, a collision is avoidable.

During the review process, two little-known, scarcely cited papers [12,29] were brought to
our attention. The first one treats the same problem as the one in this paper as a special case of
the Game of Two Cars and presents a purely geometric procedure to obtain a solution. It thus
avoids use of Isaacs’ method and does not offer an analytic expression for the barrier. The
same game is also briefly discussed in Appendix I of [29], which focuses on the investigation
of feedback control laws for the pursuer. No detailed analysis of the game is offered however.
Our paper, on the other hand, provides a complete analysis of the game, including the case of
point-capture. Furthermore, an interesting connection with the classical Zermelo navigation
problem from optimal control theory is given. This problem thus offers a rare instance where
a complete, closed form, solution of a differential game can be provided.

The rest of the paper is organized as follows: In Sect. 2 we formally define the problem to
be investigated. Next, in Sect. 3 we cast the problem within a differential game framework.
The solution of the game provides us with an analytic expression for the barrier. In the
same section, we also derive the optimal strategy of the evader, a policy which, unlike in
the case of the Homicidal Chauffeur game, will turn out to be independent of the problem
parameters. The special case of equal speeds for the two agents, as well as the special
case in which the pursuer’s capture radius is zero, i.e., point-capture is also considered. In
Sect. 4, we turn our attention to the investigation of the characteristics of the time-optimal
trajectories along with the corresponding agent strategies, that lead to point-capture. Sect. 4
also highlights the connection of the Suicidal PedestrianDifferential Game to thewell-known
Zermelo Navigation Problem from optimal control theory [5,34]. By applying Zermelo’s
navigation law, the analytic expression of the barrier in Sect. 3 is validated and, in addition,
the complete family of time-optimal trajectories that lead to point-capture is obtained. Section
5 offers some insight on the characteristics of time-optimal trajectories when viewed from
the inertial reference and Sect. 6 delineates the characteristics of trajectories in the case of
pursuer superiority in both speed andmaneuverability. Finally, Sect. 7 summarizes the results
of the paper.
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2 Problem Statement

Consider two players, a pursuer and an evader, moving on the Euclidean plane. The subscripts
p and ewill be reserved for the “Pursuer” (P) and the “Evader” (E), respectively. The pursuer’s
objective is capture, that is, interception of the evader in finite time, whereas the evader’s
objective is evasion, a state in which she avoids interception indefinitely. Interception occurs
when the separation of the agents becomes smaller than a constant, �, known as the radius
of the pursuer’s kill zone. The special case � = 0 corresponds to point-capture. The agents
have different constant speeds, namely ve, vp , for the evader and the pursuer, respectively.
We define α = vp/ve to be the speed ratio. The pursuer is assumed to be agile, in the sense
that she can change the orientation of her velocity vector instantaneously. On the other hand,
the evader is less agile and cannot make turns that have a radius smaller than his minimum
turning radius R. In this setup, it is a well-known fact that if the pursuer moves with greater
speed than the evader, then she will always be able to capture her opponent regardless of
the initial relative positioning of the agents [6]. We will therefore restrict our analysis to
the interesting case in which α ≤ 1, that is, vp ≤ ve. The case α > 1, in which global
capturability of the evader is ensured, is discussed in Sect. 6.

The equations of motion for the pursuer and the evader, written in an inertial frame of
reference with coordinates x and y, are given by

ẋ p = vp cosφp, (1)

ẏp = vp sin φp, (2)

ẋe = ve cosφe, (3)

ẏe = ve sin φe, (4)

φ̇e = −ve

R
u, u ∈ [−1, 1], (5)

where the control u determines the evader’s turn direction (left/negative or right/positive) and
turn rate magnitude. The Line of Sight (LOS) is defined as the line connecting the pursuer and
evader instantaneous positions. We wish to investigate the conditions under which capture is
possible by obtaining a characterization of initial conditions that lead to capture, as opposed
to initial conditions that lead to evasion under optimal play of both agents, and derive the
corresponding optimal state feedback strategies for both P and E.

3 Differential Game Formulation and Solution

In order to determine which initial states lead to capture and which initial states lead to
evasion under optimal play by both agents, we turn to the theory of differential games [9].
The answer to this question is obtained through the solution of a game of kind. Whenever the
state space of a game is comprised of both types of initial conditions, that is, starting points
that lead to evasion and starting points that lead to capture, under optimal play of both agents,
there exists a surface which separates these two regions, called the barrier. This barrier is
obtained by solving a game of kind. In a game of kind, the game outcome is essentially
an event (in our case, capture or evasion), and, corresponding to whether or not this event
occurs, the game payoff assumes discrete values. In contrast, in a game of degree, the payoff
assumes a continuum of numerical values (e.g., how much time P needs in order to intercept
E). For a more detailed presentation, as well as several examples for both types of games, the
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reader is referred to [9]. In this paper, we propose to cast the problem as a differential game
of kind. For an alternative characterization of the problem as one of degree, see [7].

3.1 Differential Game

Recall that the equations of motion for the pursuer and the evader, written in an inertial frame
of reference are given by Eqs. (1) through (5). It is easy to show [9] that one can transform
the problem from the previous fifth-dimensional realistic game space to a two-dimensional
reduced game space, by fixing the origin of a rotating coordinate frame at E’s current position
and by aligning the y-axis with E’s velocity vector; see Fig. 1. The evader action then consists
of choosing her center of curvature at a point C = (R/u, 0) on the x-axis as shown in Fig. 1.
Consequently, the reduced game space has only two states, namely the (x, y) position of P
relative to E in the evader’s fixed, velocity-aligned rotating frame. The equations of motion
of P in this rotating frame are given by

ẋ = −ve

R
yu − vp sin φ, (6)

ẏ = ve

R
xu − ve − vp cosφ, u ∈ [−1, 1], (7)

where φ is the pursuer’s relative heading in this new reference frame, given by φ � π

− φp + φe.
We thus formally define the state vector of the game to bex = (x, y)T. The game terminates

when capture occurs, that is, when the relative distance between the evader and the pursuer
becomes less than �. The manifold contained within the game space which, once penetrated,
signals the game termination is called the terminal surface. The terminal surface for our
game is a circle with radius � centered at the origin, i.e., the evader’s position. We may thus
formally define the terminal surface by C �

{
x ∈ R

2 : |x| = �
}
. Initializing the game within

this circle leads to the trivial case when capture has already been accomplished. Hence, we
focus our investigation on initial conditions that lie outside the circle, defining the game space
as E �

{
x ∈ R

2 : |x| ≥ �
}
. The terminal surface is then the boundary of the game space.

E

P

  R

 R/u

  R x

y

φ

Fig. 1 The reduced state space. The reference frame is fixed on E’s current position with the y-axis
aligned along E’s velocity vector. The evader’s control action is equivalent to choosing her center of rotation
C = (R/u, 0) on the x-axis. A rotation of E around C has the same effect as a rotation of P around C with
the same angular velocity, but in the opposite direction
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Retaining the concept of the payoff as it appears in the theory of zero-sum games, we
assign the values+1 for escape (termination does not occur) and−1 for capture (termination
occurs, i.e., the circle is penetrated by the pursuer’s trajectory). An additional step is necessary
in the process of constructing the barrier of the game. Namely, we need to distinguish the
critical case in which the state x reaches the terminal surface but does not cross it, ultimately
returning back into the interior of E . The case when the terminal surface is reached without
penetration, is referred to as neutral outcome [9], and the corresponding payoff is assigned
zero value. Thus, given an initial state x(t0) at t = t0 and the pursuer and evader control
histories, φ(·) and u(·) respectively, the payoff formally reads as

J (x(t0), φ(·), u(·)) =

⎧
⎪⎨

⎪⎩

+1, for no termination (escape),

0, neutral outcome,

−1, for termination (capture).

(8)

We thus seek to solve the problem of conflicting actions represented by u (maximizing
control) andφ (minimizing control) thatmaximize/minimize the payoff (8) under the dynamic
equations (6) and (7). Our goal is to obtain an analytic expression for the barrier surface,
which consists of all starting points that lead to the neutral outcome.

3.2 Solution of the Game

In order to solve the game defined above, we apply the framework developed in [9]. Since the
game is clearly symmetric with respect to the y-axis, we will focus our analysis on the right-
half plane {x ∈ E : x ≥ 0}. The first step is to obtain the usable part of the terminal surface C.
It is not uncommon for a terminal surface of a game to be divided into two regions: theUsable
Part (UP) and the Nonusable Part, which are separated by what is known in the literature as
the Boundary of the Usable Part (BUP). The usable part is the subset of the terminal surface
on which the pursuer can enforce capture, namely, penetration of the terminal surface. The
nonusable part is the remaining part of the terminal surface. On it, the gamewould end only if
the evader does not play optimally. Essentially, no retrograde optimal paths exist emanating
from the nonusable part (see [9] for an interesting discussion on these concepts, and [13,14]
for further examples). The BUP separates the points on C (rather, infinitesimally close to C)
where immediate capture ensues, from those leading to immediate escape.

In order to identify the usable part of the terminal surface, let γ � [γ1 γ2]T be the unit
vector normal to C from point x on C, pointing into the interior of E . Then, the usable part of
C is the region in which the following (strict) inequality holds [9]:

min
φ

max
u

2∑

i=1

γi fi (x, u, φ) < 0, x ∈ C, (9)

where fi (i = 1, 2) denotes the right-hand-side of the differential equations (6) and (7),
respectively (for our problem, x1 = x and x2 = y). The nonusable part has the inequality
sign reversed, and the BUP satisfies (9) as an equality. Parameterizing the terminal surface
with the variable s as shown in Fig. 2, one readily obtains

(x, y) = (� sin s, � cos s), x ∈ C. (10)

Since we restrict the analysis in the right-half plane, the angle s assumes values between
zero and π . The expression for γ therefore becomes

γ = (sin s, cos s). (11)
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E

x

y

l

s

Terminal
Surface

Usable Part

Nonusable Part

BUP

s

Barrier

BUP

Fig. 2 The terminal surface C of the game, which is a circle of radius �. It is divided into the usable part (the
dark line) and the nonusable part, separated by the BUP. The BUP connects to the barrier, which meets the
terminal surface at the BUP tangentially

In light of the above, and by virtue of the dynamics (6), (7), Eq. (9) yields

min
φ

max|u|≤1

{(
−ve

R
y sin s + ve

R
x cos s

)
u

+ (−vp sin φ sin s − ve cos s − vp cosφ cos s)

}
< 0, x ∈ C. (12)

Substitution of the parameterization (10) in Eq. (12) causes the coefficient of u to vanish.
It follows that the usable part of the terminal surface is the same, regardless of the evader’s
control strategy. This is merely a manifestation of the fact that the evader’s dynamics are
nonholonomic.

We are therefore left with the expression

min
φ

{−vp sin φ sin s − ve cos s − vp cosφ cos s
}

< 0, (13)

which may be rewritten as

min
φ

{− cos(φ − s)} <
ve

vp
cos s. (14)

The left-hand-side of the above equation is minimized for φ∗ = s, having the value −1. The
usable part of the terminal surface is therefore specified by

cos s > −vp

ve
, s ∈

(π

2
, π

]
, (15)

and the BUP is thus determined through

s̄ = arccos(−vp

ve
), s̄ ∈

(π

2
, π

]
. (16)

An illustration of the usable part, the BUP and the nonusable part is given in Fig. 2.
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Having identified the BUP, we turn our attention to the construction of the barrier. The
barrier is a semipermeable surface [9], that is, optimal play by both agents starting from any
point will generate a trajectory that does not penetrate this surface. Let S be such a surface
in E and assume it is smooth, and at each of its points let ν � [ν1 ν2]T be its normal vector
of unit length, extending into the escape zone.

The Isaacs equation for games of kind then formally reads

min
φ

max
u

[ 2∑

i=1

νi fi (x, u, φ)

]
= 0, x ∈ S. (17)

The Isaacs equation essentially states that on a semipermeable surface, such as the barrier,
the vector field of the dynamics, after optimal controls have been applied, is tangent to that
surface. Therefore, no penetration of that surface can occur under optimal play. Equation
(17) can be rewritten, for the problem at hand, as follows:

min
φ

max|u|≤1

[
− ve

R

(
yν1 − xν2)u − vp(ν1 sin φ + ν2 cosφ) − veν2

]
= 0, x ∈ S. (18)

Introducing the reverse time variable τ = t f − t , where t f is the time of game termination,
we define the following functions of the retrograde time:

A(τ ) � yν1 − xν2, (19)

σ(τ) � sign(A(τ )), (20)

c(τ ) �
ve

R
σ(τ), (21)

and proceed to the calculation of the optimal controls from (18). Since u ∈ [−1, 1], it follows
from (18) that

u∗(τ ) = −sign(A(τ )) = −σ(τ), (22)

which implies that E’s optimal control is bang-bang. Furthermore, applying the Lemma on
Circular Vectograms [9] in (18) for the minimization of the term −(ν1 sin φ + ν2 cosφ) in
terms of φ, yields the optimal action for the pursuer, as follows:

cosφ∗(τ ) = ν2, sin φ∗(τ ) = ν1. (23)

Thus, Eq. (18) becomes

c(τ )A(τ ) − vp − veν2(τ ) = 0, x ∈ S. (24)

The next step is to derive the Retrogressive Path Equations [9]. These are the equations
arising when one solves the game backwards in time, starting from the usable part of the
terminal surface C. Denoting with (◦) the derivative with respect to τ , the retrograde evolution
of the vector ν can be calculated as

◦
ν j =

2∑

i=1

νi
∂ fi (x, φ∗, u∗)

∂x j
, j = 1, 2. (25)

One readily concludes from (25) and (6), (7) that

◦
ν1 = −cν2 (26)
◦
ν2 = cν1. (27)
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The retrogressive path equations for the game states can be established if one applies the
optimal controls u∗ and φ∗ in Eqs. (6) and (7) and switches the sign to reverse the time flow:

◦
x = −cy + vpν1, (28)
◦
y = cx + ve + vpν2. (29)

A critical point now is to connect the barrier to the terminal surface. Recalling the defini-
tions of the barrier and the BUP, it is evident that they are connected [9]; the barrier extends
from the BUP of C into E . Furthermore, since the vector field is tangential to the barrier, and
no penetration of C occurs at the BUP, the two surfaces meet tangentially (see Fig. 2) . This
last statement essentially translates into ν being parallel to γ , and thus we may take

ν = γ, x ∈ C ∩ S. (30)

Recall that the function A(τ ) in (19) determines the sign of the optimal evader control. The
inverse evolution of A is given by direct application of the (◦) operator in the definition of A

◦
A = y

◦
ν1 + ◦

yν1 − x
◦
ν2 − ◦

xν2,

which, after applying the expressions for
◦
ν1,

◦
ν2,

◦
x and

◦
y, simplifies to

◦
A = ν1ve. (31)

Therefore, and since A ≡ 0 on C, the sign of A sufficiently close to the terminal surface is

determined by
◦
A, or

σ = sign(ν1ve) = sign(γ1) = sign(sin s) = sign(s) = 1, (32)

where we have used the parameterization of γ1 given by (11). This implies that

c = ve

R
, (33)

and
u∗ = −1. (34)

The evader’s optimal strategy when P is close to C is therefore established: E will try to steer
away from P with his maximum turning capability u∗ = −1, in an attempt to eliminate the
velocity vector component pointing toward P as fast as possible. The evader’s strategy is
depicted in Fig. 3.

E

P

  R  R x

y

C

(a) u∗ = −1

E

P

   R  R x

y

C

(b) u∗ = 1

Fig. 3 Optimal evader strategies afor x > 0 and b for x < 0, by virtue of the symmetry of the problem. The
arrows indicate the corresponding rotation of the LOS and the reference frame
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To obtain the boundary conditions for the retrogressive equations for the barrier, we
investigate their values on the BUP. Recalling the s-parameterization of C and the particular
value s̄ for the BUP given by (16), we obtain the boundary conditions

x(τ = 0) = � sin s̄, (35)

y(τ = 0) = � cos s̄, (36)

ν1(τ = 0) = sin s̄, (37)

ν2(τ = 0) = cos s̄. (38)

Thus, we are now able to integrate the system of Eqs. (26)–(29) subject to the above boundary
conditions, and readily obtain

ν1(τ ) = sin(s̄ − cτ), (39)

ν2(τ ) = cos(s̄ − cτ), τ ∈ [0, τmax]. (40)

The above equations remain valid up until the time instant τmax is reached, defined in Eq.
(43) below. The analytic expression of the barrier curve is

x(τ ) = −R + R cos(cτ) + (� + vpτ) sin(s̄ − cτ), (41)

y(τ ) = R sin(cτ) + (� + vpτ) cos(s̄ − cτ), τ ∈ [0, τmax], (42)

where s̄ is given by (16). Equations (41) and (42) define the barrier of the game, that is, they
separate the game space into two regions; a region in which optimal play of the pursuer leads
to capture and a region in which optimal play of the evader leads to evasion. To obtain τmax, it
is important to note that the barrier expression is invalidated as soon as two barrier branches
intersect – the part of the barrier arc beyond the point of intersection is then no longer valid
and is therefore discarded. In our case, the two branches of the barrier intersect on the y-axis,
because of the inherent symmetry of the problem at hand. Thus, we may obtain τmax as the
root of x(τ ) = 0, i.e., τmax is the solution of the transcendental equation:

(� + vpτmax) sin(s̄ − cτmax) = R − R cos(cτmax). (43)

Figure 4 depicts the barrier for ve = 1, vp = 0.6, R = 0.7, � = 0.5. Notice that the
barrier meets the terminal surface at the BUP tangentially.

Remark 1 It may happen that the game is initiated with a state that lies on the y-axis. In
this case, the evader’s control is not uniquely determined. In fact, the positive y-axis is a
particular type of singular surface for this game, called the dispersal surface [9]. Around
a dispersal surface, the state is driven away from it by the evader’s control input. Starting
from a state on a dispersal surface, there is ambiguity in E’s optimal control; it is also the
only locus on which E’s optimal response is not independent of P’s action. This is commonly
known as perpetuated dilemma, a problem, which is usually eliminated by allowing agents
to randomize their actions. On the dispersal surface, the pursuer will give the evader a small
temporal advantage by slightly delaying his action, and thus, although lengthening a bit the
time to capture, cause the state to move away from the dispersal surface. The evader, having
chosen a direction, will be captured by the pursuer, albeit a bit later.
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Fig. 4 The barrier, given by Eqs. (41) and (42), for ve = 1, vp = 0.6, R = 0.7, � = 0.5. Notice that the
barrier meets the terminal surface tangentially at the BUP

3.3 The Case of Equal Speeds

The solution for the case in which both agents have the same speed may be obtained directly
from the preceding analysis by applying ve = vp = v. The BUP in this case is

s̄ = arccos

(
− vp

ve

)
= π, (44)

which means that the entire terminal surface is usable, except for the lowest point of the
capture circle. The barrier is obtained by direct substitution of s̄ = π in Eqs. (41), (42):

x(τ ) = −R + R cos(cτ) + (� + vτ) sin(cτ), (45)

y(τ ) = R sin(cτ) − (� + vτ) cos(cτ), τ ∈ [0, τmax], (46)

where τmax is now the solution to the transcendental equation:

(� + vτmax) sin(cτmax) = R − R cos(cτmax). (47)

The barrier is tangent to the bottom of the capture circle, as shown in Fig. 5. Recall that
when the pursuer is faster than the evader, capturability is global and a barrier does not exist.
The case when the speed ratio is equal to one is in fact the first instance where a barrier
appears, and the pursuer’s bounded capture zone is then maximal; as the speed ratio vp/ve
becomes less than one, the bounded capture zone shrinks.

3.4 The Case of Point-Capture

The solution of the case of point-capture can be obtained by direct substitution of � = 0 in
the barrier expressions (41) and (42), which leads to

x(τ ) = −R + R cos(cτ) + vpτ sin(s̄ − cτ), (48)

y(τ ) = R sin(cτ) + vpτ cos(s̄ − cτ), τ ∈ [0, τmax], (49)
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where s̄ is given by (16) and τmax is the solution to the transcendental equation

vpτmax sin(s̄ − cτmax) = R − R cos(cτmax). (50)

The barrier in this case is depicted in Fig. 6.
So far, we have solved a game of kind; specifically, we have characterized which states,

under optimal play, lead to capture andwhich states lead to evasion.We now turn our attention
to the time-optimal problem when the outcome is capture, that is, we shall consider initial
states within the capture zone delineated by the barrier and examine the characteristics of
the time-optimal capture trajectories. We will demonstrate that, for the special case of point-
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capture, the time optimal problem is equivalent to Zermelo’s Navigation Problem in optimal
control [34].

4 Point-capture: Time-Optimal Trajectories and Connection to Zermelo’s Navigation
Problem

Zermelo’s Navigation Problem (ZNP) is a well-known result in optimal navigation, which
has received a lot of attention in the literature (see for example [1,2,11]). Initially stated by
the German mathematician Zermelo in 1931, the problem formally reads In a given vector
field of currents, which is a function of position (and possibly time), a vehicle moves with
constant speed relative to the currents. How should the vehicle be navigated in order to reach
a given destination in minimum time? [5,34]. In ZNP, the equations of motion of the vehicle
are given by

ẋ = v cosφ +U (x, y), (51)

ẏ = v sin φ + Q(x, y), (52)

whereU , Q are known functions that correspond to the components of the vector field along
the x and y directions, respectively, and φ is the heading angle with respect to the x-axis (the
control input). The goal is to minimize time until the vehicle reaches a target location.

Returning to the original differential Eqs. (6)–(7), it is easy to observe that since E’s
optimal strategy is u = −1 (for initial conditions of the pursuer in the right-half plane), Eqs.
(6) and (7) assume the form

ẋ = −vp sin φ + ve

R
y, (53)

ẏ = −vp cosφ − ve

R
x − ve, x ≥ 0. (54)

We may change the angle convention by introducing φz = 3π/2 − φ to obtain

ẋ = vp cosφz + ve

R
y, (55)

ẏ = vp sin φz − ve

R
x − ve, x ≥ 0, (56)

and the target location which P intends to reach in minimum time is the origin (0, 0).
By comparing Eqs. (51)–(52)with (55)–(56), it is evident that E’s optimal control results in

an induced vector field akin to a current, which P needs to overcome in order to intercept E in
minimum time. This vector field is shown in Fig. 7. This fact allows us to use the well-known
Zermelo’s Navigation Formula [5] which states that the optimal control φ∗ obeys

φ̇∗ = sin2 φ∗ ∂Q(x, y)

∂x
+ sin φ∗ cosφ∗

(
∂U (x, y)

∂x
− ∂Q(x, y)

∂y

)
− cos2 φ∗ ∂U (x, y)

∂y
(57)

which, for U (x, y) = ve y/R and Q(x, y) = −vex/R − ve, yields

φ̇z
∗ = −ve

R
, (58)

or, in terms of the initial angle φ of our problem,

φ̇∗ = ve

R
. (59)
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overcome in order to intercept E in minimum time. Plotted for vp = ve = 1, R = 0.7

The problem therefore reduces to a two-point boundary value problem consisting of integrat-
ing equations (53), (54) and (59) subject to initial conditions (x, y) and φ∗(0) that will lead
to a trajectory passing through the origin (0, 0). Alternatively, one can consider integrating
this system of ODEs backwards in time, i.e., by flipping the sign of the right-hand sides of
(53), (54) and (59) and using the variable τ , subject to the retrograde boundary conditions
(x, y) = (0, 0) and a variable retrograde boundary condition φ∗

f ∈ [0, 2π] for (59). This
will yield a parametric family of curves, and it remains to locate the one that passes through
the original point (x, y) of interest. In fact, this integration can be performed analytically to
obtain the following parametric family of curves:

x(φ∗
f ; τ) = −R + R cos(cτ) + vpτ sin(φ∗

f − cτ), (60)

y(φ∗
f ; τ) = R sin(cτ) + vpτ cos(φ∗

f − cτ), τ ∈ [0, τmax], (61)

where φ∗
f is the free parameter and τmax is the solution to the transcendental equation:

vpτmax sin(φ
∗
f − cτmax) = R − R cos(cτmax). (62)

Figure 8 illustrates several time optimal trajectories, members of the parametric family of
curves given by (60) and (61), corresponding to different values of φ∗

f . The barrier, i.e., the
rightmost time optimal trajectory, is obtained for φ∗

f = π and is identical to the barrier of
Sect. 3, shown in Fig. 6.

5 Optimal Trajectory in the Inertial Reference Frame

Although the pursuer control action leads to curved optimal paths in the reduced state space,
as seen in Fig. 8, its trajectory in the inertial reference frame is a straight line. This can be
easily seen from the fact that φ = π − φp + φe, thus φ̇p = −φ̇ + φ̇e which, by virtue of the
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Fig. 9 a Optimal path in the reduced space of the evader fixed reference frame. Arrows indicate the players’
controls (green for E and red for P) and the resulting motion direction (blue). b The resulting trajectory of
motion depicted in (a), shown in the inertial reference frame. Optimal trajectories for P, E and evolution of
the Line of Sight (LOS) (Color figure online)

ZNP solution of Eq. (59) and the evader dynamics given by Eq. (5) for u = −1, results in
φ̇∗
p = −ve/R + ve/R = 0.
As a result, the intercept point I can be computed in closed form as shown in Figs. 9 and

10. Figure 9 shows an optimal path in the evader fixed reference frame and the resulting
trajectories if the motion is translated into an inertial reference frame.

Figure 10 depicts the geometry of the problem in the inertial reference frame. For the sake
of brevity, henceforth, we will continue the analysis for the case of equal speeds, although
the same analysis can be performed for the more general case of unequal speeds. Given an
initial distance L0, for interception at point I, we have that d1 + d2 = L0, where
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d1 = (v cosφ∗
p) t f , d2 = −

∫ t f

0
−v cosφe(t) dt,

and where v = vp = ve, which, combined with the following expression for d3

d3 = (v sin φ∗
p) t f =

∫ t f

0
v sin φe(t) dt (63)

yields

vt f cosφ∗
p −

∫ t f

0
v cos(φe(0) − v t/R) dt = L0,

∫ t f

0
v sin(φe(0) − v t/R) dt = v t f sin φ∗

p,

or, alternatively,

v t f cosφ∗
p = L0 + R

(
sin φe(0) − sin(φe(0) − vt f /R)

)
, (64)

v t f sin φ∗
p = −R

(
cosφe(0) − cos(φe(0) − vt f /R)

)
. (65)

Taking the squares of both sides of (64) and (65) and adding together yields

v2t2f + 2R2 cos(vt f /R) + 2L0R sin(φe(0) − vt f /R)

−2L0R sin φe(0) − L2
0 − 2R2 = 0. (66)

This equation can be solved for t f to find the optimal interception time. The optimal value
φ∗
p is then given by (65) as follows:

φ∗
p = arcsin

(
R

vt∗f

(
− cosφe(0) + cos(φe(0) − vt∗f

R
)
)
)

, φ∗
p ∈ [0, π

2
], (67)

where t∗f denotes the optimal interception time. It is important to note that the above equations
are only valid if the initial state of the game lies within the capture region of Fig. 6.
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6 Domain Decomposition in the Case of a Faster Pursuer

For the sake of completeness, in this section we investigate the case when the pursuer is not
only completely agile, but is also faster than the evader (that is, the speed ratio α = vp/ve >

1). As already stated, this case leads to global capturability, namely, the evader is captured
regardless of the initial conditions of the pursuer and the evader [6]. Although capture is
guaranteed on the entire Euclidean plane, it is shown below that the Euclidean plane can
be partitioned by a boundary B separating two different types of solutions exhibited in the
game: one in which the evader is captured while performing a hard turn, and another one in
which the evader, having completed the turn, is captured during a straight-line dash while
trying to avoid the pursuer (also referred to as the end game). The region inside the boundary
B encloses the circular target set and corresponds to initial conditions that lead to the first
type of solution. For initial conditions of the game outside of the boundary, the second type
of solution manifests itself. The shape of the boundary B resembles in appearance the one
of the barrier for the case α ≤ 1. A geometric procedure to obtain the boundary B in the
realistic plane is presented next.

6.1 Geometric Construction of the Boundary in the Inertial Reference Frame

Recall that the optimal trajectory of the pursuer is a straight line in the inertial reference
frame. Points on the boundary correspond to initial conditions of the pursuer so that capture
occurs at the end of the evader’s turning maneuver. To this end, let the inertial reference
frame whose origin coincides with the initial position of the evader and the y-axis coincides
with the evader’s initial velocity vector orientation (see Fig. 11). From the point centered at
O = (−R, 0), draw a circle of radius R. For each θ ∈ [0, θmax], draw the tangent to the
circle of radius R centered at O of length αRθ + �, from the point E ′(θ) on the circle, as
shown in Fig. 11. The endpoint B of the tangent line lies on B, and as θ ranges from θ = 0
to θ = θmax the point B traces the boundary B.

Note that θmax is given by the solution to the transcendental equation:

tan
θmax

2
= αθmax + �

R
, (68)

Fig. 11 The construction of the
boundary B
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and when θ = 0, then B = (0,−�) and the boundary B meets the y-axis at ymax =
αRθmax + �.

In the case of point-capture (� = 0), Eq. (68) reduces to

tan
θmax

2
= αθmax, (69)

where θmax > π/2. The boundary B then meets the y-axis at ymax = αRθmax. When point-
capture is considered, the boundary B is the involute of the circle of radius R centered at O ,
that is, it is the curve obtained by attaching a taut string of length Rθmax to the point E ′(θmax)

on the circumference of the circle of radius R centered at O , and tracing its free end as it
unwinds.

In Cartesian coordinates, the involute is obtained geometrically from Fig. 12 as follows:

x(θ)/R = cos θ + αθ sin θ − 1, (70)

y(θ)/R = sin θ − αθ cos θ. (71)

The boundary in this case is depicted in Fig. 13.

Fig. 12 The construction of the
boundary B for point-capture
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Fig. 13 The boundary B in the case of point capture, for a α = 2, and b α = 1. Notice that in (b), xmax/R
corresponds to y/R = 1 and is equal to π/2 − 1. For α > 1 the area enclosed by these curves corresponds
to initial conditions that lead to capture while the evader is turning, whereas initial conditions outside the
area enclosed by the curve lead to capture after the evader has completed her turn and while she performs a
straight-line dash away from the evader (end game). For α = 1, this curve separates the regions of capture
(inside) and escape (outside), and it thus coincides with the barrier shown in Fig. 6
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6.2 The End Game Solution in an Inertial Reference Frame

The case of capture by a faster pursuer when the game exhibits a tail chase admits a geometric
solution similar to the one presented in Sect. 5. Assume that the pursuer is positioned at an
initial distance d from the evader, as shown in Fig. 14. In the resulting trajectory, the evader
completes a hard turn and is captured after a tail chase at point I. According to Fig. 14, which
depicts the case when the evader initial position is in the lower right quadrant (that is, when
β ≥ π/2), and recognizing that d = √

x2 + y2, sin β = x/d and cosβ = y/d , one directly
obtains

OP =
√
d2 + R2 + 2Rd sin β, (72)

E ′P =
√
d2 + 2Rd sin β, (73)

cos(δ + θ) = R

OP
, (74)

sin(δ + θ) = E ′P
OP

, (75)

sin δ = −d cosβ

OP
, (76)

cos δ = R + d sin β

OP
. (77)

Applying well-known trigonometric formulas, Eqs. (72)–(77) result in the following expres-
sion for θ :

sin θ = (R + d sin β)
√
d2 + 2Rd sin β + Rd cosβ

d2 + R2 + 2Rd sin β
, (78)

cos θ = −d cosβ
√
d2 + 2Rd sin β + R(R + d sin β)

d2 + R2 + 2Rd sin β
. (79)

A similar analysis can be performed if the pursuer’s initial position is in the upper right
quadrant, that is, when β < π/2. In this case, one simply has to replace the angle θ + δ

with the angle θ − δ in Eqs. (74)–(75), and change Eq. (76) to sin δ = d cosβ/OP . Solving
the resulting systems yields the same expressions for sin θ and cos θ , namely Eqs. (78)–(79).

Fig. 14 The end game solution
in the inertial reference frame
centered at the evader’s initial
position, aligned with the
evader’s initial velocity vector.
The point P ′ denotes the location
of the pursuer at the end of the
evader’s turning maneuver (that
is, when the evader is at point E ′)
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The optimal control of the pursuer expressed in relative bearing with respect to the line of
sight, as shown in Fig. 14, is readily obtained as ϕ∗ = π − β − θ . The time to capture can
be computed to be

t f = E ′P ′ − �

vp − ve
+ Rθ

ve
, (80)

where P ′ is the location of the pursuer when the evader is at location E ′. Noticing that
E ′P ′ = E ′P − αRθ , the above expression finally yields

t f =
√
d2 + 2Rd sin β − αRθ − �

vp − ve
+ Rθ

ve
. (81)

7 Conclusions

In this paper, we have investigated the pursuit and evasion differential game between an
agile pursuer and an evader having maneuverability restrictions, that is, a “pedestrian” and
a “car” á la Isaacs, respectively. The agents are assumed to have constant speeds. There are
two problem parameters, namely the speed ratio α = vp/ve and the turn and capture radius
ratio �/R. Using the framework of differential game theory, it was proven that the evader’s
optimal strategy is to always initially make a hard turn away from the pursuer irrespective
of the problem parameters, while the pursuer’s optimal strategy is to hold a fixed course; if
α > 1 and initially P is far from E the endgame will entail a pure pursuit.

The solution of the game entails a characterization of the barrier that separates states
that lead to capture under optimal play, and states that lead to evasion regardless of the
pursuer’s actions. For a speed ratio α = vp/ve ≤ 1, the capture region is bounded. The
speed ratio α > 1 leads to global capture but, unlike in the Homicidal Chauffeur differential
game, there is no open barrier and the evader does not perform a swerve maneuver. Time-
optimal trajectories were obtained by recognizing the equivalence of this problem, when
point-capture is investigated, to the classical Zermelo navigation problem in optimal control.
The equivalent analysis of the problem in the inertial frame allows the explicit calculation
of the time of capture and the corresponding optimal pursuer (constant) inertial heading.
Apart from their own intrinsic differential game theoretic merit, the results of this paper have
immediate application to collision avoidance problems. Specifically, the barrier delineates a
safe region in which a collision is not possible even in the worst case of a malicious—and
more agile—pursuer. The application of the results of this paper in two-agent andmulti-agent
collision avoidance problems, such as Air Traffic Control and maritime collision avoidance,
are currently under investigation and will be reported in the near future.
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