A Note on the Consensus Protocol with Some
Applications to Agent Orbit Pattern Generation

Panagiotis Tsiotras and Luis I. Reyes Castro

Abstract We propose an extension to the standard feedback control for consensus
problems for multi-agent systems in the plane. The proposed extension allows for a
richer class of trajectories including periodic and quasi-periodic solutions, as well
as agreement to consensus states outside the convex hull of the initial positions of
the agents. We investigate in great detail the special case of three agents, which
results in non-trivial geometric patterns described by ellipsoidal, epitrochoidal and
hypotrochoidal curves.

1 A Generalized Consensus Protocol

Consensus problems have been originally used in distributed computing and man-
agement science and, most recently, have found extensive application in multi-agent,
mobile network problems [12, 16]. In this paper we propose a generalization of
the standard consensus algorithm which has been used extensively in the litera-
ture [13, 3, 11]. The proposed extension of the standard consensus protocol leads
to the following advantages: first, it can be used to achieve consensus at points that
do not necessarily belong to the convex hull of the initial conditions. This may be
beneficial in case of obstacle avoidance or as part of deception strategies. Second,
as shown in the second part of the paper, it can be utilized to generate intricate ge-
ometrical patterns of the agent paths. These paths can be useful for coordinated,
distributed surveillance and monitoring applications.

Coordinated algorithms for network formations have appeared previously, for
example, in [14, 15, 7] as well as in the work of Leonard and Sepulchre [9, 17, 18].
Therein the authors make use of geometric information to achieve specific formation
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patterns. The control laws are at the acceleration level (e.g., [7, 18]), often derived
from potential-like functions. Typically, these works focus on uni-directional ring
communication topology, assuming identical control laws for each agent (e.g., as
in cyclic pursuit) [14]. In [14] all-to-all communication and fixed ring topology is
assumed for the graph resulting in a cyclic pursuit. The particular choice of the
communication topology leads to a graph Laplacian which is a circulant matrix and
the achievable formations are lines, circles or logarithmic spirals, similarly to the
results of [9, 17, 18, 15].

The consensus control law proposed in the current paper cannot be readily de-
rived from a scalar potential and its design is at the velocity level, similarly to the
original consensus protocol. Depending on the gain matrices, the resulting paths
may lead to more intricate trochoidal paths, as opposed to just straight lines, cy-
cles and spirals. Using minimal assumptions we are thus able to generate geometric
patterns of the agent trajectories that go beyond formation-type geometric mod-
els [20, 14, 9, 10, 15].

A New Consensus Protocol

Consider N agents in the plane, whose locations are given by the state variables
xi € R? fori=1,...,N, satisfying the differential equations

Xi=w, i=1,...,N. (1

As usual, to this problem we associate a graph ¢ that describes the communication
topology between the agents. That is, ¢ has N nodes and M edges (links), with each
edge denoting knowledge of the relative position between the corresponding agents.
Two nodes are neighbors in the graph ¢ (hence connected by an edge) if and only
if they can communicate with each other. Throughout the paper it will be assumed
that the communication topology is fixed, that is, the neighbors of each node do not
change as the agents move.
Define the incidence matrix D € RV*M with elements

+1, if ith node is the head of jth edge,
d;j = § —1, ifith node is the tail of jth edge, 2)
0, otherwise.

To each edge we assign the difference (error) variable

N . ..
x; —x;, ifiisthe head,
=Y dpx= { Y 3)
(=1

xj—x;, if jis the head,

where z; € R? for k = 1,...,M. If the columns of D are linearly independent,
that is, if the graph does not contain cycles, then the error variables z; are lin-
early independent vectors [1]. Note also that the graph is connected if and only
if rank D = N — 1 [13, 4]. Introducing the stack vector x = [x{ e xlTV]T € RN, the
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state equations (1) can be written compactly as
X=u, “)

where u = [u{ .. u}v]T € R?N. We propose the control following law! for (1)

M M
ui=—%Y dizc+B: Y dupx, i=1,....N, (5)
k=1 k=1
where p; € R? such that pizk = 0, where ; > 0 and B; € R. For instance, let py def
Sz, (k=1,...,M), where S is the skew symmetric matrix
0-1
- L . } . ©)

Letting the stack vector p = [p} pIT‘,,]T € R?M yields, p = (Iyy ® S)z, where z =
[Z{ e ZZTV,]T € R*M The composite control law (5) then takes the form

u=—TDRhb)z+(BDRL)p=—(TDL)z+ (BD®S)z, 7

where I' = diag(y1,...,%) and B = diag(fy, ..., By). Note that the standard con-
sensus algorithm results as a special case of (7) where B = 0.

Remark 1. The basic idea behind the control law (5) is the use of additional geo-
metric information, inferred from the relative distance between the agent and its
neighbors. Specifically, the second term in (5) is proportional to the direction which
is perpendicular to the relative distance between the agent and its neighbors. In (7)
this information is encoded via the multiplication of the error state with the skew-
symmetric matrix S. This new skew-symmetric term provides additional flexibility
in terms of the achievable final rendezvous points, as well as in terms of the resulting
trajectories followed by the agents.

Remark 2. The proposed control law (7) has the same form as the one given in [1,
Eq. (16)]. However, since the second term is (7) is not the gradient of a scalar func-
tion, it does not come from a potential, and hence (7) is more general than the
family of control laws of [1]. The absence of a scalar potential is owing to the
skew-symmetric term in (7) which introduces a circulation. In this sense, the con-
trol law (7) is akin to the gyroscopic control laws proposed in the robotics litera-
ture [6, 21, 19].

! The alternative control law u; = ,):5\(4:1 Yedinzi + Y| Budipr which weights each edge sepa-
rately could have been used in lieu of (5). The results of the paper remain essentially the same for
the latter choice as well.
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Consensus and Final Rendezvous Position

From (3) it can be easily shown that the error vector z can be written compactly as
follows
z=(D"®Db)x. ®)

The differential equation for x is therefore given by

x=—(D@hL)(D'®@hL)x+(BD®RS)(D'®h)x
=—(('DD")® L, — (BDD") ® S)x
=—(I'L)®hL— (BL)®S)x, €))

where L% pp7 € RV*N is the graph Laplacian [11]. From now on, we will assume
that L always corresponds to a connected graph. We have the following lemma.

Lemma 1. Let I and B be diagonal matrices as before, and assume that I" > 0 (i.e.,
it is positive definite). Then

dim {%L (CLy&h — (BL) ®s)] =2.

Proof. Tt suffices to show? that null [((I'L) ® I, — (BL) ® S)"] = 2. Notice now that
null[(LIN) ®@ L+ (LB)®S)] = null (L L)(I’ ® L +B®S)]. The matrix I' ® I +
B® S is always invertible if I" > 0. The result now follows from the fact that, for a
connected graph, the Laplacian has a single eigenvalue at the origin [4], and hence
nll[Le®h]=2. O

Let 1y def (1,1,...,1)" € RY denote the N-dimensional column vector of ones,
and recall that L1y = 0 [11, 4]. For any v € R? we have that

(FLy®bL—(BL)@S)(Iy®@Vv) = ([L1y) © Vv — (BL1y)® (SV) =0.  (10)

Since null[(I'L) ® I, — (BL) ® S| = 2 it follows that 1y ® v spans to the null
space of the matrix in (9). It follows that the equilibrium point X.. of (9) satis-
fies the condition X.. def limy e X(f) = 1y ® Xeo for some X, € R?, equivalently,
My oo X1 () = limy e X2 (7) =+ -+ = 1My 00 Xy () = Xoo.

The coordinates of the final consensus point Xe = [Xeo Yoo|" € R? can be explicitly
computed using the following proposition.

Proposition 1. Let vy, v, € R?N be such that span{vy,v,} = %* ((I'L)® L — (BL) ®
S). The final rendezvous point is given by

AR M

2 Here nullA denotes the nullity of A, i.e., the dimension of the null space of the matrix A, that is,

nullA & dim[.4(4)].
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Proof. From Lemma 1 there exist linearly independent vectors vi, v, € %+ ((F L)®
L — (BL)®S) such that vix = —v] ((I'L) ® I, — (BL) ® S)x = 0, (i = 1,2). Con-
sequently, vix(¢) = v'x(0) for all r > 0. In particular, we have that v](1y ® Xe) =
VI (1y ® I)xe = vIx(0) (i = 1,2). It follows that

vix(0) VAN @ h)] [Xe v o

- = Iy®r : 12
[VEX(O)} |:V£(1N QD) |yeo V] (Iy®bL) Vo (12)
Since the vectors v; and v; are linearly independent, rank[v; v,] = 2. Furthermore,

rank(1ly ® I) = (rank1y)(rank/;) = 2. Let now © def ('Ly® L — (BL)®S. From
the definition of v; and vy, it follows that 4" ( v vz]T) = %(0). An easy cal-
culation also shows that Z(1y ® ) = A/ (®) (refer also to equation (10)). Fur-
thermore, one can easily show, along the lines of the proof of Lemma 1, that
rank @ = rank @2, which implies that Z(®) N4 (@) = {0}. It follows immediately
that A" ( [v; v2]") N%(1y ® k) = {0}. Fact 2.10.14 in [2] yields that the 2 x 2 ma-
trix in (12) has rank 2 and hence it is invertible. The result now follows directly from
(12). O

Applications to Agent Orbit Design

In this section we investigate how several choices of the gain matrices I" and B
can generate specific patterns for the agent paths. Since we are mainly interested
in periodic or quasi-periodic trajectories, we assume that I" = 0. It follows that the
closed loop system is given by

i=((BL)®S)x. (13)

It can be easily shown that the eigenvalues of BL are all real, hence the eigenvalues
of the closed-loop matrix in (13) all lie on the imaginary axis. The structure of
the corresponding state matrix in (13) (e.g., its eigenvalues and eigenvectors) can
provide a great deal of information regarding the paths followed by the agents in
the Cartesian coordinate frame, as well as the relative location of the agents on
these paths (i.e., their relative phasing). For instance, one can ensure that the agent
trajectories either form closed paths with given phasing, or they form a dense set of
trajectories, ensuring that almost every point in a given region will be visited at least
once by one or more agents.

Remark 3. In [15] Ren introduced Cartesian coupling in the consensus control law
using a multiplication of the Laplacian matrix by a rotation matrix; this is similar to
the skew-symmetric matrix we use in (13). Nonetheless, additional constraints on
the Laplacian matrix are needed in [15] to capture the richness of trajectories we
can obtain with the approach proposed in the current paper.
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Case Study: Three Agents Connected in a Path Graph

In order to keep the analysis manageable, and to be able to provide closed-form
expressions, henceforth we will restrict the discussion to three agents in the plane,
that is, we take N = 3. For simplicity, we will also assume that the simplest agent
interconnection topology, namely a path graph. The corresponding incidence matrix
is given by
-1 0
D=|1 —-1]. (14)

We are primarily interested in three types of closed curves: ellipses, epitrochoids,
and hypotrochoids. Since the ellipses (and circles) have well-known parameteriza-
tions, next we will briefly review the main facts on epitrochoids and hypotrochoids.
All these follow under the general class of trochoid curves, which includes car-
dioids, astroids, limagons, and all polar coordinate roses [5].

An epitrochoid curve is generated by a point P attached at a radial distance d
from the center of a circle of radius r, which is rolling without slipping around a
circular track of radius R with angular velocity @ (see Fig. 1(a)). The distance d
can be smaller, equal, or greater than the radius r of the rolling circle. In terms of
Cartesian coordinates, an epitrochoid can be expressed as [8]

x(0) =x.+ (k+1)rcos(6 — ¢a) —dcos((k+1)6 — ¢p), (15a)
y(0) =y + (k+1)rsin(0 — ¢4) —dsin((k+1)0 — ¢p), (15b)

where @4 and @p are constant angles, x. and y, are the coordinates of the center of the
circular track of radius R and k = R/r. The angle 0 denotes the angular position of
the circle of radius r, given by 8 = t. It can be shown that & is the number of points
at which the agent is closest to the center of the circular track. For the purposes of
this paper, we will henceforth refer to these points as crests. In the special case when
r = d, the curve becomes an epicycloid with k cusps; at these points, the curve is
not differentiable. Note that ellipsoidal paths correspond to the case when k = 0.

Another relevant curve of interest in this paper is the hypotrochoid [8], with para-
metric equations

x(0) =%+ (k—1)rcos(6 — ¢4) +dcos((k—1)6 — ¢p), (16a)
y(0) =ye+ (k—1)rsin(6 — ¢4) —dsin((k—1)6 — ), (16b)

where k > 1 with k = R/r as before. The hypotrochoid can be reproduced by a point
P attached at a distance d from the center of a circle of radius r, which rolls inside
a circle of radius R. Again, the distance d can be smaller, equal, or greater than the
radius r of the rolling circle; this radius, however, cannot exceed that of the circle R.
Examples of hypotrochoids are shown in Fig. 1(b).
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(a) Epitrochoid curves. The blue (b) Hypotrochoid curves. The

curve has d < r, while the second blue curve has d > r, while

one has d > r. Both epitrochoids the second one has d < r. Both

have R =4, r =2 (hence k = 2). hypotrochoids have R =6, r = 1.5
(hence k = 4).

Fig. 1 Representative examples of epitrochoids and hypotrochoid curves.

Case I: Epitrochoidal Paths

Consider the case when I' = 0 and B = diag(f3, 8, 8), where 8 > 0. Following (9),
the solution of the closed loop system can be obtained easily as follows

%\/mcos(ﬁt —0n) + %\/chcf‘cos(.?)ﬁt —34) + %CS
4/ + sin(Br— 912) — § /A + csin(3Br — gns) + oo

x(t) = %\/C%TC%COS(3L3I_¢34)+%C5 -

—%\ / C% + Ci sin(3ﬁt — ¢34) + %6‘6

7% ¢t +c5cos(Br — ¢12) + %\/ 3+ cjcos(3Bt — p34) + %65
%\/msm(ﬁ’ —¢12) — é\/msm(wf — $34) + 1c6

where x; = [x; yi|" € R? for i = 1,2,3 and where cy,...,cg are constants depending
on the initial conditions, and ¢, = arctan(cy/c;) and ¢34 = arctan(cs/c3). Com-
paring the expressions for the x(0) and y(6) components of an epitrochoid in (15)
to those in (17), the following observations can be made. First, for all agents, the
center of their trajectories has coordinates (x.,y.) = (%C5, %c(,), which is the cen-
troid of the initial positions of the agents. For agents no. 1 and no. 3, we have that
Ri+ri=13(c? +c%)% and d; = %(c% +ci)% (i=1,3). For the same two agents, k =2,
which implies that R; = 2r; (i = 1,3). In other words, for any given initial positions,
the ratio of the radius of the rolling circle to the radius of the track is fixed. More-
over, from the definition of %, it becomes evident that these two agents will describe
epitrochoids with only two crests. The times at which agent no. 1 is closest and far-
thest from the center of its trajectory (its crests) can be computed from the solutions
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of the equation
sin(2Pr — @12 + ¢34) = 0. (18)

Also, by considering the distance of the radius of agent no. 2 from the origin, it can
be easily shown that the points of closest approach for agents no. 1 and no. 3 differ
by an angle 7/2 with respect to the center of the circular track. This relationship,
along with (18), can be employed to calculate the orientation of the curves with
respect to an absolute Cartesian coordinate frame. Agent no. 2 describes a circle of
radius R, = 1(c+ c2)2 with frequency 3.

To demonstrate these facts, consider the case B = diag(1,1,1) with initial posi-
tions x; (0) = (6,8), x2(0) = (=7,5), x3(0) = (5,—10). The center of the orbits is
located at (x¢,y.) = (0.33,1.33). The radii of the circular tracks for agents no. 1
and no. 3 are R} = Rz = 2.40, and the radii of the rolling circles for agents no. 1
and no. 3 are r; = r3 = 1.20. The radius of the circle described by agent no. 2 is
R, = 1.49. After computing the phase angles @1, and ¢34, and evaluating

6 = arctan <YI(T)_yC> , (19)

x1(T) — %

where 7 is the solution of (18), it is found that the angle by which the crests of the
epitrochoids are inclined with respect to the x-axis is 6 = —18.81°. The correspond-
ing trajectories are shown in Fig. 2.

Y-Axis
Y-Axis
o

-10

-20 -15 -10 5 0 5

X-Axis

Fig. 2 Three agents displaying a circle and two Fig. 3 Three agents displaying a circle and two
epitrochoids when B = diag(1,1,1). The trajec- ellipses when B = diag(1,—1,1). Again agent 1

tory of agent no. 1 is shown in blue, the one of is shown in blue, agent 2 in red, and agent 3 in
agent no. 2 is red, and the one of agent no. 3 in black.
black.

Case II: Ellipsoidal Paths

Consider now the case of the same system as before, but this time with the gains
given as follows B = diag(3,—f3, 8), where 8 > 0. The solution of the closed-loop
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system in this case leads to

cpsin Bt + c3cos B+ cs
—cysinfr +cacos Bt +cq

(ca—ca)sin Bt + (c3 — 1) cos Bt +cs

x(t) = . 20
(t) (c3—cy)sinBt+ (cs4 —cp)cosPt+ce |’ (20)
—cysin Bt —cycos Bt +c5
c3sinft — cacos B+ ce
where as before cy,...,c¢ are constants depending on the initial conditions. The

trajectories of agents no. 1 and no. 3 are ellipses, while that of agent no. 2 is a
circle. All three trajectories are centered around the point with coordinates (x.,y.) =
(¢s,c6) and all of them have a period T = 27t/ . Furthermore, it is easy to show that
the trajectory of agent no. 3 is an ellipse geometrically identical to that of agent no. 1,
but rotated 7 /2 radians in the counterclockwise direction. The second observation
is that whenever agent no. 1 is at the tip any of its semi-major axis, agent no. 3 is at
the tip of its semi-minor axis, and vice-versa. The radius of the circle described by
agent no. 2 is Ry, = \/ (c1 —¢3)?+ (ca — ca)?. Analytical expressions for the semi-
major and semi-minor axes of the ellipses described by agents no. 1 and no. 3 can
be computed by solving for the times at which the distance from the origin is at a
maximum and at a minimum. Note that ellipses are special cases of hypotrochoids
with R = 2r. Figure 3 shows an example for this scenario with B = diag(1,—1,1)
and initial conditions x1(0) = (—12,-3), x2(0) = (=7,9), x3(0) = (=2,12).

Case I1I: Hypotrochoidal Paths

Consider now the case when B = diag(f3, 8, —f3), where 8 > 0. The analytic calcu-
lation of the solution is cumbersome and is omitted for the sake of brevity. Instead,
insightful conclusions about the ensuing paths can be drawn by investigating the
eigenvalues of the state matrix. A simple calculation shows that the nonzero eigen-
values of the matrix (BL) ® S are X152 = +8(v/2—1)i and A3 4 = £B(vV2 + 1)i.
From the expression B(v/2+ 1) = (k—1)B(v/2 — 1) it follows

R—r 14+v2

—=k—1= .

r V2—1

It follows that the number of crests is given by k = 4 +2+/2 = 6.83, which is an irra-

tional number. A general result in analytic geometry [8] states that if k is irrational,

then the number of crests described by the hypotrochoid is infinite. The curve does

not close, and the trajectories form a dense subset of the space between the bounding

circle R and the circle of radius R — 2r. In other words, as t — oo, the hypotrochoids
described by each of the three agents fill annular areas.

The following expressions for the radius of the rolling circle r; and the distance

d; to the point P can be derived for the three agents. These can be used to obtain the

solution in terms of phase-angle relationships. Figure 4(a) shows an example with

ey
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B = diag(1,1,—1) and initial conditions x;(0) = (8,—7), x2(0) = (0,6), x3(0) =

(12,14).

Y-Axis

40 30 -20 -10 0 10 20 30
X-Axis

(a) A set of three hypotrochoids described by
three agents. Although each one has a different
ri, d; and R; parameters, they all display non-
closing curves. Notice that the value of k for
this example is irrational.

Y-Axis

(b) Same group of agents as in (a), with control
redesign to describe closed hypotrochoids with
five crests. This pattern necessitates a different
graph topology of the intra-agent information
exchange (i.e., a cycle graph).

Fig. 4 Examples of hypotrochoidal paths with three agents interconnected in a path graph and a
cycle graph.

General Case

The system (13) describe a rich family of geometric curves. However, this is still
restrictive in the sense that the curves have some fixed parameters that cannot be al-
tered by just changing the initial conditions. For instance, the epitrochoids described
in Case I can only have two crests. Moreover, the orbits of agents no. 1 and no. 3
are identical, except for the fact that they are phased apart by an angle 7/2, along
with the condition that the trajectory of agent no. 2 is a circle. Similar statements
can be made for Cases II and III. Also, recall that the hypotrochoids of Case III
were not periodic. It would be of great interest to a mission designer to be able to
employ vehicles generating in a distributed, cooperative manner suitable trajectories
with specific geometric characteristics. For instance, it may be desirable to be able
generate epitrochoids or hypotrochoids with a certain number of crests in order to
survey an area or perimeter of interest, or provide telecommunication coverage over
aregion, etc.

Based on the discussion in the previous sections, the shape and frequencies of the
resulting paths/trajectories is determined by the eigenvalues and eigenvectors of the
matrix (BL) ® S. Recall from the properties of the Kronecker product that the eigen-
values of the matrix (BL) ® S are of the form Ay where A € spec(BL) and u € specS.
Additionally, the corresponding eigenvectors are of the form v & u where v € C is
the eigenvector of the matrix BL associated with A and u € C? is the eigenvector
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of the matrix S associated with u. The task of agent trajectory design therefore re-
duces to the task of imposing the correct conditions on the spectral properties of
the matrix BL. For example, closed paths with the correct number of crests may be
ensured by selecting a suitable rational value of k, along with the eigenvalues of the
matrix BL. The type of path (epitrochoid, ellipse, hypotrochoid) may be determined
by the corresponding eigenvectors. It is clear that the path design depends both on
the feedback gain matrix B, as well as on the imposed graph topology represented
by the incident matrix D (equivalently, the graph Laplacian L).

Consider, for instance, again Case III of hypotrochoidal paths shown in Fig. 4(a),
and let us assume that we want to keep the general, overall shape of these paths,
but we want to have closed, periodic paths instead with a given number of crests.
By keeping the same eigenvectors and by changing only the eigenvalues (choose for
instance the smallest nonzero eigenvalue to be equal to A1 » = 5/3) and by imposing
five crests (hence k = 5), we are led to the following control law?

u=((BoD)®S8)z=((BoD)®S)(D'®h)x, (22)

which can be written, componentwise, as follows
M M
ui="Y Budupx =Y BuduSz, i=1,...,N, (23)
k=1 k=1

where B = [0.6213 0.8431 0.1 109} ® [1 1 fl]T and with an incidence matrix

-10 1
p=|1-10]. (24)
0 1 —1

The trajectories of the agents are shown in Fig. 4(b). Note that these trajectories
necessitate a different communication topology, namely, one which, for this case,
corresponds to a complete graph.

Conclusions

We have presented an extension of the classical consensus algorithm for multi-agent
systems. The main idea hinges on the use, by each agent, of additional directional
information that can be readily inferred from knowledge of the relative position
with respect to the other agents. The resulting control law seems to be a genuine
generalization of the classical consensus design protocol since it is not induced by
a scalar potential, and it can lead to agreement values that lie outside the convex
hull of initial conditions. A special choice of the feedback gains leads to periodic or
quasi-periodic solutions that can be used to design trajectories suitable for persistent
optimized surveillance and monitoring applications by a team of agents. The result-

3 Recall that, given two matrices A € R and B € R™™ the Schur product A o B is defined by
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ing trajectories show intricate geometric patterns generated using only relative, local
information. Future work will concentrate on developing a general theory for orbit
synthesis for an arbitrary number of agents in two and three dimensions.
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