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Abstract

This paper focuses on the application of visual SLAM
for the purpose of precise autonomous navigation around
an asteroid. We develop a factor graph-based approach al-
lowing for incremental growth and fusion of sensor orien-
tation measurements, Earth-relative inertial position mea-
surements, as well as in-situ monocular camera imagery-
based measurements, with an emphasis on the initialization
step. Crucially, and in contrast to typical simulated sce-
narios found in the literature, we validate our approach
using real imagery from NASA’s DAWN mission to aster-
oid Vesta, along with navigation comparison data from
the NASA NAIF SPICE kernels. Quantitative comparisons
show impressive accuracy for a typical target characteriza-
tion phase segment, both in terms of the estimated trajec-
tory as well as in terms of the tracked estimated landmarks.
Based on these results, this paper further supports the vi-
ability of autonomous SLAM-based navigation for deep-
space asteroid missions.

1. INTRODUCTION

In recent years, with ever improving navigation so-
lutions, space missions have successfully performed dar-
ing firsts in near-asteroid navigation. Orbiter NEAR
Shoemaker’s controlled asteroid touchdown (1996) [31],
HAYABUSA’s touchdown and successful sample return
(2003) [39], DAWN’s orbiting of two celestial bodies in
a single mission (2007) [19] and the recent OSIRIS-REx’s
Touch-and-Go (TAG) operation leveraging Natural Feature
Tracking (NFT) with high navigation solution accuracy dur-
ing descent [4], are only few of the most notable feats ac-
complished thanks to autonomous navigation.

However, the high-risk nature of near asteroid mis-
sions, paired with a lack of autonomy in current mis-
sion procedures, severely limits the possibilities in mission
design [35]. Indeed, ground-segment operators are inti-
mately involved in all in-situ tasks, which ultimately rely

on human-in-the-loop verification, as well as ground-based
computations for estimation, guidance and control [38]. In
addition, long round-trip light times and severely limited
bit-rate in communications render ground-in-the-loop pro-
cesses extremely tedious.

Clearly, precise relative navigation techniques, with in-
creased autonomy, will be a key enabling element of future
asteroid orbiter missions [8, 12]. Firstly, good navigation
can inform safe and efficient path planning, control execu-
tion and maneuvering [5]. In near asteroid missions, achiev-
ing fuel-efficiency during non-critical maneuvers and guar-
anteeing execution of safety-critical maneuvers both require
precise knowledge of the whereabouts of the spacecraft with
respect to the target. Secondly, precise navigation situates
the acquired science data. Indeed, scientists and mission
planners design science acquisition phases based on the ex-
pected scientific value of instrument data acquired at prede-
termined times, on specific orbits and with specific space-
craft orientations [24]. Thirdly, precise navigation facili-
tates the detailed mapping and shape reconstruction of the
target asteroid, since good knowledge of the spacecraft rel-
ative position and orientation with respect to the target, as
well as a good knowledge of the Sun light direction, are cru-
cial in commonly used shape reconstruction solutions [15].
Finally, good estimates of the spacecraft state enable pre-
cise characterization of the target asteroid’s spin state, mass
moment values and gravity model [24].

To contrast with the current human-centric mindset, this
paper proposes a viable autonomous navigation approach
for near asteroid operations based on asteroid imagery col-
lected by the spacecraft on-board cameras. Specifically,
the contributions of this work are the following: (a) we
formulate a precise autonomous vision-based navigation
scheme based on simultaneous localization and mapping
(SLAM) and sensor fusion; and (b) we demonstrate suc-
cessful SLAM on real imagery obtained in-situ from a pre-
viously flown asteroid orbiter mission.

This paper is organized as follows: Section 2 discusses
relevant prior work and further delimits the contributions
of this paper; Section 3 details the proposed technical ap-
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proach; Section 4 presents experiments and results to vali-
date the proposed approach, and, lastly, Section 5 provides a
discussion of the results with conclusions and future work.

2. RELATED WORK
Filter-based methods [27], such as the Extended Kalman

Filter (EKF), have traditionally been applied to per-
form multi-sensor fusion for precise navigation purposes.
Bercovici et al. [3] proposed a Flash-LiDAR-based pose
estimation and shape reconstruction approach, by solving
a maximum likelihood estimation problem via particle-
swarm optimization, followed by a least-squares filter pro-
viding measurements for the spacecraft position and ori-
entation in the asteroid frame coordinates. Other recent
works in the field have established proof-of-concepts for on-
line implementation of batch optimization and graph-based
approaches for precise near-asteroid navigation, like real-
time SLAM. Notably, Nakath et al. [26] present an active
SLAM framework which also employs Flash-LiDAR as the
base measurement of the SLAM formulation, with sensor
fusion of data from an inertial measurement unit and star
tracker, tested with simulated data. However, the limited
range of Flash-LiDAR instruments bounds the spacecraft’s
orbit to unrealistically small radii, reducing the use scenar-
ios to either navigation near very small asteroids or to the
touchdown phase for larger target asteroids. For example,
the OSIRIS-REx GoldenEye Flash-LiDAR, which is men-
tioned by both Nakath and Bercovici, only has a reliable
maximum range of 200 m [29]. I contrast, an approach
which uses long range optical imagery, like the one we pro-
pose in this paper, enables detailed characterization of the
asteroid early in the approach phase of the mission, at which
point knowledge about the target asteroid is still poor.

Multiple works have applied full visual SLAM solutions
for spacecraft relative navigation, notably Tweddle’s factor-
graph based formulation of stereo SLAM implemented on
the SPHERES platforms [37]. However, fewer works have
directly applied visual SLAM to the asteroid navigation
problem. We denote Cocaud et al. [9], who initially lever-
aged SURF [2] visual cues and range measurements, and
Cocaud et al. who focused on image feature only formu-
lation, and solved using a Rao-Blackwellized particle fil-
ter [10]. However, the latter works only tested the algorithm
on simulated imagery of asteroid Itokawa. Similarly, Bal-
dini et al. [1] implemented OpenSFM on simulated images
of comet 67P. Alternatively, Rathinam et al. [32] adapted
Tweddle’s original formulation, but failed to tackle the real
image feature point detection, feature descriptor computa-
tion or matching problems. Takeishi et al. [36] performed
a particle filter minimization of the observation error and
used both simulated landmarks and SIFT features extracted
and tracked across a sequence of real images of a simple
asteroid mock-up, with albeit unrealistic motion.

In this paper, we implement a factor graph-based in-
cremental smoothing solution for monocular visual SLAM
around an asteroid. Using the GTSAM library [11] and
the iSAM2 solver [18], we perform multi-sensor fusion in-
corporating measurements from a star acquisition device
and Earth-relative radiometry to obtain an initial pose prior
and then we leverage image-based measurements for sub-
sequent trajectory estimation. In order to capture the real-
world effects of the challenging data association problem,
the algorithm extracts, describes and matches local image
features, thus establishing non-idealized 2D-2D and 2D-
3D correspondence mappings. Additionally, and in contrast
to current practices that leverage extended and expensive
Deep Space Network (DSN) ranging for a navigation so-
lution, we incorporate only sporadic DSN-based measure-
ments for scale ambiguity resolution. Finally, we fully test
our algorithm on an image sequence from a real past aster-
oid probing mission. We compare the estimated solution
against archived navigational data from NASA and demon-
strate excellent performance. Such a real-word comparison
is, to our knowledge, a first among works concerning near-
asteroid SLAM algorithms and constitutes a significant con-
tribution of this paper.

3. TECHNICAL APPROACH
In this section, we detail the application of a graph-based

SLAM smoothing formulation to the problem of asteroid
navigation by clearly identifying the connections with typ-
ical SLAM methodologies, while underlining the specifici-
ties of the asteroid navigation problem.

3.1. Definitions

3.1.1 Asteroid Navigation-related Definitions

Let A,S,O ∈ E3 and assume that the point A corresponds
to the center of mass of the asteroid body, S corresponds
to the center of mass of the spacecraft, and O corresponds
to an inertial point in space, e.g., the barycenter of the solar
system. Initially, we distinguish three frames of interest: the
inertial frame I , (O, {⇀ni}3i=1), the asteroid principal axis
frame A , (A, {⇀ai}3i=1), and the spacecraft body-fixed
frame S , (S, {⇀xi}3i=1). Notice that the definition of the
frame A is based on the a-priori unknown mass moments
of the asteroid, i.e., its center of mass and the principal axes
of its inertia tensor. It is necessary to initially consider an
arbitrarily chosen asteroid-fixed frame G , (G, {⇀gi}3i=1),
and to then estimate the transformation TGA ∈ SE(3) from
frame A to frame G. Note that since frame G is fixed with
respect to asteroid frameA, the transformation TGA is fixed.
An estimate of TGA is obtained as a result of detailed anal-
ysis of the asteroid’s shape [13, 15], typically performed at
a later stage, and is therefore not a subject of study in this
paper. Any reference hereafter to the relative pose of the
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Figure 1: Relative navigation problem frame definitions and
vector quantities.

spacecraft, for a given spacecraft frame S = (S, {⇀s i}3i=1),
designates the transformation

TGS =

[
RGS rGSG

01×3 1

]
, (1)

which encodes the relative rotation RGS =[
⇀sG1

⇀sG2
⇀sG3
]> ∈ SO(3) of the spacecraft

with respect to the G frame and the coordinates
rGSG =

[
rSG · ⇀g1 rSG · ⇀g2 rSG · ⇀g3

]
∈ R3 of the

spacecraft position vector relative to the point G as
expressed in the G frame.

Let t0 be an initial time and let t ≥ t0. Now let
(tk)nk=0 ⊂ [t0, t] be the sequence of sensor acquisition
times and let TGkSk , TGS(tk) describe the pose of the
spacecraft as expressed in the G frame at each time index
0 ≤ k ≤ n. Then the sequence (TGkSk)nk=0 describes the
discrete trajectory of the relative pose of the spacecraft in
SE(3).

3.1.2 SLAM-related Definitions

We define the camera sensor frame C = (S, {⇀ci}3i=1),
with fixed pose TSC with respect to the spacecraft frame S,
and obtain the sequence (TGkCk)

n
k=1 of all camera poses,

also known as frames, where TGkCk = TGkSkTSkCk =
TGkSkTSC , (k = 0, . . . , n).

Denote by Ψk =
{

Li ∈ E3, i = 1, . . . ,mk

}
as the set

of all landmarks accumulated up until time index k =
0, . . . , n, also called the map at time index k. To each land-
mark L ∈ Ψn corresponds a 3D position vector rLG ∈ R3,
whose expression in the G frame, denoted rGLG, is fixed
since the asteroid is presumed to be a rigid body. Let rk
be the total number of detected features in the image cap-
tured at time tk, k = 0, . . . , n. We collect all detected fea-
ture points in the set Υk =

{
Pi ∈ P2, i = 1, . . . , rk

}
, and

to each Pi ∈ Υk are associated the 2D image coordinates
yki ∈ R2.

3.2. Overview of Methodology

Our processing pipeline consists of a front-end system
and a back-end system, along with a initialization step and
a loop closure detection step.

3.2.1 Initialization

Initialization of the SLAM problem is a two-tier process,
in which we generate an initial estimate for the map Ψ1,
as well as insert prior factors for at least two camera poses.
We leverage sensor information at the approach phase of the
asteroid mission to perform the initialization.

Initially, we assume that we have an uncertain measure-
ment of the spacecraft’s inertial pose, which, using the ex-
ponential map (at the identity) of the SO(3) group of rota-
tions and the hat operator (see [7]), can be defined as

Tm
IS0 , TIS0

[
exp

(
[ε1]
∧)

ε2

01×3 1

]
, (2)

[
ε>1 ε>2

]> ∼ N (06×1,Σ
m
T,0

)
, with known covariance

matrix Σm
T,0. Notice that we can write the true spacecraft

inertial pose as TIS0 = TIG0TG0S0 , and, for simplification,
we can choose the arbitrary frame G such that TIG0 = I4,
meaning that frames G0 and I coincide. It then follows that

T−1
G0S0T

m
IS0 =

[
exp

(
[ε1]
∧)

ε2

01×3 1

]
, (3)

[
ε>1 ε>2

]> ∼ N
(
06×1,Σ

m
T,0

)
. Now, for any 0 ≤

k ≤ n, the measurement Tm
ISk can be obtained

by combining an orientation measurement Rm
ISk ,

RISk exp
(
[ν]
∧)
, ν ∼ N (03×1,Σ

m
R ) and an inertial po-

sition measurement rI,mSkO , rISkO +ν, ν ∼ N (03×1,Σ
m
r ),

to form the pose

Tm
IS0 =

[
Rm
IS0 rI,mS0O

01×3 1

]
. (4)

Then, for time index k = 0, using the logarithm map of the
SE(3) group of homogeneous transformations at the identity
and the vee operator, as detailed in [7], we can write[
log

(
T−1
G0S0

[
Rm
IS0 rI,mS0O

01×3 1

])]∨
=

[
ε1

ε2

]
∼
(
06×1,Σ

m
T,0

)
,

(5)

where, by first-order linear approximation, we have Σm
T,0 =

JRΣm
RJ
>
R + Jr(R

m
IS0)Σm

r J
>
r (Rm

IS0), with Jacobians

JR =

[
I3

03×3

]
, Jr(R) =

[
03×3

R>

]
, R ∈ SO(3).
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Figure 2: Initialization steps of the SLAM problem.

A prior factor εprior
0 (TG0S0) is emplaced in the graph. This

factor encodes the residual between the pose TG0S0 ∈
SE(3) and the measurement Tm

IS0 , with covariance Σm
T,0,

In practice, an on-board star acquisition system is lever-
aged to obtain an orientation measurement Rm

ISk , which is
usually known with very good accuracy and little uncer-
tainty. Position measurements are based on Earth-relative
radiometric ranging and bearing measurements, a method of
localization widely practiced in deep space mission space-
craft tracking using communication station networks, such
as NASA’s Deep Space Network (DSN). Ground-based
navigation estimates using Earth-relative range and bear-
ing measurements, such as uplink-downlink pulse ranging
and delta Differential One-Way Ranging (∆-DOR), a type
of Very Long Baseline Interferometry (VLBI) [22, 23], are
very accurate, i.e., in the order of several hundreds of meters
for large asteroids and tens of meters for small asteroids [6].
It is important to note that our algorithm requires DSN-type
measurements only during the initialization phase, to an-
chor the initial pose as described above and rectify the scale
ambiguity.

Initialization of the map is delayed until time index k =
1, at which point at least two images of the target with suf-
ficient parallax are captured. Local image features Υ0 and
Υ1 are extracted and undergo data association, with out-
lier rejection, producing a set of 2D-2D correspondences.
A strict outlier rejection criterion is used to obtain a subset
of correspondences for landmark triangulation. It is now
possible to apply a typical 8-point algorithm [17] using the
remaining 2D-2D correspondences to find a guess for pose
at time index k = 1, followed by a triangulation of land-
marks Ψ1 using poses at time indices k = 0 and k = 1.
It is crucial to note, however, that the ambiguity in scale
will not be resolved in this fashion. Instead, to triangulate
the new landmark positions to scale, we need knowledge
about either a pose value and a landmark position, or the
true scale values for at least two of the initializing poses. In
practice, this can be accomplished by using a combination
of pose measurements and rangefinding measurements (like
a laser altimeter), for asteroids at close range, or a combi-
nation of an initial pose measurement and motion model,

with prior knowledge of the asteroid motion. For simplic-
ity, we assume that we have access to a second relative pose
measurement Tm

G1C1 for this purpose. In addition, a value
for the first pose is available from the estimate at time index
k = 0. With these two pose values, 2D-to-3D triangula-
tion is performed on the set of inlier matched feature points
to generate guess values for the estimated landmark posi-
tions

{
rGLG

}
L∈Ψ1

. At this step, all appropriate factors are
inserted based on the 2D-to-3D correspondences, resulting
in the factor graphs illustrated in Fig. 2, where the short-
hands `i , rGLiG

, i ∈ Ψk and Tk , TGkSk , k = 0, . . . , n
are used for brevity.

3.2.2 Front-End

The front-end system includes feature detection and match-
ing, and encodes the structure of the SLAM problem in a
factor graph using data structures based on the definitions
in Section 3.1.2.

We use ORB features [33], as they perform well in prac-
tice and they are fast to compute. These are also good
placeholders for more robust automatic features to be im-
plemented in the future. For matching, we use brute force
nearest neighbor search based on the Hamming distance
for binary feature descriptors. We reject 2D-2D matches
with a distance ratio greater than 0.85 [21]. We also en-
force a fundamental matrix constraint as a geometric check
for matched features. We track landmarks by comparing
the current frame n to previous frame 2D-to-2D correspon-
dences against past frame 2D-to-3D correspondences. The
feature-landmark matched pairs then undergo a reprojection
error test, after which the surviving pairs establish new pro-
jection factors to be inserted into the graph, relating to the
most recent frame n. If there are enough tracked features
from time index k = n−1, then visual tracking is successful
and the well-known PnP algorithm [20] is used to guess the
camera pose T̃GnCn value from matched correspondences.
Leveraging the latest guess pose T̃GnCn , a guess value for
3D position for each of the newly detected features is gen-
erated using triangulation. Additionally, we delay insertion
of new landmarks into the graph based on whether the num-
ber of times the associated landmark has been seen is above
a predetermined threshold of 3. The front-end system pro-
duces incrementally growing factor graphs, as is illustrated
in Fig. 3.

3.2.3 Back-End

The underlying structure of the navigation problem is
thus captured by encoding visual SLAM measurement
constraints, star acquisition orientation measurement con-
straints and Earth-relative inertial position measurement
constraints as factors in a single factor graph. The choice of
this graph formulation is predicated on the fact that a factor
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Figure 3: Front-end pipeline factor-graph following the initialization of the SLAM.
graph, as an undirected graph, readily explains the relation-
ships between unknowns, since its incidence matrix directly
relates to theR matrix in theQR factorization of the square
root information matrix [18]. In addition, the graph lends
itself naturally to incremental growth. For every new frame
inserted, the graph is incrementally augmented with the new
variables and factors by the front-end.

The iSAM2 algorithm integrates these new measure-
ment constraints as new factors and performs inexpensive
Givens rotations [18] on the existing R matrix to perform
further variable elimination without recalculating the full
variable elimination. The back-end system evaluates the
losses at each factor, computes the associated Jacobians at
the guess values

{
T̃GkCk

}n
k=0

and
{
r̃GLG

}
L∈Ψn

, and per-
forms the minimization for inference [11], yielding a new
estimate solution.

3.2.4 Loop Closure

To perform loop closure, we leverage the bag-of-words
representation developed in [14]. We convert each image
i = 1, . . . , n to a bag-of-words vector vi and compute the
similarity metric

s(vi,vj) , 1− 1

2

∣∣∣∣ vi

|vi|
− vj

|vj |

∣∣∣∣. (6)

We compare all prior images that are at least 10 frames away
from the current frame. When the similarity score for two
images is greater than a threshold η, we perform an addi-
tional geometric check and then add a factor between the
poses corresponding to the detected loop.

4. EXPERIMENTAL SETUP & RESULTS
In this section, we discuss the design of the experimental

and validation process of the proposed algorithm. Addition-
ally, we provide the results of the estimated trajectory and
map of landmarks in tests using real world data, including
quantitative results using appropriate metrics.

4.1. Experimental Setup

We use real imagery [28] of Asteroid (4) Vesta acquired
during the Rotation Characterization 3 (RC3) observation

phase of the Dawn mission [34] to validate the algorithm.
In the chosen sequence, the 1024× 1024 images were cap-
tured while the spacecraft performed one apparent revolu-
tion around Vesta in the asteroid body-fixed frame, with
a mean orbital radius of 5480 km. The images thus pro-
vide a spatial resolution of 0.5 km/pixel of the surface (see
Fig. 4 for sample images). This sequence therefore en-
ables possible loop closures to be tested as well. Two
tests were conducted for the dataset, each with a different
prior uncertainty on poses TG0S0 and TG1S1 , i.e., the co-
variance ΣT,0 = JRΣm

RJ
>
R + Jr

(
Rm
IS0
)

Σm
r J
>
r

(
Rm
IS0
)

of
the initial pose measurements. The values are chosen as
Σm

R = σ2
RI3 and Σm

r = σ2
r I3, with σR = 1 × 10−3 rad

σr = 0.2 km for the poor prior case, and σR = 1×10−5 rad
and σr = 0.05 km for the good prior case. Note that, for
simplicity in these trials, the pose discrepancy TAG is as-
sumed to be known. The intrinsic parameters of the Dawn

Figure 4: 8 time-consecutive images from the RC3 obser-
vation phase of the DAWN mission.
Framing Camera (FC) were taken to be those computed dur-
ing calibration [34]. In the conducted tests, the algorithm
was set to extract 1400 features where 8 scale pyramid lev-
els are explored.

To validate the estimated spacecraft relative trajectory,
we use the archival SPICE kernel datasets maintained
by NASA’s Navigation and Ancillary Information Facil-
ity (NAIF). For the missions archived, SPICE kernels can
be queried to provide Spacecraft ephemeris and asteroid
(Planetary) ephemeris as a function of time, as well as
Instrument descriptive data, Camera orientation matrix data
and Events information, such as mission phases.
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To validate the reconstructed map, we use an archival
shape model of Vesta [30] courtesy of the PDS Small Bod-
ies Node. This shape model was derived using stereo
photogrammetry (SPG) from a subset of DAWN mission
Framing Camera 2 (FC2) images captured during the High-
Altitude Mapping Orbit (HAMO) mission segment. The
model comprises approximately 100k vertices and 197k tri-
angular faces and is shown in Fig. 4.

4.2. Results

4.2.1 Evaluation of Trajectory Estimation

For qualitative evaluation of the relative navigation, we vi-
sualize in Fig. 5 the 3D trajectory derived from the relative
poses

{
T̃AkSk

}N

k=0
overlayed on the trajectory extracted

from the DAWN mission SPICE kernel poses, hereon as-
sumed to be the true poses {TAkSk}

N
k=0.

Figure 5: 3D trajectory estimate vs NAIF SPICE kernel
ground truth for DAWN RC3 segment.

Although knowledge about the spacecraft’s pose in the
asteroid body-fixed frame given by TAkSk is ultimately
sought after, we observe that the inverse pose TSkAk

de-
scribing the orientation and the position of the asteroid in
the rotating spacecraft frame is more revealing when report-
ing the navigation error, as discussed in Section 5. Decom-
posing the error along these directions is doubly useful in
the DAWN RC3 test case, since the direction of the space-
craft’s body-fixed frame unit vector ⇀s2 is close to the along-
track direction in the relative orbit, while the spacecraft’s
camera boresight vector ⇀s3 points in the radial direction to-
wards the asteroid. Thus, for quantitative evaluation of the
estimated trajectory, for each time index k = 1, . . . , n, we
compute the error vector[

δκ>k δr>k
]
,
[
log
(
T−1
SkAk

T̃SkAk

)]∨
∈ se(3) (7)

between the ground-truth NAIF SPICE pose TSkAk
and the

estimated pose T̃SkAk
, where log : SE(3) → se(3) is the

SE(3) logarithm map at the identity, as detailed in [7]. The
results of this evaluation are presented in Fig. 6 and dis-
cussed in Section 5.

Figure 6: Estimated pose errors with respect to NAIF
SPICE kernel ground truth for DAWN RC3 segment.

4.2.2 Evaluation of Map Reconstruction

Given the map ΨN at the final time k = N and the set of
ground truth 3D shape model vertices V , we evaluate the
quality of the estimated landmark by computing the dis-
tances {d(L,V)}L∈ΨN

, where

d(L,V) , min
V∈V
‖rALA − rAVA‖2, (8)

which in our case minimizes the 2-norm. The results of
this evaluation are presented in Fig. 7, where the estimated
landmarks are colored as a function of their distance to the
closest point in the ground-truth set of vertices. Note that
this distance metric is one-sided. Thus, choosing to instead
search over the set ΨN would yield different distance val-
ues {d(V,ΨN)}V∈V . Nevertheless, given the much higher
vertex density of the ground truth shape model as compared
to the estimated landmarks, we deem the described point-
to-set distance d(L,V), L ∈ ΨN to be an appropriate mea-
sure of the deviation of our solution landmarks from the 3D
shape.

4.2.3 Comparison to ORB-SLAM2

We further validate our solution by comparing the esti-
mation error performance of our algorithm against that of
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Figure 7: Heat map and distribution of distances of estimated landmarks to true model vertices.
Poor prior uncertainty (left) and good prior uncertainty (right).

ORB-SLAM2 [25], which is a modern SLAM algorithm
that also exploits ORB features [33] for feature extraction
and description and employs g2o [16] for bundle adjust-
ment. ORB-SLAM2 is known to demonstrate robustness
to outliers being tracked due to spurious data association by
performing a harsh culling of recent map points. A similar
approach was employed in our algorithm, where a landmark
point only survives in the map if it has been observed in at
least 3 different frames.

We compare the performance of both algorithms on the
same DAWN RC3 image sequence. As such, the ground
truth pose TG0S0 is used to align the first pose in each of the
algorithm’s resulting trajectories.

It is noteworthy that our algorithm proposes the ability to
incorporate a prior on the second initialization pose TG1S1
as well, allowing for a more accurate subsequent map ini-
tialization. In comparison, although ORB-SLAM2’s g2o
engine contains the necessary components for priors to be
enforced on specific pose variables in the SLAM problem
graph, ORB-SLAM2 does not natively allow for such priors
to be included and maintained throughout the optimization.
Indeed, ORB-SLAM2 carries out a node culling scheme
which removes frames in the graph solely based on whether
the said frames fail to satisfy several geometric criteria with
respect to their neighboring frames, such as having enough
parallax or having a significant change in the detected fea-
ture population as compared to the current frame. In the
same manner, poses having an associated prior can also be
removed from the graph. Thus, in the interest of fairness, no
ground truth prior on the second pose of the trajectory is en-
forced. In terms of the front-end, the same set of parameters
related to ORB feature detection and description are used,
including the number of features extracted per image, the
scale pyramid levels, and thresholds for feature descriptor
matching.

In Fig. 8 it is observed that our algorithm outperforms
ORB-SLAM2 in the cross-track and radial directions, as
well as in terms of attitude error throughout the sequence.

Figure 8: Estimate pose errors with respect to ground truth,
comparison against ORB-SLAM2

5. DISCUSSION & CONCLUSION

Considering that the orbit radius is roughly 5470 km
throughout the sequence, the error in the radial direction
(δr3), as shown in Fig. 6, yields, for the good prior case,
an error of 0.1% (5.8 km) on average, with a worst case of
0.4% (19.2 km), while for the poor prior case, it yields an
accuracy of 0.3% (16.3 km) on average and a worst case of
1.1% (59.2 km). Note that the estimated and ground-truth
trajectories are close, as illustrated in Fig. 5.

The discrepancy in radial position error is the most sig-
nificant difference between the poor prior and good prior
cases. We observe that the main bulk of the error is, how-
ever, in the relative orbit along-track direction, and this er-
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ror increases dramatically with the diminishing number of
tracked landmarks after 1.4×104 s, as it is evident in Fig. 9.

Figure 9: Tally of Known Tracked vs Newly Inserted Land-
marks.

Figure 9 also validates the methodology of harsh
culling [25] that is commonly used for the less reliable ORB
features. Indeed, although there are many landmarks in-
serted at every time step, the number of tracked landmarks
is significantly smaller and does not grow over time in an
appreciable manner.

Additionally, the quality of the estimated landmarks, as
computed in Section 4.2.2 using a Euclidean distance to true
model vertices, is significantly affected by the magnitude of
the initial pose uncertainty. Indeed, as can be seen in Fig. 7,
in the case with good prior uncertainty, the distribution of
the error is tightly concentrated around 3.26 km, which is an
error of∼ 1.2% compared to the target asteroid mean radius
of 262 km. In contrast, in the case of poor prior uncertainty,
we see a much larger spread of the errors and observe a
higher mismatch between estimated landmarks and the tar-
get 3D model. This effect is explainable: a low uncertainty
on the initialization set of poses makes for a more tightly
constrained initialized map. In turn, landmarks in the better
constrained initialized map are much less affected by sub-
sequent measurements, which are added incrementally. In-
deed, a subsequent change in initialized landmark position
would incur a high cost due to the lower imposed uncer-
tainty of the related initial poses.

Finally, it is noteworthy that the apparent revolution tra-
jectory of the DAWN RC3 image sequence lends itself to
successful loop-closures, as we observe an increased simi-
larity score∼ 10−2 between the last frames of the sequence
and the first frame of the sequence. However, we observed
little difference in the overall solution once the loop clo-
sure constraint was included in the graph at the very last
time step, with an ensuing last step of optimization. Further
study on this matter is planned in the future using additional
real mission images, as well as images produced on an in-
lab hardware test-bed.

In summary, in this paper, we demonstrate that a
smoothing-based SLAM solution, predicated on a factor
graph formulation allowing for fusion of sensor-derived
measurements and imagery-derived measurements and in-

cremental growth is well-adapted for autonomous near-
asteroid relative navigation problem. We do so by validating
the solution with real world data from a previous flown as-
teroid orbiter mission, producing very accurate results. We
establish that satisfactory performance can be achieved in
real-world deep-space asteroid orbiter missions, consider-
ing only a baseline SLAM architecture. Areas of further
work include improved keypoint and landmark manage-
ment, as well as the integration of a motion model, given
the strong priors of the asteroid’s rotational motion and the
spacecraft’s orbital motion.
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