
Chapter 7
Real-Time Near-Optimal Feedback Control
of Aggressive Vehicle Maneuvers

Panagiotis Tsiotras and Ricardo Sanz Diaz

Abstract Optimal control theory Patrick J. can be used to generate aggressive ma-
neuvers for vehicles under a variety of conditions using minimal assumptions. Al-
thoughoptimal control provides a very powerful framework for generating aggressive
maneuvers utilizing fully nonlinear vehicle and tire models, its use in practice is hin-
dered by the lack of guarantees of convergence, and by the typically long time to
generate a solution, which makes this approach unsuitable for real-time implemen-
tation unless the problem obeys certain convexity and/or linearity properties. In this
chapter, we investigate the use of statistical interpolation (e.g., kriging) in order to
synthesize on-the-fly near-optimal feedback control laws from pre-computed opti-
mal solutions. We apply this methodology to the challenging scenario of generating
a minimum-time yaw rotation maneuver of a speeding vehicle in order to change its
posture prior to a collision with another vehicle, in an effort to remedy the effects
of a head-on collision. It is shown that this approach offers a potentially appealing
option for real-time, near-optimal, robust trajectory generation.

7.1 Introduction

An enormous amount of work has been devoted during the past three decades to the
development of active safety systems for passenger automobiles. This effort has led
to the development of a plethora of active safety systems, such as ABS, TCS, ESP,
RCS, AFS and others [2, 11, 34, 39], many of which are now standard equipment in
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production vehicles. The main goal of all these systems is to help the driver avoid,
or prevent, the so-called “abnormal” driving scenarios (skidding, sliding, excessive
under/oversteer, etc). In these conditions, nonlinear effects dominate the vehicle
dynamics, and the tire friction is very close to (or exceeds) the adhesion limit(s).
Driving at the boundary of the adhesion limits of the tires leads to a reduced oper-
ational stability margin for the driver. The main goal of most current active safety
systems is therefore to restrict the operational envelope of the vehicle and the tires
inside a linear, well-defined, stable regime. This is, however, an overly conservative
approach. Enhanced stability comes at the cost of decreased maneuverability. There
are many realistic scenarios where the occurrence (or the post-effects) of a collision
can be alleviated by allowing (or even inducing) the vehicle to operate in its nonlinear
regime in a controlled manner.

The previous observations naturally lead one to investigate algorithms that exploit
the increased vehicle maneuverability brought about by operating the vehicle in
nonlinear and/or unstable regimes. By extending the region of validity of the future
generation of active safety systems one expects to increase their performance. In
our previous work [6, 7, 35–38] we have investigated the mathematical modeling of
vehicles operating in nonlinear and/or unstable regimes, and have demonstrated the
potential benefits of such an approach to achieve collision avoidance and mitigation
beyond what is possible with current active safety systems.

This point of view represents a philosophical departure from current practice, and
differs significantly in scope from standard active safety system design for passenger
vehicles. As a result—and understandably so—it brings along with it a slew of
unanswered questions; among them, the key question is how to generate the necessary
control actions (at the short time scales required) that are needed to perform such
extreme maneuvers. Indeed, most drivers—except perhaps expert professional, stunt
and race drivers—would have great difficulty initiating an aggressive maneuver and
controlling the vehicle throughout the whole maneuver duration.

Optimal control is a powerful framework that has been used successfully in many
engineering applications to generate feasible trajectories subject to constraints and
complicated system dynamics. The field of numerical optimal control has experi-
enced enormous advances during the recent years, to the point that we now have
reliable numerical algorithms to generate optimal trajectories for a variety of prac-
tical engineering problems [4]. Despite these advances, the current state-of-the-art
in numerical optimal control mainly focuses on generating only open-loop optimal
controllers. Furthermore, and unless the underline problem (dynamics, cost) obeys
certain convexity and/or linearity conditions, current trajectory optimizers do not
allow the computation of optimal trajectories in real-time, at least for applications
similar to the one we have in mind in this chapter, where the time allotted to solve the
problem is in the order of a few milliseconds. One example where fast computation
has become possible owing to the current advancement of embedded computing is
the area of Model Predictive Control (MPC), where successive linearizations of the
plant are used to generate a sequence of linear or convex optimization problems over
a finite horizon that can be solved very efficiently on-line [10]. In general, how-
ever, optimal solutions for general nonlinear systems and general cost functions are
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notoriously sensitive to the provided initial guesses and, in the absence of timely
re-planning, the robustness of these open-loop optimal control laws is questionable.

Consequently, several researchers have recently turned their attention to the gener-
ation of near-optimal trajectories using alternative methods, which bypass the exact
on-line computations required for the solution of complicated, nonlinear optimal con-
trol problems, opting instead for approximate, near-optimal solutions. One typical
approach uses interpolation over pre-computed optimal control actions for a variety
of initial conditions. Naïve interpolation, however, does not ensure feasibility—let
alone optimality—of the resulting interpolated trajectories. In [1], for instance, the
authors used traditional interpolation over pre-computed optimal trajectories. How-
ever, this method turns out to be inaccurate and time-consuming. Another, more
promising, approach is the one proposed in [14], where the optimal control prob-
lem is cast as one of metamodeling, in which the (unknown) map between control
inputs/system response pairs is generated implicitly via a series of computer ex-
periments. Specifically, the approach in [14] considers the solution to an optimal
control problem obtained by numerical methods as the output of such a metamodel
obtained by a series of off-line simulations. A vast number of publications about
metamodeling of computer experiments can be found in the literature. Most of them
are motivated by the low time-consuming optimization process, derived from having
a metamodel of a given simulation.

In contrast to [1], the framework in [14] is based on rigorous interpolation between
the off-line solutions (the “metamodel”) using ideas from statistical interpolation the-
ory via Gaussian processes, which in geostatistics it is also known as kriging [8, 16,
22, 33]. Kriging approximates a function observed at a set of discrete points with
a convex combination of the observations so as to reduce the least mean-squared
error (MSE), and is a special case of prediction using Gaussian processes [16, 22].
Although classical interpolation focuses on low-order polynomial regression, which
is suitable for sensitivity analysis, kriging is an interpolation technique that provides
better global predictions than classical methods [20, 33]. In this work, we use kriging
to construct a (near-)optimal feedback controller from off-line computed extremal
trajectories. Prior use of kriging has been focused mainly on simulation and meta-
modeling [18, 30, 32]. A brief overview of interpolation using Gaussian processes
and kriging is given in Sect. 7.3.

We apply a technique similar to the one proposed in [14] to obtain near-optimal
“feedback” controllers for the problem of minimum-time aggressive yaw maneuver
generation for a high-speed vehicle impeding a collision with another vehicle at an
intersection (T-Bone collision). Our results show that kriging interpolation is able to
generate very accurate parameterized trajectories in real-time, and hence it may be a
potential option for real-time, near-optimal trajectory generation under such extreme
driving conditions, where the time constraints do not allow the computation of an
exact optimal trajectory in a timely manner using current state of technology.

Prior similar work that uses parameterized trajectory generation includes [9],
which developed an algorithm to generate awhole set of trajectories between two pre-
computed solutions for two different initial conditions, and [31], where parameter-
ized trajectories were generated using experimental demonstrations of the maneuver.
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However, the control laws obtained in [9, 31] are open-loop and thus susceptible to
uncertainties in the initial conditions and unknownmodel parameters. The advantage
of the method described in this chapter is that the control is obtained as a function
of the actual state, hence is a “feedback” control.

The chapter is structured as follows. In the next section the problem to be in-
vestigated is introduced, along with the dynamical model of the vehicle and the tire
friction dynamics. Next, the optimal control problem is formulated, which is solved
over a discrete grid of initial conditions. This series of generated solutions at several
discrete points is stored in memory, and is used in Sect. 7.4 to generate a feedback
control by interpolating between the stored solutions on-line using kriging. For the
benefit of the uninformed reader, a brief summary of kriging theory as used in this
chapter is given in Sect. 7.3. In Sect. 7.4.2 we present numerical results from the
application of the proposed approach to the problem of T-Bone collisionmitigation at
an intersection between two speeding vehicles, as a demonstration of the possibilities
enabled by the proposed approach for optimal on-line controller generation.

7.2 Aggressive Yaw Maneuver of a Speeding Vehicle

7.2.1 Problem Statement

One of the most lethal collisions between two speeding vehicles is the so-called “T-
bone” collision (Fig. 7.1), which occurs when one of the vehicles drives into the side
of the other vehicle [29]. The vehicle suffering the frontal impact is often referred to
as the “bullet” vehicle, while the one suffering the side impact is said to have been
“T-boned.” If there is inadequate side impact protection, the occupants of a T-boned
vehicle risk serious injury or even death.

Although the bullet vehicle is driving much faster, this collision scenario is spe-
cially dangerous for the driver or the side passenger of the target vehicle. This is
owing to the fact that the requirements in terms of frontal crashworthiness of cars on
the market nowadays is excellent [12]. Frontal-crash tests are carried out at veloci-
ties up to 64 km/h, with the result of the passengers cabin being almost intact. The
suitable design and choice of materials of the front part of the vehicle allows large
structural deformations and thus absorption of the residual energy during impact.
Moreover, the installation of frontal airbags, mandatory in the US since Septem-
ber 1998, has resulted in a great decrease of deaths and injuries owing to frontal
collisions. On the other hand, the side part of the chassis is structurally weak, and
large deformations would result in lethal injuries for the occupants. Unfortunately,
side airbags are currently available only in upscale or mid-range cars, although it is
envisioned that they will also become standard safety equipment for all passenger
vehicles in the future. Reference [13] offers a detailed study on occupant injuries
during side impact crashes. As expected, the most frequent source of severe injuries
is the contact between the chest and the door panel.
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Fig. 7.1 T-Bone collision

Car manufactures are aware of the high risk involved in side collisions. Volvo, for
instance, in 1991 introduced a special protection system against side collision named
Side Impact Protection System (SIPS). Other car manufacturers have introduced
similar passive safety systems.

In our previous work [6, 7] we investigated the possibility of mitigating the results
from an unavoidable T-Bone collision by using an aggressive yaw maneuver for the
incoming bullet vehicle. The proposed collision mitigation maneuver involves a
rapid yaw rotation of the bullet vehicle at an approximately 90 deg angle that brings
the longitudinal axes of the two vehicles into a nearly parallel alignment, in order
to distribute the residual kinetic energy of the collision over a larger surface area,
thus mitigating its effects. Although this represents a worst-case scenario, where
the target vehicle does not respond (a more optimal strategy would involve a rapid
yaw maneuver of the target vehicle as well), our initial study focuses only on the
case when the bullet vehicle is actively maneuvered during the pre-collision phase.
The generalization to the case when both vehicles collaboratively try to avoid the
collision will probably involve some vehicle-to-vehicle (V2V) communication and
it is left for future investigation. Henceforth, we thus only consider the problem
when only one (the bullet) vehicle is actively controlled. This problem was posed
in [6, 7] as a time-optimal control problem, and it was solved using pseudospectral
methods [25]. In the next two sections we briefly summarize the problem definition
and its numerical solution.

7.2.2 Vehicle and Tire Model

The model used in this chapter is the so-called “bicycle model” [26], augmented
with wheel dynamics. The nomenclature and conventions regarding this model are
shown in Fig. 7.2. The state is given by x = [u, v, r,ψ,ω f ,ωr ]T, where u and v are,
respectively, the body-fixed longitudinal and lateral velocities, r is the vehicle yaw
rate, ψ is the vehicle heading, and ω f ≥ 0 and ωr ≥ 0 are the angular speeds of the
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Fig. 7.2 Schematic of bicycle model

front and rear wheels, respectively. The system is controlled by u = [δ, Tb, Thb]T,
where δ is the steering angle and Tb, Thb denote the torques generated by the footbrake
and handbrake, respectively.

The equations of motion of the vehicle can be written as shown in (7.1)–(7.4)

u̇ = 1

m
(Fx f cos δ − Fy f sin δ + Fxr ) + vr, (7.1)

v̇ = 1

m
(Fx f sin δ + Fy f cos δ + Fyr ) − ur, (7.2)

ṙ = 1

Iz

(
� f (Fx f sin δ + Fy f cos δ) − �r Fyr

)
, (7.3)

ψ̇ = r, (7.4)

along with the wheel dynamics

ω̇ f = 1

Iw
(Tbf − Fx f R), (7.5)

ω̇r = 1

Iw
(Tbr − Fxr R), (7.6)

where m, Iz are, respectively, the mass and yaw moment of inertia of the vehicle,
Iw is the rotational inertia of each wheel about its axis, R is the effective tire radius,
and � f , �r are, respectively, the distances of the front and rear axles from the vehicle
center of mass. In (7.1)–(7.6) Fi j (i = x, y; j = f, r ) denote the longitudinal and
lateral force components developed by the tires, defined in a tire-fixed reference
frame.
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ax = u̇ − vr

Fxf = Fxf cos δ − Fyf sin δ Fxr

W = mg

Fzf Fzr

C.G.

f r

(Forces not drawn to scale)

Fig. 7.3 Longitudinal load transfer force distribution

These forces depend on the normal loads on the front and rear axles, Fz f and Fzr ,
given by

Fz f = mg�r − hmgμxr

� f + �r + h(μx f cos δ − μy f sin δ − μxr )
, (7.7)

Fzr = mg� f + hmg(μx f cos δ − μy f sin δ)

� f + �r + h(μx f cos δ − μy f sin δ − μxr )
(7.8)

where h is the distance of the vehicle center of mass from the ground (see Fig. 7.3),
and where

μ j = D sin(C arctan(Bs j )), μi j = −(si j/s j )μ j , i = x, y; j = f, r, (7.9)

for some constants C, B and D. Expression (7.9) is a simplified version of the
well-known Pacejka “Magic Formula” (MF) [24] for the tire friction modeling, and
combines the longitudinal and lateral motion, thus intrinsically incorporating the
non-linear effect of the lateral/longitudinal coupling also known as the “friction
circle” (see Fig. 7.4), according to which, the constraint F2

x, j + F2
y, j ≤ F2

max, j =
(μ j Fz, j )

2 ( j = f, r) couples the allowable values of longitudinal and lateral tire
friction forces.

Incorporating the friction circle constraint is necessary for the correct modeling of
the dynamics occurring during the aggressive maneuvers we consider in this work.

In Eq. (7.9) si j denote the tire longitudinal and lateral slip ratios, given by

sx j = Vx j − ω j R

ω j R
= Vx j

ω j R
− 1, sy j = (1 + sx j )

Vyj

Vx j
, j = f, r, (7.10)

where the longitudinal and lateral velocity components, defined in the tire-fixed
reference frame, are given by
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Fig. 7.4 The friction circle
concept (from [19])

Vx f = u cos δ + v sin δ + r� f sin δ, Vy f = −u sin δ + v cos δ + r� f cos δ, (7.11)

Vxr = u, Vyr = v − r�r , (7.12)

and s denotes the total slip, computed as s j = (s2x j + s2y j )
1
2 , ( j = f, r ). Finally, the

tire forces in (7.1)–(7.6) are computed by Fi j = Fzjμi j , (i = x, y; j = f, r).
Following current vehicle technology, it is assumed that handbrake torque is only

applied on the rear axle and the footbrake torque is distributed to both axles by a
factor γb, according to Tbf /Tbr = (1 − γb)/γb, so that Tbf = −(1 − γb)Tb and
Tbr = −γbTb −Thb. It is further assumed that the controls are bounded in magnitude
between upper and lower bounds as follows

δmin ≤ δ ≤ δmax, 0 ≤ Tb ≤ Tb,max, 0 ≤ Thb ≤ Thb,max, (7.13)

which define the allowable control constraint set, u ∈ U ⊂ R
3. For more details on

the vehicle and tire model used in this work, the reader is referred to [7, 35, 38].

7.2.3 Optimal Control Formulation

Assuming that the vehicle is initially moving on a straight line along the positive x
direction with velocity V0 = u(0), our main goal is to find the control input history
u(t) to bring the posture of the vehicle to ψ(t f ) = 90◦ as fast as possible. Without
loss of generality, it will be assumed that the angular velocity of the front and rear
wheels is such that a no-slip condition is satisfied, i.e., ω f (0) = ωr (0) = V0/R.

We therefore wish to solve the following optimal control problem
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Fig. 7.5 Pre-computed solutions for different initial vehicle velocities (dry asphalt case, corre-
sponding to μ = 0.8)

min
u∈U

J =
∫ t f

0
dt, (7.14)

s.t. ẋ = f (x, u), (7.15)

x(0) = [V0, 0, 0, 0, V0/R, V0/R]T, (7.16)

ψ(t f ) = π/2, (7.17)

where f (x, u) is given by the right-hand side of (7.1)–(7.6) and, besides ψ, the rest
of final states are free.

This problem can be solved using a variety of numerical methods [3–5, 17, 23,
27, 28]. In this work, we have used the package GPOPS based on pseudospectral
methods to solve the previous optimal control problem [25]. The problemwas solved
for a variety of initial conditions. A typical maneuver obtained by the solution of the
optimal control problem is shown in Fig. 7.5. For more details, the interested reader
is referred to [7]. Table 7.1 summarizes the vehicle model data and tire parameters
used in the numerical examples of Sect. 7.4.2.

In the sequel, we focus on generating optimal solutions for different values of
initial conditions by interpolating between the pre-computed optimal trajectories.
The interpolationmethodweuse is based on representing the input (initial conditions)
and output [control commands obtained from the numerical solution of the optimal
control problem (7.14)–(7.17)] as a realization of a (hidden) Gaussian process. The
goal is then to find the unknown parameters of this Gaussian process in order to
predict the optimal control inputs for different problem parameters. Although we
only present the results for different initial conditions, the approach can be easily
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Table 7.1 Vehicle and tire data used in the numerical simulations

Variable Value Unit Variable Value Unit

m 1,245 Kg B 7 –
Iz 1,200 Kgm2 C 1.4 –
Iw 1.8 Kgm2 δmax = −δmin 45 deg
� f 1.1 m Tb,max 3,000 Nm
�r 1.3 m Thb,max 1,000 Nm
h 0.58 m γb 0.4 –
R 0.29 m g 9.81 m/s2

generalized to the case of different vehicle or road parameters, as long as we have
enough data points within the range of the parameters of interest.

7.3 Statistical Interpolation Using Gaussian Processes

7.3.1 Basic Theory

The basic idea behind statistical interpolation is that the actual values for all possible
observations are a realization from an underlying stochastic process [16]. It is es-
sentially an interpolation technique over random data fields and it provides accurate
interpolation even if there is no a priori trend. Kriging is a common term referred to
the case when the underlying statistical process is Gaussian. The basic idea that dif-
ferentiates kriging from the traditional Generalized Least Squares (GLS) approach
is the assumption that, given a point where a prediction is to be made, points closer
to this new point should have a larger weight, i.e., they should have more influence
on the prediction than points that are further away. This implies that the interpolation
weights are not constant, but rather they must be specifically computed at each new
location.

A kriging interpolation model has the following features:

(a) It is unbiased, i.e., the expected value of the error is zero.
(b) It is optimal, in the sense that minimizes the variance of the error.
(c) It provides exact interpolation, i.e., the predicted output values at the already

observed points are equal to the observations.
(d) It is computationally very efficient, hence on-line implementation is feasible.

Belowwe briefly summarize the basic ingredients of the approach. The discussion
in this section is taken mainly from [15]. In order to understand how statistical
prediction works, let us consider a set of given locations X = [x1 . . . xN ] ∈ R

n×N

with xi ∈ R
n , where an unknown function y : R

n → R is observed. A simple
regression model is to assume that
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y(x) =
r∑

k=1

βk fk(x) + z = f (x)Tβ + z, (7.18)

for some basis functions (regressors) f (x) = [ f1(x) . . . fr (x)]T, where β =
[β1 . . . βr ]T ∈ R

r is the vector of regression coefficients, and z ∈ R is the ob-
servation error. Let now y = [y(x1) . . . y(xN )]T = [y1 . . . yN ]T ∈ R

N be the vector
of observations. The generalized regression model given the data (y, x1, . . . , xN )

follows easily from (7.18)
y = F(X)β + z, (7.19)

where z = [z1 . . . zN ]T ∈ R
N is the vector of observation errors, and F(X) ∈ R

N×r

is the matrix of regressors, given by

F(X) = [ f (x1)T . . . f (xN )T]T =

⎡
⎢⎢⎢⎣

f1(x1) f2(x1) . . . fr (x1)
f1(x2) f2(x2) . . . fr (x2)
...

...
. . .

...

f1(xN ) f2(xN ) . . . fr (xN )

⎤
⎥⎥⎥⎦ . (7.20)

In statistical prediction the errors z in (7.19) aremodeled as a stationary covariance
stochastic process1 having the properties

E[z] = 0, (7.21)

cov[z] = E[zzT] = C = σ2R, (7.22)

where C, R ∈ R
N×N are the covariance and correlation matrices, respectively, de-

fined by
E[zi z j ] = Ci j = σ2Ri j (xi , x j ), i, j = 1, ..., N . (7.23)

where Ri j (xi , x j ) are stationary correlation functions to be defined later.
Suppose now that we want to predict the value y(x0) at the new location x0 ∈

co(x1, x2, . . . , xN ), where co(·)denotes convexhull. From (7.18), the predicted value
of y(x0) is then given by

y(x0) = f (x0)Tβ + z0, (7.24)

where the scalar z0 represents the prediction error. Here is where kriging and GLS
differ. The later assumes that both the sample disturbances in (7.18) and the predictor
disturbance in (7.24) are independent, that is, cov[z, z0] = 0. However, in view of
the interdependence of disturbances in the samples (C has non-zero off-diagonal
elements), it seems more reasonable to assume that [15]

E[z0] = 0, (7.25)

1 A stationary covariance process has constantmean and variance and the covariancematrix depends
only on the distance between the corresponding inputs.
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cov[z0] = E[z20] = σ2, (7.26)

cov[z, z0] = σ2r(x0), (7.27)

where r(x0) ∈ R
N is the vector of correlations between z and z0.

Assuming now that the optimal linear predictor of (7.24) can be written in terms
of the observed values, one obtains

ŷ(x0) =
N∑

i=1

wi yi = wTy, (7.28)

where w = [w1 . . . wN ]T ∈ R
N is the column vector of weights. The residual error

of the approximation is given by

ε(x0) = ŷ(x0) − y(x0) =
N∑

i=1

wi yi − y(x0). (7.29)

In order to determine the optimal weights w kriging imposes the conditions [15, 20]

min
w

var[ε(x0)] s.t. E[ε(x0)] = 0, (7.30)

to obtain the Best Linear Unbiased Predictor (BLUP). In some texts [20, 21] the
criterion involves the minimization of the mean square error instead. It turns out that
both criteria are equivalent if the estimator is unbiased.

Theminimization problem in (7.30) can be re-written as a quadratic programming
(QP) problem in the form

min
w

var[ε(x0)] = min
w

σ2(1 + wTRw − 2wTr(x0)),

subject to F(X)Tw − f (x0) = 0, (7.31)

whose solution is readily obtained as follows

w∗ = R−1(r(x0) − F(X)λ∗), (7.32)

λ∗ = (
F(X)TR−1F(X)

)−1(
F(X)TR−1r(x0) − f (x0)

)
. (7.33)

Using the previous expressions, one may finally express the best linear unbiased
predictor of (7.28) as

ŷ(x0) = R−1
[
r(x0) − F(X)

(
F(X)TR−1F(X)

)−1(
F(X)TR−1r(x0) − f (x0))

]
y.

(7.34)
A deeper insight in the predictor can be obtained by expressing (7.34) as



7 Real-Time Near-Optimal Feedback Control 121

ŷ(x0) = f (x0)Tβ∗ + r(x0)γ∗, (7.35)

where

β∗ = (F(X)TR−1F(X))−1F(X)TR−1y, γ∗ = R−1(y − F(X)β∗). (7.36)

The termβ∗ is theGLS solution to the regression problem y ≈ F(X)β, also known
asAitken’sGLS estimator [15]. From (7.35) it can be seen that, if independence of the
disturbances is considered,that is, r(x0) = 0, then the solution becomes equivalent
to GLS. Another important point is that β∗ and γ∗ are fixed for a given set of design
data x1, x2, . . . , xN and y. Thus the computational effort required to calculate the
value of the interpolated function at one point involves only the computation of two
vectors (by evaluating the regression basis functions and the correlation function)
and two simple products.

Asmentioned previously, (7.35) is an exact interpolator, in the sense that it returns
the observed value at the design points. This can be easily shown from (7.35) by
choosing x0 = xi . Then r(xi ) is just the i th column of the correlation matrix R.
Hence R−1r(xi ) = ei where ei is the i th column of the identity matrix. It follows
that

ŷ(xi ) = f (xi )
Tβ∗ + r(xi )R−1(y − F(X)β∗)

= f (xi )
Tβ∗ + ei (y − F(X)β∗) (7.37)

= f (xi )
Tβ∗ + yi − f (xi )

Tβ∗ = yi .

7.3.2 Choice of Correlation Functions

It is important to emphasize that the accuracy of the method is highly dependent
on the choice of correlation functions in (7.23) and (7.27), since they determine the
influence of the observed values in the surrounding locations. These are not known
a priori, however, and they have to be estimated from the data. In order to find a way
to approximate the correlation functions, it is customary to assume that they can be
expressed as

Ri j (θ; xi , x j ) =
n∏

k=1

ρ(θ; x(k)
i , x(k)

j ) =
n∏

k=1

ρ(θ; |x(k)
i − x(k)

j |), (7.38)

for some parameter θ and xi , x j ∈ R
n with x(k) denoting the kth component of

the vector x. The expression (7.38) implies that multi-dimensional correlations are
expressed as a product of n one-dimensional correlation functions. Spatial correlation
functions depend on both the parameter θ and the distance between the considered
points � = |x(k)

i − x(k)
j |. In order to result in proper correlation functions Ri j , the
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coordinate correlation function ρ must satisfy 0 ≤ ρ(θ; �) ≤ 1 for all � ≥ 0.
Furthermore, it must satisfy ρ(θ; 0) = 1 and lim�→∞ ρ(θ; �) = 0, encoding the fact
that far-away points have weaker or no correlation, whereas coincident points yield
maximum correlation.

The parameter θ determines how fast the correlation function goes to zero. This
parameter can be obtained usingMaximumLikelihoodEstimation (MLE). Figure 7.6
shows the effect of θ is the response surface for the function f (x, y) = x2 + y3. For
simplicity, a constant polynomial is selected as the general trend. Different kriging
models are built for different values of θ. The resulting metamodel representation
and the observation points for the decreasing values of θ are also shown in Fig. 7.6.

The spatial evolution according to the distance from the origin and the influence
of the parameter θ, for different correlation functions, is shown in Fig. 7.7. As it is
customary in practice, the state variables are normalized so that have unit length.
Consequently, the normalized support (|d| = �) of ρ is this figure is 0 ≤ |d| � 2.

7.4 Application to On-line Aggressive Vehicle Maneuver
Generation

7.4.1 Feedback Controller Synthesis

Using the method outlined in Sect. 7.2.3, a set of trajectories was computed offline
using five equidistant initial conditions corresponding to vehicle initial speeds V0 =
[40, 48, 56, 64, 72] km/h. The pre-computed open-loop optimal trajectories for
three of the cases considered are shown in Fig. 7.8.

We are interested in obtaining a controller able to perform the maneuver de-
scribed in Sect. 7.2.1 in a (near-)optimal manner for any initial velocity in the interval
40 km/h ≤ V0 ≤ 72 km/h. To this end, we use the interpolation expressions derived
in Sect. 7.3.1, specifically, Eq. (7.35). A separate interpolation model is needed for
each variable we want to interpolate. In this case we have a total of four interpo-
lating metamodels: three for the control signals and one more for the optimal final
time. A uniform discretization of the optimal trajectories provides the input data
X = [x1 . . . xN ], whereas the control commands δ, Tb, Tbh , and the final time t f

comprise the vector of the observed variables y at the same time instances. Given
now a state x0 = (u(tk), v(tk),ψ(tk),ω f (tk),ω f (tk)) of the vehicle trajectory at
some time tk , we obtain the required control inputs as a function of the current state
as follows

δ(tk) = ŷ1(x0) = κ1(u(tk), v(tk),ψ(tk),ω f (tk),ω f (tk)), (7.39)

Tb(tk) = ŷ2(x0) = κ2(u(tk), v(tk),ψ(tk),ω f (tk),ω f (tk)), (7.40)

Tbh(tk) = ŷ3(x0) = κ3(u(tk), v(tk),ψ(tk),ω f (tk),ω f (tk)), (7.41)
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Fig. 7.6 Influence of the parameter θ in the response surface. a θ = 1,000, b θ = 20, c θ = 5 d θ
obtained from MLE
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Fig. 7.8 Optimal open-loop state trajectories generated with GPOPS

where, for notational convenience,we have introduced, rather informally, the interpo-
lating functions κi (i = 1, 2, 3, 4) to denote the right-hand-side of (7.35). Similarly,
the optimal time to perform the maneuver from the current state is given by

t f (tk) = ŷ4(x0) = κ4(u(tk), v(t)k),ψ(tk),ω f (tk),ω f (tk)). (7.42)

Note from (7.39) to (7.41) that the approach yields, at each instant of time, a control
action that depends on the current state, that is, the resulting control has a feedback
structure. In essence, we have developed a tool for controller synthesis where the
open-loop optimal controllers are combined to a single feedback strategy. The dif-
ference with standard approaches is that this synthesis is not performed analytically,
but rather numerically, via an implicit interpolation of the pre-computed open-loop
control laws.

For all computations we have used the DACE toolbox for Matlab [21]. Both the
correlation functions and the allowable values for the parameter θwere determined by
trial and error. Constant and first order polynomials were sufficient for this problem,
along with cubic correlation functions (see Fig. 7.7). The optimal value of θ was
obtained using MSE, as explained in Sect. 7.3.2.
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7.4.2 Numerical Results

The family of near-optimal controls is shown in Fig. 7.9a–c. The red lines highlight
the pre-computed solutions used to obtain the interpolating metamodel.

These results show that the controller obtained using the proposed statistical in-
terpolation technique generates near-optimal solutions for the whole range of initial
velocities considered. In all simulations the trajectories reach the final constraint,
ψ = 90◦, as required. Furthermore, notice in Fig. 7.9a–c how the interpolated so-
lutions match the pre-computed ones at the trial sites. This is a consequence of the
exact interpolation property of the interpolation scheme, shown in (7.37). Notice also
that the solutions vary smoothly along the whole range of initial velocities.

The average to compute a single interpolation of all three controls was 1.2ms (or a
rate of 800Hz) on a Intel PentiumCore 2Duoprocessor running at 2.4GHzwith 4GB
of RAM. This rate is considered fast enough for real-time controller implementation.

The parameter θ that affects the behavior of the correlation functions is shown
in Fig. 7.10 for the case of the footbrake command. For very large values of θ the
solution tends to the GLS solution (r(x0) = 0 except at the observation points). The
oscillatory behavior for large values of θ observed in these figures is owing to the
fact that we have chosen a zero order polynomial for the footbrake, in which case the
interpolating terms tend to a superposition of impulse functions at the observed points
(see Fig. 7.7). As the value of θ is reduced, each observation increases its “region
of influence” over a larger area of the space, thus “averaging out” the contributions
from neighboring observation points.

It is also of interest to explore the positive attributes that arise from having a
controller in feedback form [see again (7.39–(7.41)]. Although there is no analytic
expression for the feedback controller, the control action is obtained as a function of
the current state. Feedback controllers are more desirable than open-loop controllers
since they can account for sudden changes in the state, unmodelled uncertainties, etc.
In order to evaluate the benefits of having a controller in a feedback form, a simulation
with a disturbance representing a 30% reduction in the yaw rate at t = 0.6t f was
carried out. The comparison was performed at one of the trial locations where the
interpolated solution matches the pre-computed one, so the comparison is fair. The
initial velocity was chosen as V0 = 56 km/h. Figure 7.11 shows how the interpolated
control changes when the disturbance is applied and how the system is finally guided
to the final constraint despite the abrupt change in the state at t = 0.6t f .

7.5 Conclusions

The future generation of active safety systems for passenger vehicles will have to take
advantage of the nonlinearities of the vehicle and tire friction dynamics in order to
safely implementmore aggressive obstacle avoidancemaneuvers in the case of an im-
peding accident.Unfortunately, generating optimally such aggressivemaneuvers—at
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Fig. 7.11 State evolution comparison under disturbance

the time scales required along with convergence guarantees—is still an elusive goal
with current trajectory optimizers. In this chapter we investigate the use of a statis-
tical interpolation technique based on Gaussian processes (e.g., kriging) to generate
near-optimal trajectories, along the corresponding control actions, from a set of off-
line pre-computed optimal trajectories. The resulting approach essentially generates
a metamodel of the action-response map based on the pre-computed optimal control
solutions. The resulting interpolationmodel emulates an optimal feedback controller,
as long as the initial conditions are contained in the convex hull of the off-line test
locations.

Our numerical results show that the resulting controller has excellent perfor-
mance, always guiding the system to the exact terminal constraint. Furthermore, the
controller is extremely fast to compute, since it is based on simple algebraic manip-
ulations and hence it is beneficial for all similar situations where decisions must be
taken within extremely short deadlines.
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