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a b s t r a c t

A control scheme to stabilize rear-wheel-drive (RWD) vehicles with respect to high-sideslip cornering

(drifting) steady-states using coordinated steering and drive torque control inputs is presented in this

paper. The choice of coordinated control inputs is motivated by the observed data collected during the

execution of drifting maneuvers by an expert driver. In addition, the steering and drive torque input

variables directly correlate to a human driver’s steering wheel and throttle commands. The control

design is based on a comprehensive vehicle model with realistic tire force and drive-train character-

istics, and validated in a high-fidelity simulation environment.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, numerous studies on the dynamic behavior and control
of vehicles have appeared in the literature, considering the vehicle’s
full handling capacity, e.g., with the tires operating in their nonlinear
region. Researchers in the area of vehicle control and automotive
safety envision that a new generation of active-safety systems for
passenger vehicles will employ expert driving skills to actively assist
the driver exploit the limits of handling of the vehicle during
emergency manoeuvring, instead of restricting the vehicle’s response
within the linear region of operation of the tires.

A mathematical analysis of rally-race driving techniques, using
nonlinear programming optimization, was initiated in Velenis and
Tsiotras (2005), Velenis, Tsiotras, and Lu (2007a, 2007b), and
Velenis, Tsiotras, and Lu (2008). These techniques clearly involve
operation of the vehicle outside the stable operation envelope
enforced by current active-safety systems, such as the electronic
stability control (ESC) (van Zanten, Erhardt, Landesfeind, & Pfaff,
2000), as the vehicle reaches extreme sideslip angles and the tires
operate in their nonlinear region. The analysis of rally driving
techniques above reveals that minimum time and maximum exit
speed cornering with limited preview of the road may require
aggressive sideslip angles. In addition, the key role of longitudinal
control (throttle/brake) and longitudinal weight transfer during
cornering at high-sideslip angles was validated. In particular,

expert rally drivers take advantage of weight transfer effects
during acceleration and braking in order to change the under-
or over-steering behavior of the vehicle.

The analysis in the above references provided a significant
understanding of the dominant effects during the execution of
expert driving techniques, but the open-loop numerical optimiza-
tion approach does not compensate for uncertainties and dis-
turbances encountered in real-life scenarios. Several studies have
recently appeared in the literature, contributing to the closed-
loop control formulation of the vehicle cornering problem at high
sideslip angles as an equilibrium stabilization problem. Deriva-
tion of steady-state cornering equilibria with the tires operating
in the nonlinear region, a stability analysis using phase-plane
techniques, and the design of a robust stabilizing steering con-
troller, under the assumption of complete absence of longitudinal
forces (tractive or braking) at the tires, have appeared in Ono,
Hosoe, Tuan, and Doi (1998). The analysis in Ono et al. (1998) was
based on a low-order single-track model, which assumes equal
forces at the tires of the same axle (front and rear). High-sideslip
angle (drifting) steady-state cornering conditions were examined
in Abdulrahim (2006) using the lateral dynamics, i.e., assuming
fixed velocity, of a four-wheel rear-wheel-drive (RWD) vehicle
model and a combined longitudinal/lateral tire friction model.
The stability of steady-state drifting using a rich four-wheel RWD
vehicle model, which incorporates longitudinal and lateral
dynamics, weight transfer effects and a combined longitudinal/
lateral tire friction model, has been discussed in Edelmann and
Plöchl (2009). Derivation of drifting equilibria using vehicle
models of lower order (and hence more appropriate for control
design) has been discussed in Frazzoli (2008) and Hindiyeh and
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Gerdes (2009). In Frazzoli (2008) the author derived explicit
steady-state cornering conditions for a single-track vehicle model
using a combined longitudinal/lateral tire friction model, and
considering longitudinal weight transfer effects. The simplifying
assumption of a free rolling rear wheel in Frazzoli (2008), which
suggests a front-wheel-drive (FWD) configuration, allowed for
decoupling of the steady-state equations and efficient calculation
of the equilibria. A stability analysis and classification of corner-
ing equilibria, including drifting conditions, using a simple RWD
single-track model with longitudinal and lateral dynamics and a
simplified longitudinal/lateral tire friction model were presented
in Hindiyeh and Gerdes (2009).

Stabilization of drifting equilibria appeared in Velenis, Frazzoli,
and Tsiotras (2009), Velenis, Frazzoli, and Tsiotras (2010) and Voser,
Hindiyeh, and Gerdes (2009), using low-order single-track vehicle
models, and incorporating simplifying assumptions on the control
inputs. In Velenis et al. (2009, 2010) a sliding mode control, using
independent front- and rear-wheel drive/brake torque inputs, and
assuming a fixed steering angle, was designed to stabilize the
vehicle model with respect to drifting equilibria. In Voser et al.
(2009) a steering controller considering only the lateral dynamics of
a simple single-track model was designed to stabilize drifting
equilibria, while a separate speed controller, considering the long-
itudinal vehicle dynamics only, was implemented to regulate the
speed of the vehicle to the desired steady-state value. The control
scheme in Voser et al. (2009) was implemented in an autonomous
vehicle performing a drifting maneuver.

In this work, a control scheme, which stabilizes drifting
equilibria of an RWD vehicle is presented, using coordinated
lateral (steering) and longitudinal (drive torque) control inputs
and mimicking techniques used by expert drivers. In contrast to
previous works, simplifications associated with the use of solely
longitudinal control (Velenis et al., 2009, 2010), solely lateral
control (Ono et al., 1998), or decoupled longitudinal and lateral
control (Voser et al., 2009), are avoided. Essentially, the controller
proposed herein possesses the same control authority as a human
driver. The coordinated longitudinal and lateral control, which
corresponds to the operator’s steering wheel and throttle com-
mands, is motivated by the observation of data collected during
the execution of drifting maneuvers by an expert race driver.
Specifically, the data revealed that expert drivers use the throttle
to induce high vehicle yaw rate and sideslip, that is, they use
longitudinal inputs to control the lateral dynamics of the vehicle.

The control design is based on a comprehensive four-wheel
vehicle model with realistic drive-train characteristics, instead of
the simplified single-track model typically used in cornering
stabilization applications. In order to overcome the complexity
of the control design yielding from the high order vehicle model,
the proposed control scheme consists of two layers: (a) Initially, a
linear controller is designed to stabilize a reduced order system,

derived by neglecting the wheel rotation dynamics. (b) The
second layer of the control architecture employs a backstepping
controller to regulate the wheel speed dynamics to their desired
values from (a).

The next sections are organized as follows. Driver input and
vehicle response data during the execution of steady-state drift-
ing by an expert driver are presented first, and the driver steering,
brake and throttle commands during the stabilization of the
vehicle are analyzed. Next, the four-wheel vehicle model is
introduced, incorporating nonlinear tire friction characteristics,
longitudinal and lateral weight transfer effects, and coupling of
the rear wheels drive torques through the modelling of a
differential system. In the following section the steady-state tire
friction forces and the associated drive torque and steering angle
control inputs corresponding to drifting equilibria are computed
numerically using the four-wheel vehicle model. Next, a linear
controller is designed to stabilize the vehicle with respect to
drifting equilibria using front-wheel steering angle and rear
wheel rotation rates. A backstepping control scheme is also
employed, providing the drive torque input necessary to regulate
the rear-wheel speeds to the values dictated by the above linear
controller. In the last sections, the control scheme is successfully
validated in a high-fidelity simulation environment, and the
conclusions of this work are summarized.

2. Experimental data of steady-state drifting

Data of driver control inputs and corresponding vehicle response
collected during the execution of cornering maneuvers at high
sideslip angles by an experienced rally driver are presented and
analyzed in this section. These data will serve to support and validate
the theoretical analysis later on in the paper. The data collection took
place at the facilities of the Bill Gwynne Rally School in Brackley, UK,
using a rally-race prepared 1980 Ford Escort with a 1.6 l engine
producing approximately 110 bhp, and RWD transmission (Fig. 1).

2.1. Vehicle instrumentation

The vehicle vector velocity and sideslip angle were measured
using a Racelogic VBox twin GPS antenna sensor. An inertial
measurement unit (IMU) was placed on the centerline of the vehicle,
behind the gear shifter, close to the estimated location of the vehicle’s
C.M., to measure 3-axis body accelerations and 3-axis body rotation
rates. The rotational speed of each individual wheel was measured
using externally fitted optical encoders. A string potentiometer was
used to measure the steering angle at the steering column, and a
rotational potentiometer was fitted on the throttle pedal to measure
the pedal position. The vehicle was fitted with two brake pressure
sensors to measure the brake pressure at the front and rear pairs of

Fig. 1. Vehicle and instrumentation used for data collection.
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wheels. The handbrake, which is often used for vehicle control in rally
driving, was integrated in the hydraulic brakes circuit and engaged
the rear brakes only. Hence, the two brake sensors allowed us to
distinguish between application of foot brake and handbrake, as well
as to measure the brake balance between the front and rear wheels.
The data were collected using a purpose-built data logger at 100 Hz.
The vehicle instrumentation is described in detail in Katzourakis,
Velenis, Abbink, Happee, and Holweg (to appear).

2.2. Test conditions and data analysis

The driver executed several drifting maneuvers on a loose
surface (dirt), aiming at maintaining approximately constant speed
and sideslip angle along a path of approximately constant radius.
Two sets of data are analyzed, corresponding to two different
steady-state conditions achieved by the driver, as shown in Fig. 2.

Data of the vehicle speed V, sideslip angle b, yaw rate _c and
individual wheel speeds oij, i¼F (Front), R (Rear), j¼L (Left), R

(Right), during the stabilization of the vehicle at a steady-state
clockwise trajectory of radius approximately 13 m are shown in
Fig. 4. The vehicle sideslip and yaw rate are positive along the
counterclockwise direction. In the same figure the corresponding
driver inputs are shown. Positive values of the steering angle of
the front wheels d correspond to turning left. The throttle pedal
position is normalized by the value corresponding to the full
throttle position. The front and rear axle brake pressures are
normalized by the corresponding maximum value observed. The
final part of the vehicle trajectory is shown in Fig. 2(a).

Throughout the 13 m radius trajectory the driver applied virtually
no brake command, except from a small value along a brief interval
around t¼21 s. The vehicle started from a standstill and accelerated
while cornering to the right. Between 5rtr10 s the vehicle devel-
oped a high sideslip angle of approximately 301. At the beginning
of this interval full throttle was applied, resulting in the rear-
wheels spinning at a considerably higher rate than the front ones.
Consequently, the rear-wheel slip ratio, that is, the relative velocity of
the rear tires with respect to the road along the longitudinal direction,
was increased. The increased slip ratio resulted in the reduction of the
cornering forces at the rear tires, in accordance to typical tire force
characteristics during combined longitudinal/lateral tire motion
(Fig. 3). The stabilizing yaw moment of the rear wheels was decreased
with the decrease in the cornering forces, and the vehicle developed

increased yaw rate and sideslip angle. The driver regulated the vehicle
yaw moment by steering the front wheels towards the opposite
direction with respect to the corner (counter-steered), while main-
taining a high value of throttle input. For the unpowered front pair of
wheels, the outer wheel with respect to the direction of the corner
(front-left) rotated at a higher rate than the front inner (front-right) as
it covered more distance during cornering. For the powered rear pair
of wheels, the inner one rotated faster than the outer. This is due to
the weight transfer away from the inner wheels during cornering,
which resulted in lower friction forces, and hence less resistance to
rotation under the application of drive torque. The vehicle was
equipped with a limited slip differential (LSD) which prevented
excessive differences in the rotation rates of the wheels at the rear
axle. Peaks of sideslip angle at approximately t¼13 and 17.5 s under
high throttle and counter-steer commands can be observed in Fig. 4.

During the time interval 25rtr40 s the vehicle speed was
stabilized near 8.1 m/s, while the yaw rate fluctuated around an
average value of 361/s, which indeed corresponds to an approximate
cornering radius of 13 m. The sideslip angle fluctuated around
approximately 321, and the driver applied throttle input close to
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Fig. 2. Vehicle position and orientation data during steady-state cornering conditions of radius (a) 13 and (b) 2 m.
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the maximum and consistently counter-steered. The corrections in
the control inputs by the driver and the fluctuations of the vehicle
states in this interval appear considerably smaller than in the
previous interval tr25 s, and hence one may conclude that the
driver was attempting to stabilize the vehicle states to the above
average values. Cornering at high sideslip angles with the rear wheels

slipping under high drive torque (in RWD vehicles) is also referred to,
in the racing community, as power-oversteer or powerslide. The
powerslide is an unstable driving condition (Edelmann & Plöchl,
2009), hence the driver’s intervention is required for external
disturbances to be attenuated. The uneven rough surface of the rally
course offers a disturbance rich environment (e.g., bumps and dips in
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Fig. 4. Vehicle states and driver control inputs data along a steady-state trajectory of approximately 13 m of radius.
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the testing area affecting the vertical axis equilibrium and/or varia-
tions in the friction coefficient) for the stabilization task, which
explains the fluctuations in the vehicle states and driver’s control
inputs.

Fig. 5 shows the vehicle states and driver control inputs during the
stabilization of the vehicle at a steady-state clockwise trajectory of
approximately 2 m of radius. The final part of the trajectory is shown
in Fig. 2(b). The vehicle started from a standstill and accelerated while

cornering to the right. In the interval 0rtr3 s the velocity and yaw
rate increased smoothly at a low sideslip angle. At approximately
t¼3 s the driver applied a handbrake command as indicated by the
increase in the rear brake pressure, with the front brake pressure
remaining at zero. The speed of the rear wheels dropped to zero
(wheel lock), which corresponds to an increase in the magnitude of
the slip ratio, and consequently a decrease in the rear wheels lateral
forces. As a result the vehicle yaw rate and sideslip angle increased in
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Fig. 5. Vehicle states and driver control inputs data along a steady-state trajectory of approximately 2 m of radius.
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magnitude. The driver was then back on the throttle, releasing the
handbrake and maintaining a high rate of rotation of the rear wheels.
In the interval 6rtr10 s the vehicle was stabilized to a velocity of
approximately 3 m/s, a yaw rate of 1.5 rad/s (indicating a steady-state
path radius of 2 m), and a sideslip angle of 451. It is worth noting that,
as in the previous steady-state condition, during the steady-state
cornering interval the driver maintained a throttle command close to
the maximum. However, in this case the steering angle was con-
sistently towards the direction of the corner, as opposed to the
counter-steering observed in the previous set of data. This is in
contrast to definitions of drifting or powerslide in Edelmann and
Plöchl (2009), Hindiyeh and Gerdes (2009), and Voser et al. (2009),
where counter-steering is considered as an essential characteristic.
The above references, however, did not consider small cornering radii.
In addition, it is noted that the vehicle states and driver control inputs
demonstrate considerably smaller fluctuations around their average
values compared to the 13 m trajectory. The 2 m maneuver took
place within a limited area in the testing grounds (Fig. 2(b)), with
considerably reduced probability of a disturbance occurrence. Finally,
it is worth highlighting that with such a drifting maneuver the driver
expanded the mobility capabilities of the vehicle achieving a corner-
ing radius which is considerably less than its kinematic characteristics
dictate. Assuming no wheel slip, the minimum kinematic cornering
radius depends on the maximum allowable steering angle, and
increases proportionally to the wheelbase (distance between front
and rear axles) (Gillespie, 1992). The minimum kinematic cornering
radius of the test vehicle was 4.5 m.

3. Vehicle model

A four-wheel vehicle model is introduced in this section for the
derivation of the steady-state drifting conditions and the design of a
stabilizing controller. Nonlinear tire force characteristics with coupled
longitudinal and lateral components, as well as the effects of weight
transfer between the four wheels arising from the longitudinal and
lateral acceleration of the vehicle, are incorporated. By modelling the
operation of a limited slip differential, the drive torques of the left and
right wheels of the driven axle are coupled to a single torque control
input, which correlates directly to the driver’s throttle command.

3.1. Equations of motion

The equations of motion of a four-wheel vehicle, with front-wheel
steering, travelling on a horizontal plane (Fig. 6) are given as follows:

m _V ¼ ðfFLxþ fFRxÞcosðd�bÞ�ðfFLyþ fFRyÞsinðd�bÞ
þðfRLxþ fRRxÞcos bþðfRLyþ fRRyÞsin b, ð1Þ

_b ¼
1

mV
½ðfFLxþ fFRxÞsinðd�bÞþðfFLyþ fFRyÞcosðd�bÞ

�ðfRLxþ fRRxÞsin bþðfRLyþ fRRyÞcos b�� _c, ð2Þ

Iz
€c ¼ ‘F ½ðfFLyþ fFRyÞcos dþðfFLxþ fFRxÞsin d�
�‘RðfRLyþ fRRyÞþwLðfFLy sin d�fFLxcos d�fRLxÞ

þwRðfFRx cos d�fFRy sin dþ fRRxÞ, ð3Þ

Iw _oij ¼ Tij�fijxr, i¼ F,R, j¼ L,R: ð4Þ

In the above equations m is the vehicle’s mass, Iz is the moment of
inertia of the vehicle about the vertical axis, V is the vehicle velocity at
the center of mass (C.M.), b is the sideslip angle at the C.M. and c is
the yaw angle. The moment of inertia of each wheel about its axis of
rotation is Iw, the radius of each wheel is r, and the rotation rate of
each wheel is oij (i¼F,R, j¼L,R). The steering angle of the front
wheels (assuming equal angle for left and right front wheels) is
denoted by d, and the drive/brake torque applied on each wheel is Tij.

The rolling resistances and self-aligning moments at the tires have
been neglected. The longitudinal and lateral friction forces at each
wheel are denoted by fijk (i¼F,R, j¼L,R and k¼x,y). The distances ‘F ,
‘R, wL and wR determine the location of the C.M. with respect to the
center of each wheel, as in Fig. 6.

3.2. Tire forces

The tire forces fijk in the above vehicle model are calculated as
functions of tire slip using Pacejka’s Magic Formula (MF) (Bakker,
Nyborg, & Pacejka, 1987). Tire slip refers to the non-dimensional
relative velocity of the tire with respect to the road. In Bakker
et al. (1987) the practical tire slip quantities, namely the practical
longitudinal slip kij and the slip angle aij, are defined as follows:

kij ¼
oijrij�Vijx

Vijx
, tan aij ¼

Vijy

Vijx
, i¼ F,R, j¼ L,R,

where Vijk (i¼F,R, j¼L,R, k¼x,y) are the tire frame components of
the vehicle velocity vector at the centers of the four wheels.

The theoretical slip quantities (Bakker et al., 1987) are defined as:

sijx ¼
Vijx�oijrij

oijrij
¼�

kij

1þkij
, ð5Þ

sijy ¼
Vijy

oijrij
¼

tan aij

1þkij
¼ ð1þsijxÞ

Vijy

Vijx
: ð6Þ

The resultant slip at each tire is defined by

sij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ijxþs2
ijy

q
: ð7Þ

Assuming linear dependence of the tire friction forces on the tire
vertical force one obtains

mij ¼ fij=fijz, mijk ¼ fijk=fijz, i¼ F,R, j¼ L,R, k¼ x,y, ð8Þ

where fij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
ijxþ f 2

ijy

q
is the resultant friction force on the plane of the

road surface, mij is the resultant friction coefficient, mijk are the

longitudinal and lateral friction coefficients, and fijz are the vertical
forces at each of the four wheels.
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Fig. 6. Full-car vehicle model travelling on a horizontal plane. The inertial frame

x-axis is denoted by xin.
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The resultant friction coefficient is calculated using the sim-
plified Pacejka’s MF (Bakker et al., 1987) as follows:

mijðsijÞ ¼MFðsijÞ ¼D sinðCatanðBsijÞÞ: ð9Þ

Assuming symmetric tire characteristics with respect to the
longitudinal and lateral directions, the total friction force for each
tire lies within the so-called friction circle. In this case, the
longitudinal and lateral tire friction components are given by:

mijk ¼�
sijk

sij
mijðsijÞ: ð10Þ

Finally, neglecting the vertical motion and pitch and roll rotations
of the sprung mass of the vehicle, the vertical force at each of the four
wheels is calculated by considering the static weight distribution and
longitudinal/lateral weight transfer under longitudinal/lateral accel-
eration. The total vertical force at each wheel is given by:

fFLz ¼ f 0
FLz�Df x

L�Df y
F , fFRz ¼ f 0

FRz�Df x
R þDf y

F ,

fRLz ¼ f 0
RLzþDf x

L�Df y
R , fRRz ¼ f 0

RRzþDf x
R þDf y

R : ð11Þ

Under conditions of zero longitudinal and lateral acceleration of the
vehicle, the static vertical force distribution results in:

f 0
FLz ¼

mg‘RwR

ð‘Fþ‘RÞðwLþwRÞ
, f 0

FRz ¼
mg‘RwL

ð‘Fþ‘RÞðwLþwRÞ
,

f 0
RLz ¼

mg‘FwR

ð‘Fþ‘RÞðwLþwRÞ
, f 0

RRz ¼
mg‘FwL

ð‘Fþ‘RÞðwLþwRÞ
: ð12Þ

Neglecting the roll motion of the sprung mass, acceleration ay along
the lateral body axis results in weight transfer from front-left to front-
right and rear-left to rear-right wheels as follows (Gillespie, 1992):

Df y
F ¼

mh‘R

ð‘Fþ‘RÞðwLþwRÞ
ay, Df y

R ¼
mh‘F

ð‘Fþ‘RÞðwLþwRÞ
ay, ð13Þ

where h is the distance of the vehicle’s C.M. from the road level.
Similarly, acceleration ax along the longitudinal body axis results in
weight transfer from front-left to rear-left and from front-right to
rear-right wheels as follows:

Df x
L ¼

mhwR

ð‘Fþ‘RÞðwLþwRÞ
ax, Df x

R ¼
mhwL

ð‘Fþ‘RÞðwLþwRÞ
ax: ð14Þ

3.3. Modelling of the rear axle differential system

The model of a limited slip differential (LSD) system, which
provides coupling of the drive torques of the driven rear-left and
rear-right wheels, is introduced in this section. The differential is
the device of the drive-train of the vehicle that distributes the
torque from the engine/gearbox assembly to the wheels of the

driven axle (Fig. 7(a)). Considering a RWD vehicle and assuming no
braking command, the front wheel torques become TFj ¼ 0, (j¼L,R).
The output drive torque TR from the gearbox will then be dis-
tributed between the rear-left and rear-right wheels, providing TRL

and TRR in Eq. (4). An LSD system transfers torque from the wheel
that is spinning faster to the slower spinning wheel. The aim of the
LSD is to transfer torque to the wheel that provides higher traction,
and limit slipping of the wheel with lower traction.

The torque transfer characteristics of an LSD differential model
of the CarSim vehicle simulation software (CarSim, 2009) was
used in this work. The torque transfer as a function of the wheel
speed differential is provided in CarSim in the form of a look-up
table. The data of the look-up table were used to identify an
explicit expression of the differential torque transfer as a function
of the wheel speed differential. The following formula is fitted to
the CarSim data, as shown in Fig. 7(b):

DTðDoÞ ¼�signðDoÞCd

ffiffiffiffiffiffiffiffiffiffiffiffi
9Do9

q
, ð15Þ

where DT ¼ TRL�TRR, Do¼oRL�oRR, and Cd is a positive constant.
By introducing the single torque input TR ¼ TRLþTRR, corre-

sponding to the torque applied from the gearbox to the differ-
ential system input shaft, the rear-left and rear-right wheel
torques are given as follows:

TRR ¼
TR�DTðDoÞ

2
, TRL ¼

TRþDTðDoÞ
2

, ð16Þ

where DTðDoÞ from (15). Finally, using Eqs. (4), (15) the dynamics
of the rear wheels speed differential are derived as follows:

Iw
dDo

dt
¼DTðDoÞ�ðfRLx�fRRxÞr: ð17Þ

4. Steady-state cornering conditions

Steady-state cornering is characterized by a trajectory of
constant radius R¼ Rss, negotiated at a constant speed V ¼ Vss,

constant yaw rate _c ¼ _c
ss
¼ Vss=Rss, constant sideslip angle

b¼ bss, and constant wheel speeds oij ¼oss
ij . During steady-state

cornering, the control inputs, namely the steering angle d¼ dss

and rear axle torque TR ¼ Tss
R , also remain constant.

Enforcing the steady-state cornering conditions

_V ¼ 0, _b ¼ 0, €c ¼ 0, _oij ¼ 0, ð18Þ

and considering an RWD transmission and no braking command,
that is, enforcing free rolling of the front wheels

sss
Fjx ¼ 0, f ss

Fjx ¼ 0, Tss
Fj ¼ 0, j¼ L,R, ð19Þ

TR

Differential

TRL TRR

�RL �RR
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−400
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Fig. 7. (a) Operation of a differential system and (b) LSD torque transfer characteristic.
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and providing fixed values for the steady-state pair ðRss,bss
Þ, one is

able to solve numerically the set of nonlinear algebraic equations
(1)–(16) for the rest of the steady-state variables Vss, oss

ij , steady-
state slip quantities and tire forces sss

ijk, f ss
ijk , vertical forces at the

wheels f ss
ijz , and steady-state control inputs dss and Tss

R (i¼F,R, j¼L,R,
k¼x,y). Fixing the values for ðRss,bss

Þ results in a number of
unknown parameters equal to the number of Eqs. (1)–(16). Alter-
natively, one may provide fixed values for different parameters, for
instance ðRss,VssÞ, or ðVss,bss

Þ, and solve for the remaining state and
control variables. In this work the nonlinear equation solver of
Matlab was employed. A similar derivation, using a single-track
model, is presented in more detail in Velenis et al. (2010).

Clockwise cornering equilibria for a range of path radii Rss and
sideslip angles bss, using the vehicle and tire model parameters of
Table 1, are given in Fig. 8. In particular, the steady-state value of
the centripetal acceleration ass

cent ¼ ðV
ssÞ

2=Rss for each steady-state
pair ðRss,bss

Þ is shown. The solid line passes through the points of
maximum ass

cent considering fixed values of Rss. The existence of
steady-state conditions at extremely low path radii ðRsso4:5 mÞ
may expand the mobility characteristics of the vehicle. Along paths
of low radii the vehicle achieves the highest speed equilibria at
higher sideslip angles. In Fig. 9 the steady-state conditions corre-
sponding to Rss ¼ 13 and 2 m are shown. The maximum steady-
state centripetal acceleration, and hence the maximum steady-state
speed, is achieved at approximately 301 of sideslip angle along the
13 m radius path, whereas in the case of the 2 m path radius the
maximum speed is achieved at a more aggressive sideslip angle of
551. In the case of Rss ¼ 13 m the steady-state steering command
corresponds to counter-steering (d40 along a right turn) for
increased values of sideslip ðbss4251Þ. In the case of Rss ¼ 2 m
the steering command is along the direction of corner for sideslip
angle up to 551, and countersteering is required for higher values of
sideslip. A cornering equilibrium along Rss ¼ 2 m with a less

aggressive sideslip angle bsso301 would require a high value of
steering angle 9d94351 which may exceed the limits of the steering
system, hence driving along extremely low radii becomes practi-
cally possible only with drifting.

In Table 2 the steady-state conditions achieved during the data
collection experiment of Section 2 are compared to the calculated
steady-state conditions using the four-wheel vehicle model of
Table 1. Despite the uncertainty in many of the vehicle and tire
parameters, the calculated steady-states closely match the data.

As shown in Edelmann and Plöchl (2009), drifting equilibria are
unstable, which can also be verified through linearization of the
system dynamics (1)–(4) with respect to the equilibrium states,
assuming control inputs fixed at their steady-state values, and
calculation of the eigenvalues of the Jacobian Matrix. The linearized
input–output system, which is discussed in the next section, can
also be used to study the controllability and stabilizability of each
equilibrium. The controllability matrix was computed for all equili-
brium points of Fig. 8 and found to be of full rank, revealing that all
the equilibria calculated are controllable. While the above does not
provide proof of controllability of all the existing steady-states, as
the calculation was performed for a fixed set of vehicle parameters
and only a subset of all possible equilibria, the determination of the
stabilizability of the steady-states is necessary, before one can
proceed with the control design.

5. Stabilization of steady-state cornering

A control scheme to stabilize an RWD vehicle with respect to
drifting equilibria, using control inputs directly correlating to
driver commands, is presented next. The proposed architecture
consists of a linear controller providing stabilizing front-wheel
steering angle (corresponding to the driver’s steering command),
and rear-wheel angular rate inputs. In addition, a backstepping
controller calculates the rear differential drive torque necessary
for the rear-left and rear-right wheels to achieve the wheel speeds
dictated by the previous linear controller.

5.1. Steering and rear-wheel speed control

Neglecting the dynamics of each individual wheel rotation (Eq.
(4)), the equations of motion of the full-car model (1)–(3),
including the rear-wheel speed differential equation (17), are
expressed as a system driven by the steering angle control input d̂
and one of the rear-wheel angular rates, for instance the rear-left
wheel rotational speed input ôRL:

d

dt
V ¼ f1ðV ,b, _c,Do,ôRL,d̂Þ, ð20Þ

d

dt
b¼ f2ðV ,b, _c,Do,ôRL,d̂Þ, ð21Þ

d

dt
_c ¼ f3ðV ,b, _c,Do,ôRL,d̂Þ, ð22Þ

d

dt
Do¼ f4ðV ,b, _c,Do,ôRLÞ: ð23Þ

The rear-right wheel speed oRR is calculated using the state
variable Do and the rear-left wheel speed input ôRL. Hence, one
may calculate longitudinal and lateral friction forces at both rear
wheels, using the tire model of Section 3.2. Free rolling of the
front wheels is also enforced (see (19)).

The equilibrium states ðVss,bss, _c
ss

,DossÞ and inputs ðoss
RL,dss

Þ are

calculated as in Section 4. Eqs. (20)–(23) are linearized as follows:

dx

dt
¼AssxþBssu¼AssxþB1ðôRL�oss

RLÞþB2ðd̂�d
ss
Þ,

Table 1
Estimated test-vehicle parameters.

Parameter Value Parameter Value

m (kg) 850 ‘F (m) 1.5

Iz (kg m2) 1400 ‘R (m) 0.9

Iw (kg m2) 0.6 r (m) 0.311

wL ,wR (m) 0.74 B 4

Cd Nm/(rad/s)1/2 50 C 1.3

h (m) 0.5 D 0.6
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Fig. 8. Calculated steady-state equilibria.
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y¼ Cx, ð24Þ

where Ass and Bss are the Jacobian matrices, computed at the

equilibrium point, B1 and B2 are the first and second columns of Bss,
respectively, and

x¼

V�Vss

b�bss

_c� _c
ss

Do�Doss

2
66664

3
77775, u¼

ôRL�oss
RL

d̂�dss

" #
, C¼ I4�4:

The control

u¼�Kx, ð25Þ

where the control gain matrix K is given by

K¼R�1
ðBss
Þ
T P

and P is the symmetric positive-definite solution to the following
algebraic Riccati equation:

ðAss
Þ
T PþPAss

�PBssR�1
ðBss
Þ
T PþCT QC¼ 0, ð26Þ

stabilizes the equilibrium x¼0 and minimizes the quadratic cost

J¼

Z 1
0
½yðtÞT QyðtÞþuðtÞT RuðtÞ� dt:

The matrix Q is real, symmetric and positive semi-definite, and
matrix R is real, symmetric and positive definite.

Letting K1 and K2 be the first and second rows of the gain matrix
K, respectively, the linear quadratic regulator (25) provides the
following rear-wheel angular rate and steering angle commands:

ôRLðxÞ ¼ �K1xþoss
RL, ð27Þ

d̂ðxÞ ¼ �K2xþdss: ð28Þ

5.2. Drive torque control

Next, a backstepping controller (Kokotovic, 1992) is designed
using the rear drive torque TR to regulate the rotational speeds of
the rear wheels to the values generated by the control law (25).

The variable zRL is defined as the difference between the actual
wheel angular rate oRL and the reference value ôRLðxÞ:

zRL ¼oRL�ôRLðxÞ: ð29Þ

Eqs. (4) and (29) result in

_zRL ¼ _oRL�
@ôRLðxÞ

@x
_x ¼

1

Iw
TRL�

r

Iw
fRLxþK1½

_V _b €cD _o�T : ð30Þ

Table 2
Steady-state drifting condition.

Variable Data Calculated Data Calculated

Rss (m) 13 13 2 2

V ss (m/s) 8.1 8.42 3.1 3

bss (deg.) 31.4 33 44 40

_c
ss

(deg./s) �35.7 �37.1 �88.8 �85.6

oss
FL (RPM) 265.3 249.5 102.2 101.3

oss
FR (RPM) 230.9 220.7 41.3 37.5

oss
RL (RPM) 409 347.2 302.8 223.5

oss
RR (RPM) 451.7 393.5 341.4 272.7

dss (deg.) 12.5 11.9 �21.6 �20.1
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Fig. 9. Steady-state cornering equilibria for fixed values of Rss and a range of bss.
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Taking

TRL ¼ fRLxr�IwK1½f1 f2 f3 f4�
Tþ Iwv, ð31Þ

and applying the steering controller (28), the linearized equations
(24) are now extended to incorporate the wheel speed error
dynamics _zRL as follows:

_x ¼AssxþB1ðoRL�oss
RLÞþB2ðd̂ðxÞ�d

ss
Þ

¼AssxþB1ðzRLþôRLðxÞ�oss
RLÞþB2ðd̂ðxÞ�d

ss
Þ

¼ ðAss
�BssKÞxþB1zRL,

_zRL ¼ v: ð32Þ

The Lyapunov function candidate

Vðx,zRLÞ ¼ xT Pxþ1
2z2

RL, ð33Þ

where P is given by (26), yields

_V ¼ xT ½ðAss
þBssKÞT PþPðAss

þBssKÞ�xþ2xT PB1zRLþzRLv

¼�xT ½CT QCþPBssR�1
ðBss
Þ
T P�xþ2xT PB1zRLþzRLv

o2xT PB1zRLþzRLv: ð34Þ

Choosing

v¼�k zRL�2xT PB1, k40, ð35Þ

and hence

TRL ¼ fRLxr�IwðK1½f1 f2 f3 f4�
Tþk zRLþ2xT PB1Þ, ð36Þ

results in an asymptotically stable origin x¼0, zRL¼0 of the
system (32).

Given TRL from (36) one can calculate the corresponding rear
differential drive torque TR and rear-left wheel torque TRL from
Eqs. (16).

A schematic of the proposed control architecture is shown in
Fig. 10.

Remark 1. In the calculation of the steady-state cornering con-
ditions exact knowledge of the tire/road friction forces via
Pacejka’s Magic Formula is assumed. In reality, such information
is rarely accurately available due to the number of parameters
that affect the tire–road interaction forces. In Velenis et al. (2010)
a sensitivity study of the performance of a linear controller
stabilizing drifting equilibria of a single-track model in the
presence of tire friction uncertainty was discussed. It was shown
that the linear quadratic regulator successfully stabilizes the
vehicle, with the uncertainty resulting in steady-state errors.
Actual implementation of the drifting conditions and the stabiliz-
ing control scheme will require real time tire friction estimation
as demonstrated, for instance, in Hsu and Gerdes (2005) and
Piyabongkarn, Rajamani, Grogg, and Lew (2009). In addition,
among the signals required for feedback, the four wheel speeds
and the vehicle yaw rate are readily available in modern cars
equipped with stability control. The remaining signals may be

obtained using state estimation. In Piyabongkarn et al. (2009), for
instance, a sideslip angle estimator was designed and experimen-
tally validated, and a low cost GPS was proposed to obtain an
accurate measurement of the vehicle speed.

Remark 2. The control architecture described above stabilizes
the vehicle with respect to cornering equilibria across the full
range of operation of the tires, including operation on and beyond
the tire’s adhesion limit. Hence, the controller achieves stability in
operating conditions outside the limits enforced by current
stability control systems, such as the ESC. In particular, the ESC
uses the driver’s steering input, the vehicle’s yaw rate and/or
lateral acceleration to determine the desired path radius using
steady-state conditions of a linear bicycle model (Rajamani,
2006). In fact, the ESC aims at restricting the vehicle response
within the linear region of operation. It is envisioned that the
approach described in this paper will contribute towards new
active safety systems, which will employ expert driving skills and
techniques and allow the driver to safely exploit the full handling
performance of the vehicle during an emergency. Considering a
steer-, brake-, drive-by-wire vehicle, the driver’s steering com-
mand may be used to determine the desired cornering radius
similar to the ESC, and the driver’s throttle/brake command to
determine the desired vehicle velocity. The driver issued corner-
ing radius and velocity would correspond to the target pair
ðRss,VssÞ, and the remaining target equilibrium state and control
variables required in the control law (27), (28) and (36) can be
determined following the calculations in Section 4. The target
condition may lie outside the linear region enforced by the ESC.
As long as the target condition is within the physical limits of the
vehicle (Fig. 8) the controller will stabilize the target equilibrium.
Otherwise the nearest feasible cornering condition will be
selected. In this way the driver will be alleviated from the non-
intuitive tasks of counter-steering and applying throttle com-
mand to control the lateral dynamics of the vehicle, which require
expert skills. In addition, the control architecture presented above
can be incorporated in an autonomous path following scheme. In
Thommyppillai, Evangelou, and Sharp (2009a, 2009b), Sharp,
Thommyppillai, and Evangelou (2010), for instance, the optimal
gains of a path following controller are calculated using discrete
linear quadratic regulator theory with preview, assuming that the
vehicle operates near a trim (steady-state) condition. Optimal
gains are calculated for a range of trim conditions, leading to an
adaptive scheme, where the path following gains change accord-
ing to the operating condition of the vehicle. In fact, a single
transient cornering manoeuvre may involve more than a single
equilibrium condition and the controller gains are refreshed
accordingly online. The scheme of the references above may be
expanded to incorporate limit driving conditions used by expert
drivers, as presented in this work.

In the following section the control architecture is implemen-
ted to stabilize the vehicle with respect to drifting equilibria
similar to those described in Section 2.

6. Simulation results

The results of the implementation of the control scheme of
Section 5 using CarSim (2009), a high fidelity vehicle dynamics
simulation environment, are presented in the following. The
parameters of the vehicle and tire friction model used in the
numerical calculations are summarized in Table 1. In addition,
the pitch moment of inertia is Iy¼1401 kg m2, and the roll
moment of inertia is Ix¼198.6 kg m2, while realistic characteris-
tics of stiffness and damping coefficients of each independent
suspension are provided by CarSim. For consistency, the tire

LQR Vehicle
Dynamics

Backstepping
Control�̂RL TR

�̂

V, �, ψ,�ij˙

Fig. 10. Control architecture for the stabilization of steady-state cornering

conditions.
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friction model of Section 3 is incorporated in the CarSim simula-
tion. The stabilization of the full-car vehicle model with respect to
two steady-state equilibria (Rss ¼ 13 and 2 m) as in Table 2 is
considered. In both cases the vehicle is initially at a standstill. An
open-loop control resembling the driver commands data recorded

during the experiment is applied to initiate the maneuver until
the vehicle reaches a velocity sufficiently close to the target
steady-state value. The control scheme of Section 5 is then
engaged to stabilize the vehicle with respect to the prescribed
steady-state condition of Table 2.
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Fig. 11. Vehicle states and control inputs during stabilization with respect to the Rss ¼ 13 m cornering equilibrium.
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In the case of Rss ¼ 13 m a constant steering command d¼�101
and a constant rear-left wheel torque TRR¼160 Nm (and also
TRL ¼ TRR�DTðDoÞ) are applied during the interval 0rtr5 s. For

t45 s the closed-loop control scheme is activated. The vehicle
states and control inputs during the stabilization of the vehicle with
respect to the Rss ¼ 13 m equilibrium are shown in Fig. 11. In order
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Fig. 12. Vehicle states and control inputs during stabilization with respect to the Rss ¼ 2 m cornering equilibrium.
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to avoid unrealistic control inputs, saturation of the magnitude of
the steering angle at 301 has been imposed. The saturation limit
was instantaneously reached at the instant of switching from the
open-loop to the closed-loop control (t¼5 s). For comparison, the
response data of the test vehicle during the data collection experi-
ment are superimposed. In the absence of disturbances, the CarSim
model reaches the steady-state condition within 10 s and then
maintains constant states and control inputs, as opposed to the
oscillatory behavior of the vehicle experimental data. Once again,
the human driver data variations near the steady-state condition
are thought to emerge from physical disturbances compensated by
the human controller. Response delays, sensory thresholds and
response inaccuracy of the human driver may also contribute to
discrepancies with respect to the backstepping controller perfor-
mance. Fig. 13 shows the trajectory of the vehicle during stabiliza-
tion, generated by the animation tool of CarSim.

In the case of Rss ¼ 2 m, a constant steering command d¼�151
during the interval 0rtr3:5 s is applied. During the interval
0rtr3:1 s a constant accelerating torque TRR¼300 Nm (and also
TRL ¼ TRR�DTðDoÞ) is used, followed by a braking command
TRL ¼�500 oRL, TRR ¼�500 oRR (with TRj in Nm and oRj in
rad/s) until t¼3.5 s, emulating the handbrake command recorded
in the experiment. For t43:5 s the closed-loop control scheme is
engaged. The vehicle states and control inputs during the stabi-
lization of the vehicle with respect to the Rss ¼ 2 m equilibrium
are shown in Fig. 12, where the response data of the test vehicle
during the data collection experiment are superimposed for
comparison. One can observe the close resemblance in the
response of the simulation model to the experimental data of
the test vehicle response. Fig. 14 shows the trajectory of the
vehicle during stabilization, generated by the animation tool of
CarSim.

7. Conclusions

The stabilization of RWD vehicles with respect to cornering
equilibria characterized by aggressive sideslip angles was studied
in this work. The results of a data collection experiment during
execution of steady-state drifting by an expert driver were
analyzed, concluding that RWD vehicle drifting stabilization
requires a combination of throttle and steering regulation. The
data also revealed that drifting equilibria exist at path radii
considerably smaller than the kinematic turning radius of the
vehicle, expanding its mobility capabilities. Steady-state drifting
states and inputs, which closely match the experimental data, can
be computed numerically using a full-car vehicle model with
nonlinear tire characteristics and realistic drive-train modelling,
as demonstrated in this paper. In addition, a backstepping control
scheme can be used to stabilize the vehicle with respect to
drifting cornering equilibria. The controller designed in this work
uses combined steering angle and drive torque inputs, correlating
directly to the human driver commands. The controller was
successfully validated via implementation in a high-fidelity simu-
lation environment. The simulation scenarios emulated the cor-
nering conditions recorded during the experiment, including
cornering along an extremely small path radius.

Acknowledgments

The work of E. Velenis was supported by a Marie Curie
International Reintegration Grant within the 7th European Com-
munity Framework Programme, and a Brunel University BRIEF
award. The work of D. Katzourakis and R. Happee was supported
by the Automotive Development Centre of SKF as part of the
project Mobility Intelligence using Load based Lateral Stability
(MILLS). The work of E. Frazzoli was supported by ARO award
W911NF-07-1-0499. The work of P. Tsiotras was supported by
ARO award no. W911NF-05-1-0331 and NSF GOALI award no.
CMMI-0727768. The authors would like to thank three anon-
ymous reviewers of this paper for their constructive suggestions.

References

Abdulrahim, M. (2006). On the dynamics of automobile drifting. In SAE world
congress, Detroit, MI, April 3–6.

Bakker, E., Nyborg, L., & Pacejka, H. (1987). Tyre modelling for use in vehicle
dynamics studies. SAE Paper No. 870421.

CarSim (2009). CarSim User Manual. Mechanical Simulation Corp., Ann Arbor, MI.
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