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Abstract

Recent results show that a nonsmooth, time-invariant
feedback control law can be used to stabilize an axi-
symmetric rigid body using only two control torques
to the zero equilibrium. This method, however, may
require a significant amount of control effort, especially
for initial conditions close to an equilibrium manifold.
In this paper we propose a modification of the previous
control law which reduces the control effort required.
The new control law renders the equilibrium manifold
unstable and drives the trajectories of the closed-loop
system into a “safe” region where the original control
law can be subsequently used.

1 Introduction

The problem of stabilization of a rigid body using less
than three control inputs has received a lot of atten-
tion in the recent literature. Both the problems of
the stabilization of the dynamics, and the stabilization
of the kinematics have been treated in the literature
[1, 2, 3,4, 5, 6]. The stabilization problem of the com-
plete system, i.e., the dynamics and the kinematics, has
been addressed in [7, 8,9, 10, 11, 12, 13]. For example,
the attitude stabilization of an axially symmetric rigid
body using two independent control torques was stud-
ied by Krishnan, et al. in [8, 9]. If the uncontrolled
principal axis is not the axis of symmetry the system is
strongly accessible and small time locally controllable
[9]. When the uncontrolled axis coincides with the axis
of symmetry, the complete system fails to be control-
lable or even accessible. However, the system equations
are strongly accessible and small time locally control-
lable in the case of zero spin rate. A nonlinear control
approach was developed in [8], which achieves arbitrary
reorientation for this restricted case. In [14, 15] the au-
thors presented a new formulation of the attitude kine-
matics and used it in [10, 11] in order to solve the same
problem avoiding the successive switchings of [8]. The
previous results address the axi-symmetric body case.
The non-symmetric case is much more difficult and it

jl4f@virginia.edu

is treated in [12, 13, 16].

In this paper, we provide a modification of the control
law presented in [11] for the attitude stabilization of an
axi-symmetric rigid body using two independent con-
trol torques. Because the system has an equilibrium
manifold which includes the origin, Brockett’s neces-
sary condition for smooth stabilizability is not satis-
fied and thus, any stabilizing control law is necessarily
nonsmooth. (Stabilizing time-varying smooth control
laws may still exist, however.) This nonsmoothness is
evident in [11] in the form of the non-differentiability
of the control law at the origin. Because of this sin-
gularity at the origin, this control law may take large
values, especially for initial conditions close to the equi-
librium manifold. Compared to the control law in [11]
the control law proposed in this paper remedies this
high control authority problem by driving the trajec-
tories of the closed-loop system away from the singular
equilibrium manifold and to a region in the state space
where the high authority part of the control input re-
mains small and bounded. The procedure is simple
and can be easily validated from phase portrait consid-
erations. A numerical example illustrates the control
effort improvement using the new control law.

2 Kinematics of the Attitude Motion

The orientation of a rigid spacecraft can be specified
using various parameterizations, for example, Eulerian
Angles, Euler Parameters, Cayley-Rodrigues Parame-
ters, Cayley-Klein parameters, etc. Recently, a new
parameterization using a pair of a complex and a real
coordinate was introduced [14, 15] which was shown
to have some significant advantages for attitude anal-
ysis and control problems [11, 17, 18]. According to
these results, the relative orientation between two given
reference frames can be represented by two rotations,
one corresponding to the real coordinate (z) and the
other corresponding to the complex coordinate (w).
Let Ri(z) and Ra(w) denote the rotation matrices cor-
responding to the two elementary rotations associated



with z and w, respectively. The total rotation matrix
is then the product of these two rotation matrices

R(w,2) = Ro(w)Ri() (1)
An explicit formula for R(w, z) can be found in [15].

The kinematic equations provide the geometric con-
straints of the motion which relate the rates of the
kinematic parameters z and w to the angular velocity
vector expressed in body coordinates. As was shown in
[11, 15], these equations can be written compactly in
terms of w and z as follows

W= —iW3W—|—g—|—gW2 (2a)
2 = ws+ Im(ww) (2b)

where w = wi +tws, w = wy +4 wa, § = +/—1, bar de-
notes complex conjugate, and Re(-) and I'm(-) denote
real and imaginary parts of a complex number respec-
tively. Moreover, notice that these equations can take
the convenient form

d, 2 —
7 w| (1+|w|*)Re(ww) (3a)

ws + Im(ww) (3b)

z

where | - | denotes absolute value. In Eq. (3b) only the
imaginary part of the product ww appears, while in
Eq. (3a) only the real part appears. This duality (or
anti-symmetry) of Eqs. (3a) and (3b) is desirable and
can be used to derive stabilizing control laws for the
system of Eqs. (2).

Note in passing that since w = 0 if and only if |w| = 0
stabilization of the system in Eqs. (2) is equivalent to
stabilization of the system Eqgs. (3).

3 Problem Statement

Consider the system of Eqgs. (2), equivalently Eqgs. (3),
where the angular velocity vector i1s the assumed con-
trol input. In realistic situations three (or even two)
independent control torques could be used to shape the
velocity vector instead. For an axi-symmetric body
(say, about the 3-axis), there is no direct control over
w3 1f the applied torque vector lies in the plane which is
perpendicular to the symmetry axis. In such a case wg
remains constant, and if initially it is wz(0) # 0, no con-
trol input can bring the system (2) to the equilibrium
[8]. The system is not controllable to the equilibrium
but it 1s controllable to the submanifold w = 0 in the
(z, w)-space. For a more detailed discussion on this
issue, one may peruse [8, 9, 11, 15].

According to the previous discussion assuming an axi-
symmetric body, the stabilization to the equilibrium of

the system (2) really makes sense only if wg = 0. In
this case, the system simplifies to

W= g—i—ng (4a)
2 = Im(ww) (4b)

This system can be stabilized to the origin, but any
time-invariant stabilizing control law has to be neces-
sarily nonsmooth since Eqgs. (4) fail Brockett’s neces-
sary condition for smooth stabilizability [19]. One is
therefore compelled to use nonsmooth (time-invariant)
stabilizers for this system.

4 Previous Results

In Ref. [11] a nonsmooth control law was proposed for
the system described by Eqs. (4). The proposed con-
trol law in [11] was motivated by the decoupling of
these equations with respect to the product ww, as it
is evident from the discussion following Eqs. (3). This
control law is given by

w:—;@w—iué (5)
W

where g > £/2 > 0. The closed loop system in terms
of |w| and z is given by

2
WL~ ) )
: = —pz (6b)

which is clearly exponentially stable. As can be easily
inferred by observing Eqs. (5) and (3) the first term
in the control (5) has an effect only on the differential
equation for w, whereas the second term in Eq. (5) has
an effect only on the differential equation for z.

The main disadvantage of the control law in Eq. (5) is
that the last term, which involves the ratio z/w, may
become unbounded without careful choice of the gains.
The previously imposed gain condition u > /2 ensures
that the rate of decay of z is at least as large as the rate
of decay of w, such that their ratio remains bounded.
Actually, one can easily establish from Eqgs. (6) that,
for u > k/2, along the solutions of the system one has
z/w—0ast— .

Introducing the variable v = |w|? the system (6) takes
the form

v = —&(l4+0v)w (7a)
: = —pz (7b)
Notice that this is a system evolving in IR x IR. Typ-

ical trajectories and the vector field of the closed-loop
system (7) for & = 1 and g = 2 are shown in Fig. 1.
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Figure 1: Phase portrait of system in Eqgs. (8).

Since z does not change si it suffices to plot o ly
the z >0 case.)

Although the ratio z/w, and hence the control effort
w, remains bounded by proper choice of control gains,
the control input w may take large values in the region
where w is small. From Eq. (6a) |w(?)| < |w(0)] for all
t > 0 and for small initial conditions w(0) the control
law may use a substantial amount of energy, especially
in regions where |z| is large. In Fig. 1, for example, the
region which is close to the z axis is clearly undesirable.
We wish to modify the control law in Eq. (5) such that
the vector field close to the z axis points away from
this axis. In short, the idea is to divide the (z,v) phase
space into two regions according to the value of the
ratio

n=- (8)

This ratio is a direct indication of the relative mag-
nitude between z and w. Owing to the non-
differentiability of the term z/w this ratio should be
kept small in order to avoid high control effort. Hence,
if initially the states are in an undesirable region where
7 attains large values, the feedback control strategy
should drive the trajectories to a “safe” region in the
state space where 1 remains relatively small. Without
loss of generality, we choose as undesirable the region
where |n| > 1 and as desirable the region where || < 1.
These two regions, denoted by Dy and D4 respectively,
are therefore defined by

D1 = {(z,v) ER xRy 00> |n >1} (9a)
Dy = () ERxRy:ll<1} ()

These two regions are shown in Fig. 2.
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Figure 2: Regions Dy and Ds in (z,v) phase space.

5 Main Results

The proposed modification of the control law in Eq. (5)
is simple. We use positive feedback for v when the
trajectory is in region Di, while keeping z approxi-
mately constant (or decreasing). This will make the
manifold v = 0 (equivalently, w = 0) unstable and the
trajectories will move towards the region D5 and sub-
sequently stay there. The control law in region Dj is
essentially the same as in Eq. (5). Notice that, by def-
inition, inside the region Dy we have |n| < 1, and since
|z|/|w| = |n||w| we can ensure that w(-) will not take
excessive values as long as the trajectories remain in
D5. These statements will be made more precise in the
sequel.

5.1 Proposed Control Law
The proposed control law for the system in Eqgs. (4) is
defined by

w = —)w — in(n) (10)

where
W) = arctan (ol - ) (1)
pn) = Earctan (p(1 = In) + 5 (1)

and 0 < K, < pte. From Eqs. (11) we have immediately
that

— ke <K() < ke, 0<p(n) <pe (12)

for all n € IR. In fact, we have that —x, < () < 0 and
0 < u(n) < & for all (z,v) € Dy and 0 < k(n) < k.
and &= < p(n) < pe for all (z,v) € Da.

The next theorem gives the main result of the paper.

Theorem 1 Consider the system (4) and let the con-
trol law as in equations (10)-(11) with0 < &, < .



Then for initial conditions (2(0),
the following properties hold

(i) w(t)#0,Vt>0.
(ii) the  trajectory(z(- ) ( ))is  bounded  and

limy— oo (2(1), w(t))
(iii) the control law w(-)
dertvative.

w(0)) € IR x (C\{0})

15 bounded and it has bounded

With the control law (10) the closed loop system takes
the form

v = —&Mn)(1+v)v (13a)
P (13b)

where v = |w|? and 7 as in equation (8). From Eq. (12)
we have that z decays monotonically for all initial con-
ditions, whereas v increases in the region D1 and de-
creases in Da. The result is that the trajectories of (13)
tend to Dy and then to the origin, as required.

Before we prove Theorem 1 we need to establish the
following two lemmas.

Lemma 5.1 The region D5 ts itnvariant for the system

(13).

Proof: The boundary of the set D5 is given by the
two lines n = +1 (cf. Fig. 2). On the boundary of D5
we have that x(n) = 0 and u(n) = p./2. The vector
field on the boundary of D5 is therefore

vo= 0 (14a)

;o= —He, (14b)

2
which points into the interior of D4. Therefore trajec-
tories in Dy cannot escape this region and thus it is
invariant for the closed-loop system (13). m

This lemma establishes that for initial conditions in
D the trajectories of the closed-loop system remain in
D, for all times. Equivalently, if at some time ¢ > 0
the trajectory enters Ds, it stays in D, for all ¢ > '
Figure 2 shows the vector field on the boundary of Ds.

Lemma 5.2 Consider the system (13). For all initial
conditions (z,v) € Dy the trajectories enter the region
Dy wn finite time.

Proof: As long as (z,v) € Dy from Eq. (?7) we
have that 0 < u(n) < p./2. This implies that z is
bounded. Actually, |2(2)| < |2(0)] for all £ > 0. Note
that z does not change sign for all ¢ > 0. Without loss

of generality we can assume that z(0) > 0 (the case
z(0) < 0 being similar). If (2(0),v(0)) € Dy then, by
definition 9(0) > 1. The derivative of  in D is then
.z
=y

= —p(mn+&(m)(L+v)n
< —u(mn <0 (15)

since «(n) < 0 and v > 0; hence 7 is bounded in D;.
Let ¢l Dy denote the closure of D; in IR?, that is,

ClDlzpl U {( )EIRXIR+ |7]|—1}
U {(z,0) ER xRy :v =0} (16)

Then it 1s an easy exercise to show that 7 # 0 for all
(z,v) € el D1\{(0,0)}. Hence there exists ¢ > 0 such
that 17 < —e in D1 and consequently,  monotonically
decreases. Thus, every trajectory starting in D will
leave this set and enter Ds 1n finite time. n

Notice that the set {(z,v) € RxIRy : v = 0and z # 0}
is an unstable manifold for the closed-loop system. Fig-
ure 2 shows the vector field on the boundary of D1. The
following corollary follows directly from Lemmas 5.1

and 5.2.

Corollary 5.1 Consider system (13). For all initial
conditions (z(0),v(0)) € R x (IR4\{0}) n is bounded
for allt > 0.

We are now ready to give the proof of Theorem 1.

Proof: [Theorem 1] From Eqgs. (13a) and (12) we have
that
0> —ke(l+v)v (17)

where . > 0. The solution of the differential equation

&= —k(l+ 2z, 2(0) =20 >0 (18)

is given by
1
e (19)
where ¢ = (xg + 1)/xq. Clearly, z(t) # 0 for all ¢t > 0

and limy_., 2(t) = 0. Therefore v(-) is bounded below
by the solutions of the differential equation (18) subject
to initial condition zg = v(0). Hence, |w(t)| # 0 for all
t > 0 and w(-) approaches the origin asymptotically.

We now show that lim;_..(2(¢),v(t)) = 0. If
(2(0),v(0)) € ™Dy then according to Lemma 5.1
(2(1),v(1)) € Dy for all t > 0 and D5 is an invariant set
for the closed-loop system. Consider now the positive
definite, radially unbounded function V : IR x IRy —
IRy given by

V(z,v) €Dy (20)



The derivative of V along the trajectories of (13) is
V= —k(n)(1 4 v)v? — pu(n)z? <0, Y(z,v) € D

(21)
therefore, the trajectories are bounded in Dy. More-
over, V = 0 if and only if x(n)(1 + v) + p(n)n* = 0.
Using the definitions of k(1) and u(n) in Py and recall-
ing that v > 0, one establishes that the last equality is
not satisfied in Dy unless z = v = 0. By LaSalle’s
theorem, the system is asymptotically stable for all
initial conditions in D,. To finish the proof, recall
from Lemma 5.2 that if (2(0),v(0)) € D; then |z
is bounded by |z(0)| and there exist a time t' > 0
such that (z(¥'),v(¥')) € Ds. This implies that for
all ¥ > ¢ > 0 the trajectories in D; are bounded,
and are confined inside the strip |z(¢)| < |2(0)|. How-
ever, according to the previous discussion, the trajec-
tory with initial condition (z(¢'), v(¢')) has the property
that limy_.o(2(¢), v(t)) = 0. Therefore, we have shown
that for all (2(0),v(0)) € IR x (IR£\{0}) the trajecto-
ries remain bounded and lim;_ oo (z(t), v(¢)) = 0 By the

definition of v this implies that
lim (z(¢), w(t)) =0 (22)

t—o0

In order to show that w is bounded, write z/w = nw.
From Eq. (10) one obtains that

|wl < Kelwl + pelnl|wl (23)

From Corollary 5.1 we have that for all initial condi-
tions (2(0), w(0)) € IR x (C\{0}) n is bounded. Since
w is also bounded, from Eq. (23) it follows that w is
bounded.

From Eq. (4a) it follows immediately that w is also
bounded. Moreover, since

= —p(mn+ &(n)(1+v)n (24)

and p(n), £(n),v and 5 are all bounded, we have that
7 is bounded.

The derivative of w is given by

w:—me—amW—mme—wme—wwy%
25
Let us now assume that 7(0) > 0. Then 5(t) > 0 for all
t > 0. Thus in the subsequent discussion, without loss
of generality, we assume that || = 1. The case when
n(0) < 0 is treated similarly. Using Eqgs. (11) one has

. _ 2k, p .

K(n) = T T 2= e PE 7 (26a)
. e p .

pn) = T Tr =" (26b)

Since 7 is bounded, %(n) and () are both bounded.
Finally, the boundedness of w follows directly from

Eq. (25) and the fact all the terms in the right hand
side of this equation are bounded. n

The vector field and the corresponding trajectories of
the closed-loop system with the control law in Eq. (10)
is shown in Fig. 3 (compare with Fig. 1).

Remark 5.1 It should be clear that the choice of the
arctan function in the definition of k.(n) and p.(n)
is not restrictive. One could have used a “saturation-
type” function in order to switch between the appropri-
ate values of the gains in regions D1 and Dy. We have
used a differentiable function instead, because in appli-
cations the desired angular velocity history w(-) has to
be generated by some control torques through the dy-
namics. This requires differentiability (with respect to
time) of w(-). This is also the reason we require that,
in addition to w, the derivative of w 1s also bounded.

Remark 5.2 Theorem 1 shows that for all initial con-
ditions w(0) # 0 the control law (10) drives the system
trajectories to the origin. This control law cannot be
used if w(0) = 0 (and z # 0). Linearization of system
(4) about w = 0, however, results in

V—

(27a)
(27Db)

e IR S

z =

and choosing, for example, a constant control w = w, €
C, one can move away from the z axis into the D,
region; once in Dy, use of the control (10) drives the
system to the origin.
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Figure 3: Phase portrait of system in Eqgs. (11).

6 Numerical Example

To illustrate the previous theoretical analysis, we have
simulated the differential equations (4) with the two



control laws in Eqgs. (5) and (10). The gains are chosen
as k. = 0.5 and p. = 2. The value of the parameter p =
2. The initial conditions were taken as w(0) = 0.3 —
i0.25 and z(0) = 2.5. The results are shown in Figures
4 and 5. Figure 4 shows the corresponding closed-loop
trajectories, and Fig. 5 shows the magnitude of |w]?.
Solid lines correspond to the new control law in Eq. (10)
and the dashed lines correspond to the previous control
law given in Eq. (5).
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Figure 4: Closed-loop trajectories for the two meth-
ods.

Control Effort
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Figure 5: Control effort for the two methods.

7 Conclusions

We have constructed a nonsmooth control law which
stabilizes the kinematics of an underactuated rigid
body. We have shown that the control law is well de-
fined and it uses considerably less control effort than
a previously derived control law. A numerical exam-
ple is provided for comparison of the two control laws.
Future research will be directed towards implementing

the proposed control law through the dynamical equa-
tions, as well as extending these results to general non-
holonomic systems. Actually, the rigid body problem
subject to two control inputs is only but one example of
an underactuated mechanical system. Several other ex-
amples include systems subject to nonholonomic, i.e.,
non-integrable constraints. The application of the pro-
posed control law for general nonholonomic systems in
chain/power form will be addressed in a future article.
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