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Abstract

Recent results show that a nonsmooth� time�invariant
feedback control law can be used to stabilize an axi�
symmetric rigid body using only two control torques
to the zero equilibrium� This method� however� may
require a signi�cant amount of control e�ort� especially
for initial conditions close to an equilibrium manifold�
In this paper we propose a modi�cation of the previous
control law which reduces the control e�ort required�
The new control law renders the equilibrium manifold
unstable and drives the trajectories of the closed�loop
system into a �safe� region where the original control
law can be subsequently used�

� Introduction

The problem of stabilization of a rigid body using less
than three control inputs has received a lot of atten�
tion in the recent literature� Both the problems of
the stabilization of the dynamics� and the stabilization
of the kinematics have been treated in the literature
��� 	� 
� �� �� �� The stabilization problem of the com�
plete system� i�e�� the dynamics and the kinematics� has
been addressed in ��� �� �� ��� ��� �	� �
�� For example�
the attitude stabilization of an axially symmetric rigid
body using two independent control torques was stud�
ied by Krishnan� et al� in ��� ��� If the uncontrolled
principal axis is not the axis of symmetry the system is
strongly accessible and small time locally controllable
���� When the uncontrolled axis coincides with the axis
of symmetry� the complete system fails to be control�
lable or even accessible� However� the system equations
are strongly accessible and small time locally control�
lable in the case of zero spin rate� A nonlinear control
approach was developed in ���� which achieves arbitrary
reorientation for this restricted case� In ���� ��� the au�
thors presented a new formulation of the attitude kine�
matics and used it in ���� ��� in order to solve the same
problem avoiding the successive switchings of ���� The
previous results address the axi�symmetric body case�
The non�symmetric case is much more di�cult and it

is treated in ��	� �
� ���

In this paper� we provide a modi�cation of the control
law presented in ���� for the attitude stabilization of an
axi�symmetric rigid body using two independent con�
trol torques� Because the system has an equilibrium
manifold which includes the origin� Brockett�s neces�
sary condition for smooth stabilizability is not satis�
�ed and thus� any stabilizing control law is necessarily
nonsmooth� �Stabilizing time�varying smooth control
laws may still exist� however�� This nonsmoothness is
evident in ���� in the form of the non�di�erentiability
of the control law at the origin� Because of this sin�
gularity at the origin� this control law may take large
values� especially for initial conditions close to the equi�
librium manifold� Compared to the control law in ����
the control law proposed in this paper remedies this
high control authority problem by driving the trajec�
tories of the closed�loop system away from the singular
equilibriummanifold and to a region in the state space
where the high authority part of the control input re�
mains small and bounded� The procedure is simple
and can be easily validated from phase portrait consid�
erations� A numerical example illustrates the control
e�ort improvement using the new control law�

� Kinematics of the Attitude Motion

The orientation of a rigid spacecraft can be speci�ed
using various parameterizations� for example� Eulerian
Angles� Euler Parameters� Cayley�Rodrigues Parame�
ters� Cayley�Klein parameters� etc� Recently� a new
parameterization using a pair of a complex and a real
coordinate was introduced ���� ��� which was shown
to have some signi�cant advantages for attitude anal�
ysis and control problems ���� ��� ���� According to
these results� the relative orientation between two given
reference frames can be represented by two rotations�
one corresponding to the real coordinate �z� and the
other corresponding to the complex coordinate �w��
Let R��z� and R��w� denote the rotation matrices cor�
responding to the two elementary rotations associated



with z and w � respectively� The total rotation matrix
is then the product of these two rotation matrices

R�w � z� � R��w�R��z� ���

An explicit formula for R�w� z� can be found in �����

The kinematic equations provide the geometric con�
straints of the motion which relate the rates of the
kinematic parameters z and w to the angular velocity
vector expressed in body coordinates� As was shown in
���� ���� these equations can be written compactly in
terms of w and z as follows

�w � �i ��w �
�

	
�

��

	
w
� �	a�

�z � �� � Im�� �w � �	b�

where � � �� � i ��� w � w� � iw�� i �
p��� bar de�

notes complex conjugate� and Re��� and Im��� denote
real and imaginary parts of a complex number respec�
tively� Moreover� notice that these equations can take
the convenient form

d

dt
jwj� � �� � jwj��Re�� �w � �
a�

�z � �� � Im�� �w � �
b�

where j � j denotes absolute value� In Eq� �
b� only the
imaginary part of the product � �w appears� while in
Eq� �
a� only the real part appears� This duality �or
anti�symmetry� of Eqs� �
a� and �
b� is desirable and
can be used to derive stabilizing control laws for the
system of Eqs� �	��

Note in passing that since w � � if and only if jwj � �
stabilization of the system in Eqs� �	� is equivalent to
stabilization of the system Eqs� �
��

� Problem Statement

Consider the system of Eqs� �	�� equivalently Eqs� �
��
where the angular velocity vector is the assumed con�
trol input� In realistic situations three �or even two�
independent control torques could be used to shape the
velocity vector instead� For an axi�symmetric body
�say� about the 
�axis�� there is no direct control over
�� if the applied torque vector lies in the plane which is
perpendicular to the symmetry axis� In such a case ��
remains constant� and if initially it is ����� �� �� no con�
trol input can bring the system �	� to the equilibrium
���� The system is not controllable to the equilibrium
but it is controllable to the submanifold w � � in the
�z�w��space� For a more detailed discussion on this
issue� one may peruse ��� �� ��� ����

According to the previous discussion assuming an axi�
symmetric body� the stabilization to the equilibrium of

the system �	� really makes sense only if �� � �� In
this case� the system simpli�es to

�w �
�

	
�

��

	
w
� ��a�

�z � Im�� �w� ��b�

This system can be stabilized to the origin� but any
time�invariant stabilizing control law has to be neces�
sarily nonsmooth since Eqs� ��� fail Brockett�s neces�
sary condition for smooth stabilizability ����� One is
therefore compelled to use nonsmooth �time�invariant�
stabilizers for this system�

� Previous Results

In Ref� ���� a nonsmooth control law was proposed for
the system described by Eqs� ���� The proposed con�
trol law in ���� was motivated by the decoupling of
these equations with respect to the product � �w� as it
is evident from the discussion following Eqs� �
�� This
control law is given by

� � ��w � i�
z

�w
���

where � � ��	 � �� The closed loop system in terms
of jwj and z is given by

djwj�
dt

� ��jwj��� � jwj�� �a�

�z � ��z �b�

which is clearly exponentially stable� As can be easily
inferred by observing Eqs� ��� and �
� the �rst term
in the control ��� has an e�ect only on the di�erential
equation for w � whereas the second term in Eq� ��� has
an e�ect only on the di�erential equation for z�

The main disadvantage of the control law in Eq� ��� is
that the last term� which involves the ratio z��w � may
become unbounded without careful choice of the gains�
The previously imposed gain condition � � ��	 ensures
that the rate of decay of z is at least as large as the rate
of decay of w� such that their ratio remains bounded�
Actually� one can easily establish from Eqs� �� that�
for � � ��	� along the solutions of the system one has
z��w � � as t���

Introducing the variable v � jwj� the system �� takes
the form

�v � ���� � v�v ��a�

�z � ��z ��b�

Notice that this is a system evolving in IR� � IR� Typ�
ical trajectories and the vector �eld of the closed�loop
system ��� for � � � and � � 	 are shown in Fig� ��
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Figure �� Phase portrait of system in Eqs� ����

�Since z does not change sign it su�ces to plot only
the z � � case��

Although the ratio z��w� and hence the control e�ort
�� remains bounded by proper choice of control gains�
the control input � may take large values in the region
where w is small� From Eq� �a� jw�t�j � jw���j for all
t � � and for small initial conditions w��� the control
law may use a substantial amount of energy� especially
in regions where jzj is large� In Fig� �� for example� the
region which is close to the z axis is clearly undesirable�
We wish to modify the control law in Eq� ��� such that
the vector �eld close to the z axis points away from
this axis� In short� the idea is to divide the �z� v� phase
space into two regions according to the value of the
ratio

� �
z

v
���

This ratio is a direct indication of the relative mag�
nitude between z and w� Owing to the non�
di�erentiability of the term z��w this ratio should be
kept small in order to avoid high control e�ort� Hence�
if initially the states are in an undesirable region where
� attains large values� the feedback control strategy
should drive the trajectories to a �safe� region in the
state space where � remains relatively small� Without
loss of generality� we choose as undesirable the region
where j�j � � and as desirable the region where j�j � ��
These two regions� denoted by D� and D� respectively�
are therefore de�ned by

D� � f�z� v� 	 IR� IR� �� � j�j � �g ��a�

D� � f�z� v� 	 IR� IR� � j�j � �g ��b�

These two regions are shown in Fig� 	�
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Figure �� Regions D� and D� in �z� v� phase space�

� Main Results

The proposed modi�cation of the control law in Eq� ���
is simple� We use positive feedback for v when the
trajectory is in region D�� while keeping z approxi�
mately constant �or decreasing�� This will make the
manifold v � � �equivalently� w � �� unstable and the
trajectories will move towards the region D� and sub�
sequently stay there� The control law in region D� is
essentially the same as in Eq� ���� Notice that� by def�
inition� inside the region D� we have j�j � �� and since
jzj�j�wj � j�jjwj we can ensure that ���� will not take
excessive values as long as the trajectories remain in
D�� These statements will be made more precise in the
sequel�

��� Proposed Control Law

The proposed control law for the system in Eqs� ��� is
de�ned by

� � �����w � i����
z

�w
����

where

���� �
	�c
�

arctan ���� � j�j�� ���a�

���� �
�c
�

arctan ���� � j�j�� � �c
	

���b�

and � 	 �c 	 �c� From Eqs� ���� we have immediately
that

� �c � ���� � �c� � � ���� � �c ��	�

for all � 	 IR� In fact� we have that ��c � ���� 	 � and
� � ���� 	 �c

�
for all �z� v� 	 D� and � � ���� � �c

and �c
�
� ���� � �c for all �z� v� 	 D��

The next theorem gives the main result of the paper�

Theorem � Consider the system ��� and let the con�
trol law as in equations ��������� with � 	 �c 	 �c�



Then for initial conditions �z����w���� 	 IR� �Cnf�g�
the following properties hold

�i� w�t� �� �� 
 t � ��

�ii� the trajectory �z����w���� is bounded and
limt���z�t��w�t�� � ��

�iii� the control law ���� is bounded and it has bounded
derivative�

With the control law ���� the closed loop system takes
the form

�v � ������� � v�v ��
a�

�z � �����z ��
b�

where v � jwj� and � as in equation ���� From Eq� ��	�
we have that z decays monotonically for all initial con�
ditions� whereas v increases in the region D� and de�
creases in D�� The result is that the trajectories of ��
�
tend to D� and then to the origin� as required�

Before we prove Theorem � we need to establish the
following two lemmas�

Lemma ��� The region D� is invariant for the system
�����

Proof� The boundary of the set D� is given by the
two lines � � �� �cf� Fig� 	�� On the boundary of D�

we have that ���� � � and ���� � �c�	� The vector
�eld on the boundary of D� is therefore

�v � � ���a�

�z � ��c
	
z ���b�

which points into the interior of D�� Therefore trajec�
tories in D� cannot escape this region and thus it is
invariant for the closed�loop system ��
��

This lemma establishes that for initial conditions in
D� the trajectories of the closed�loop system remain in
D� for all times� Equivalently� if at some time t� � �
the trajectory enters D�� it stays in D� for all t � t��
Figure 	 shows the vector �eld on the boundary of D��

Lemma ��� Consider the system ����� For all initial
conditions �z� v� 	 D� the trajectories enter the region
D� in �nite time�

Proof� As long as �z� v� 	 D� from Eq� ���� we
have that � � ���� 	 �c�	� This implies that z is
bounded� Actually� jz�t�j � jz���j for all t � �� Note
that z does not change sign for all t � �� Without loss

of generality we can assume that z��� � � �the case
z��� � � being similar�� If �z���� v���� 	 D� then� by
de�nition ���� � �� The derivative of � in D� is then

�� �
�z

v
� z

v�
�v

� ������ � ������ � v��

� ������ � � ����

since ���� 	 � and v � �� hence � is bounded in D��
Let clD� denote the closure of D� in IR�� that is�

clD� � D� � f�z� v� 	 IR� IR� � j�j � �g
� f�z� v� 	 IR� IR� � v � �g ���

Then it is an easy exercise to show that �� �� � for all
�z� v� 	 clD�nf��� ��g� Hence there exists 
 � � such
that �� 	 �
 in D� and consequently� � monotonically
decreases� Thus� every trajectory starting in D� will
leave this set and enter D� in �nite time�

Notice that the set f�z� v� 	 IR�IR� � v � � and z �� �g
is an unstable manifold for the closed�loop system� Fig�
ure 	 shows the vector �eld on the boundary ofD�� The
following corollary follows directly from Lemmas ���
and ��	�

Corollary ��� Consider system ����� For all initial
conditions �z���� v���� 	 IR � �IR�nf�g� � is bounded
for all t � ��

We are now ready to give the proof of Theorem ��

Proof� �Theorem �� From Eqs� ��
a� and ��	� we have
that

�v � ��c�� � v�v ����

where �c � �� The solution of the di�erential equation

�x � ��c�� � x�x� x��� � x� � � ����

is given by

x�t� �
�

c�e�ct � �
����

where c� � �x� � ���x�� Clearly� x�t� �� � for all t � �
and limt�� x�t� � �� Therefore v��� is bounded below
by the solutions of the di�erential equation ���� subject
to initial condition x� � v���� Hence� jw�t�j �� � for all
t � � and w��� approaches the origin asymptotically�

We now show that limt���z�t�� v�t�� � �� If
�z���� v���� 	 D� then according to Lemma ���
�z�t�� v�t�� 	 D� for all t � � and D� is an invariant set
for the closed�loop system� Consider now the positive
de�nite� radially unbounded function V � IR � IR� �
IR� given by

V �z� v� �
�

	
v� �

�

	
z�� 
 �z� v� 	 D� �	��



The derivative of V along the trajectories of ��
� is

�V � ������� � v�v� � ����z� � �� 
�z� v� 	 D�

�	��
therefore� the trajectories are bounded in D�� More�
over� �V � � if and only if ������ � v� � ������ � ��
Using the de�nitions of ���� and ���� in D� and recall�
ing that v � �� one establishes that the last equality is
not satis�ed in D� unless z � v � �� By LaSalle�s
theorem� the system is asymptotically stable for all
initial conditions in D�� To �nish the proof� recall
from Lemma ��	 that if �z���� v���� 	 D� then jzj
is bounded by jz���j and there exist a time t� � �
such that �z�t��� v�t��� 	 D�� This implies that for
all t� � t � � the trajectories in D� are bounded�
and are con�ned inside the strip jz�t�j � jz���j� How�
ever� according to the previous discussion� the trajec�
tory with initial condition �z�t��� v�t��� has the property
that limt���z�t�� v�t�� � �� Therefore� we have shown
that for all �z���� v���� 	 IR � �IR�nf�g� the trajecto�
ries remain bounded and limt���z�t�� v�t�� � � By the
de�nition of v this implies that

lim
t��

�z�t��w�t�� � � �		�

In order to show that � is bounded� write z��w � �w �
From Eq� ���� one obtains that

j�j � �cjwj� �cj�jjwj �	
�

From Corollary ��� we have that for all initial condi�
tions �z����w���� 	 IR � �Cnf�g� � is bounded� Since
w is also bounded� from Eq� �	
� it follows that � is
bounded�

From Eq� ��a� it follows immediately that �w is also
bounded� Moreover� since

�� � ������ � ������ � v�� �	��

and ����� ����� v and � are all bounded� we have that
�� is bounded�

The derivative of � is given by

�� � � �����w ����� �w� i ������w� i ���� ��w� i ����� �w
�	��

Let us now assume that ���� � �� Then ��t� � � for all
t � �� Thus in the subsequent discussion� without loss
of generality� we assume that j�j � �� The case when
���� 	 � is treated similarly� Using Eqs� ���� one has

����� � �	�c
�

�

� � ����� ���
�� �	a�

����� �
�c
�

�

� � ����� ���
�� �	b�

Since �� is bounded� ����� and ����� are both bounded�
Finally� the boundedness of �� follows directly from

Eq� �	�� and the fact all the terms in the right hand
side of this equation are bounded�

The vector �eld and the corresponding trajectories of
the closed�loop system with the control law in Eq� ����
is shown in Fig� 
 �compare with Fig� ���

Remark ��� It should be clear that the choice of the
arctan function in the de�nition of �c��� and �c���
is not restrictive� One could have used a �saturation�
type� function in order to switch between the appropri�
ate values of the gains in regions D� and D�� We have
used a di�erentiable function instead� because in appli�
cations the desired angular velocity history ���� has to
be generated by some control torques through the dy�
namics� This requires di�erentiability �with respect to
time� of ����� This is also the reason we require that�
in addition to �� the derivative of � is also bounded�

Remark ��� Theorem � shows that for all initial con�
ditions w��� �� � the control law ���� drives the system
trajectories to the origin� This control law cannot be
used if w��� � � �and z �� ��� Linearization of system
��� about w � �� however� results in

�w �
�

	
�	�a�

�z � � �	�b�

and choosing� for example� a constant control � � �c 	
C� one can move away from the z axis into the D�

region� once in D�� use of the control ���� drives the
system to the origin�
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Figure �� Phase portrait of system in Eqs� �����

� Numerical Example

To illustrate the previous theoretical analysis� we have
simulated the di�erential equations ��� with the two



control laws in Eqs� ��� and ����� The gains are chosen
as �c � ��� and �c � 	� The value of the parameter � �
	� The initial conditions were taken as w��� � ��
 �
i ��	� and z��� � 	��� The results are shown in Figures
� and �� Figure � shows the corresponding closed�loop
trajectories� and Fig� � shows the magnitude of j�j��
Solid lines correspond to the new control law in Eq� ����
and the dashed lines correspond to the previous control
law given in Eq� ����

Old Method
New Method
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	 Conclusions

We have constructed a nonsmooth control law which
stabilizes the kinematics of an underactuated rigid
body� We have shown that the control law is well de�
�ned and it uses considerably less control e�ort than
a previously derived control law� A numerical exam�
ple is provided for comparison of the two control laws�
Future research will be directed towards implementing

the proposed control law through the dynamical equa�
tions� as well as extending these results to general non�
holonomic systems� Actually� the rigid body problem
subject to two control inputs is only but one example of
an underactuated mechanical system� Several other ex�
amples include systems subject to nonholonomic� i�e��
non�integrable constraints� The application of the pro�
posed control law for general nonholonomic systems in
chain�power form will be addressed in a future article�
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