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Abstract— The efficacy of the so-called sensitivity function
in developing desensitized optimal control schemes is studied. A
sensitivity function provides information about the first order
variation of the state under parameter variations at a given time
instant along a trajectory. It is demonstrated that the sensitivity
function can be employed to effectively desensitize either an
optimal trajectory or the state at a particular time instant (for
example, the final state) along the optimal trajectory. Zermelo’s
path optimization problem is chosen to test the theory. Monte-
Carlo simulations are carried out, validating the key idea. The
limitations of the proposed approach are identified and the
possibilities for future work are discussed.

I. INTRODUCTION

Typical trajectory optimization techniques, as prominently
used in optimal control theory, require accurate knowledge
of the parameters of the dynamical system [1] of interest.
Robustness to parametric uncertainty is desirable in many
safety critical applications, such as aerospace system and
high-precision robotics. Additionally, in the investment sec-
tor, a risk averse strategy can be useful for obtaining gains
for a system suffering from high parametric uncertainty.
Many such problems boil down to minimizing the dispersion
in either the optimal trajectory or the state at some time
along the trajectory, given the performance criterion and
the dynamics. Methods from robust optimal control [2]–
[5] and feedback control synthesis [6] address this issue,
with an inherent trade-off between cost and robustness to
be decided. Indeed, the increased cost is incurred due to
additional control effort, in magnitude or over time. It would
be desirable to alleviate the additional effort induced onto
the control feedback by, instead, picking a trajectory which
is less sensitive to variations under parametric uncertainty.
This is the main goal of desensitized optimal control (DOC).

Prior work on of trajectory sensitivity design, restricted
to analyzing linear systems and linear feedback controller
gains. Winsor and Roy [7] employ a technique to design
controllers that provide assurance of system performance
under modeling inaccuracy and demonstrate the feasibility
of their procedure. In [8], an increased-order augmented
system is used to obtain a sensitivity-reduced design for
linear regulators. A brief study on the modification of the
weighing matrix for sensitivity reduction is conducted in
[9]. In Refs. [10], [11], the idea of sensitivity reduction
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by feedback in the frequency domain has been explored.
Tang [12] proposed using an augmented cost function with
trajectory and cost sensitivities added to the original cost
to derive a controller. The approach was further tested on
the linear quadratic regulator (LQR) problem, which was
later applied to active suspension control for passenger cars
[13]. A more detailed discussion on methods for desensitized
control is presented in [14].

Seywald and Kumar [15] are probably the first authors to
propose a systematic approach to obtain an optimal open-
loop trajectory that is insensitive to perturbations in the
parameters for general nonlinear systems. In this approach,
one elevates the parameters of interest to system states and
reformulates the problem with an added sensitivity cost.
The proposed method exploits sensitivity matrices, whose
components are also treated as states, along with the uncer-
tain parameters. The approach is verified using Zermelo’s
navigation problem with an uncertain parameter. With the
motivation to solve the Mars pinpoint landing problem, the
solution is extended to optimal control problems with control
constraints [16], [17]. Some extensions of the work by
Seywald and Kumar include analyzing the landing problem
with uncertainties in atmospheric density and aerodynamic
characteristics [18] and using direct collocation and non-
linear programming [19]. Performing DOC with sensitivity
matrices has close connections to the technique of covariance
trajectory-shaping, owing to the fact that both sensitivity and
covariance matrices measure the variation in states under
plant uncertainties [20], [21].

DOC, in its current form, has to deal with an optimization
problem of (n + `)2 + n + ` number of states, where
n denotes the number of states for the original system,
and ` denotes the number of targeted system parameters.
One of the main objectives of this work is to reduce the
computational complexity of existing DOC formulations. To
this end, we first recall the concept of differentiability of
solutions with respect to a parameter and the corresponding
sensitivity equations [22]. The sensitivity functions provide
first-order estimates of the effect of parameter variations
on solutions (obtained from a given state equation with
appropriate initial conditions). In this paper, the entries in
the sensitivity function are elevated to states which are then
utilized to formulate desensitized optimal control schemes
using augmented cost functions and state constraints. The
proposed schemes lead to fewer states for the augmented
system, when compared with the approach proposed by
Seywald and Kumar in [15]. The theory is demonstrated
using two versions of Zermelo’s path optimization problem.



II. MOTIVATION

Consider the standard optimal control problem of mini-
mizing the cost

J (u) = φ(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t) dt, (1)

subject to

ẋ = f(x, p, u, t), x(t0) = x0, (2)

ψ(x(tf ), tf ) = 0, (3)

where t ∈ [t0, tf ] denotes time, with t0 being the fixed initial
time and tf being the final time, x(t) ∈ Rn denotes the state,
with x0 being the fixed state at t0. The control u ∈ U =
{Piecewise Continuous (PWC), u(t) ∈ U ∀ t ∈ [t0, tf ]},
with U ⊆ Rm, the set of allowable values of u(t),
φ : Rn × [t0, tf ] → R, the terminal cost function, and
L : Rn × Rm × [t0, tf ] → R, the running cost. Finally,
ψ : Rn × [t0, tf ]→ Rk is a function representing k-number
of constraint equations at the final time. The above problem
is to be solved by finding the optimal control u∗ ∈ U that
minimizes the cost function in (1). The solution involves
the optimal path x∗(t), t ∈ [t0, tf ], determined from
ẋ∗(t) = f(x∗(t), p, u∗(t), t) subject to x∗(t0) = x0.

The system dynamics represented by the function
f(x, p, u, t) contains the model parameters, p ∈ P ⊂ R`,
which are assumed to be constant. It is understood that
the optimal solution (x∗(t), u∗(t)) is model sensitive and,
if changes in the parameters p occur at any time t ∈ [t0, tf ],
then the optimality of the obtained solution is not guaranteed.
Consequently, the optimal control problem has to be resolved
for each new value of the parameter vector. If the optimal
solution u∗ is used despite the parameter variations, one can
expect a dispersion in the trajectories from the nominal x∗.
With a motivation to minimize the dispersion of the final
state of the optimal solution, under parameter uncertainties,
Seywald and Kumar constructed an augmented cost function
using sensitivity matrices [15]. It should be noted that the
sensitivity matrix, from Refs. [15], [16], differs from the
standard sensitivity matrix defined in Ref. [22].

The approach goes as follows. First, the parameters of
interest and the corresponding entries in sensitivity matrix are
elevated to states, and the augmented state [x̃> (vec S̃)>]>,
where x̃ = [x p]>, along with the corresponding dynamics
and initial conditions are derived as follows

˙̃x = [f>(x, p, u, t) 01×`]
>, x̃(t0) = [x>0 p>0 ]>, (4)

and

˙̃S(t|t0, x0) =
∂f

∂x̃
(x, p, u, t), S̃(t0|t0, x0) = I(n+p), (5)

where p(t) ∈ P denotes the ` parameters of interest and
p0 is the nominal value of these parameters, and S̃(t|t0, x0)
represents the sensitivity of the vector x̃(t) at time t with
respect to perturbations in the initial state vector x̃(t0). That
is,

S̃(t|t0, x0) =
∂x̃(t)

∂x̃(t0)
. (6)

The augmented cost function, given in (7) below, is then
minimized to obtain an optimal solution with final state being
“desensitized” with respect to the parameter variations.

Ja(u) = J (u)

+

∫ tf

t0

‖ vec
(
S̃(tf |t0, x0)S̃(t|t0, x0)−1

)
‖2Q(t)

)
dt,

(7)

with Q(t) ≥ 0, for all t ≥ 0. Note that the sensitivity
matrix of Seywald in (6) is a state transition matrix and
its properties are exploited to construct the sensitivity of the
final state with respect to the variations in the state at time
t ∈ [0, tf ], which is then plugged into the running cost. This
is elaborated upon in [15]. However, this approach requires
propagating the original states, the targeted parameters, and
the elements in the sensitivity matrix, resulting to a total of
(n+ `)2 + n+ ` number of states.

In this paper, we use the traditional sensitivity function
and develop an alternative scheme for optimal trajectory/state
desensitization with respect to parameter variations with
improved computational efficiency.

III. DESENSITIZED OPTIMAL CONTROL SCHEMES

A. Sensitivity Equation

Consider the dynamics in (2), and assume variations in
the model parameters p ∈ P , with p = p0 being the nominal
value of the parameter vector. Furthermore, assume that
f(x, p, u, t) is continuous in (x, p, u, t), and continuously
differentiable with respect to x and p for all (x, p, u, t) ∈
Rn×P×U×[t0, tf ]. The solution to the differential equation
from the initial condition x0 with control input u ∈ U is
given by

x(p, t) = x0 +

∫ t

t0

f(x(p, τ), p, u(τ), τ) dτ. (8)

Since f(x, p, u, t) is differentiable with respect to p,

∂x

∂p
(p, t) =

∫ t

t0

[
∂f

∂x
(x(p, τ), p, u(τ), τ)

∂x

∂p
(p, τ) (9)

+
∂f

∂p
(x(p, τ), p, u(τ), τ)

]
dτ.

Taking the derivative with respect to t, we obtain

d

dt

[
∂x

∂p
(p, t)

]
=
∂f(x, p, u(t), t)

∂x

∣∣∣∣
x=x(p,t)

∂x

∂p
(p, t) (10)

+
∂f(x, p, u(t), t)

∂p

∣∣∣∣
x=x(p,t)

.

Evaluating (10) at the nominal conditions (p = p0), the
dynamics for the parameter sensitivity function

S(t) =
∂x(p, t)

∂p

∣∣∣∣
x=x(p0,t)

(11)

is given by

Ṡ(t) = A(t)S(t) +B(t), S(t0) = 0n×`, (12)



where

A(t) =
∂f(x, p, u(t), t)

∂x

∣∣∣∣
x=x(p0,t), p=p0

, (13)

B(t) =
∂f(x, p, u(t), t)

∂p

∣∣∣∣
x=x(p0,t), p=p0

. (14)

Note that the initial condition for the sensitivity function
is the zero matrix, since the initial state is given (fixed).
Equation (12) is called the sensitivity equation in the liter-
ature [22]. To propagate the sensitivity function, the state x
has to be propagated along the dynamics under the nominal
conditions,

ẋ = f(x, p0, u, t), x(t0) = x0. (15)

From the properties of continuous dependence with respect
to the parameters and the differentiability of solutions of or-
dinary differential equations, for sufficiently small variations
in p0, the solution x(p, t) can be approximated by

x(p, t) ≈ x(p0, t) + S(t)(p− p0). (16)

This is a first-order approximation of x(p, t) about the
nominal solution x(p0, t), given ‖p−p0‖ is sufficiently small.

Remark 1: The difference between the sensitivity function
and the sensitivity matrix lies in the fact that the former
cannot accommodate time-varying parameters which is ev-
ident in (16). On the other hand, sensitivity matrices can
be used to investigate variation in the state x(t) (at time
t) with respect to a variation in the parameter p(t′) (at
any other time t0 ≤ t′ ≤ t) i.e., the variations can be
different along the trajectory and the parameter can be time-
varying. In this regard, though sensitivity matrices can handle
more complexity, this comes with an added cost in terms
of computation. In addition, for most problems, the model
parameters are some constants whose values are prone to
changes from the nominal.

The sensitivity function in (11) can be penal-
ized/constrained to desensitize optimal control solutions, as
demonstrated next.

B. Optimal Trajectory Desensitization
Trajectory desensitization allows one to find a robust path

that is relatively immune to parameter variations, thereby
mitigating the requirements on the feedback controller that
may be used to track the obtained optimal trajectory. Revis-
iting the standard optimal control problem discussed in Sec-
tion II, namely, (1)-(3), consider minimizing the augmented
cost

Ja(u) = φ(x(tf ), tf ) +

∫ tf

t0

(
L(x(t), u(t), t) (17)

+ ‖ vecS(t)‖2Q(t)

)
dt,

with an augmented state [x> (vecS)>]>, whose dynamics is
obtained from (15), (12), and the terminal condition (3), that
minimizes the original cost function in (1), while penalizing
the sensitivity of the state with respect to the parameters
along the optimal trajectory. The weighting factor for the
sensitivity cost, Q(t), can be tuned to balance between

minimizing the original cost and the sensitivity cost. The
proposed approach is demonstrated using the Zermelo’s path
optimization problem in Section IV-A.

C. Final State Desensitization

Final state desensitization is critical, especially among
problems involving unmanned vehicles, where they have to
reach their goal state precisely under external disturbances.
If one is interested only in the variation of the final state
(or state at a particular time instant t > t0) with respect
to parameter variations, then the corresponding sensitivity
terms alone can be penalized by adding an extra term to the
terminal cost of the original cost function as follows.

Ja(u) = φ(x(tf ), tf ) + ‖ vecS(tf )‖2Q (18)

+

∫ tf

t0

L(x(t), u(t), t) dt,

where Q ≥ 0 is the weighing factor for the terminal
sensitivity cost. An alternative to this approach is to directly
constrain the sensitivity function at the final time by adding
additional state constraints of the form

ψ̃(S(tf ), tf ) = 0. (19)

The two approaches for final state desensitization are demon-
strated using a minimum time Zermelo’s problem, discussed
in Section IV-B.

IV. NUMERICAL EXAMPLES

In this section, two versions of the Zermelo’s navigation
problem are employed to demonstrate the efficacy of the pro-
posed schemes for trajectory and final state desensitization.

A. Trajectory Desensitization

Consider the Zermelo’s problem [15] with currents parallel
to the shore (assumed to be the x1-axis) as a function of x2
such that

vcurrent = px2, (20)

where p is a parameter which is uncertain and its nominal
value is p0. The dynamics for a boat traveling in the currents
can be written as

ẋ1 = cos(u) + px2, (21)
ẋ2 = sin(u), (22)

where u is its heading control, u ∈ U =
{PWC, u(t) ∈ (−π, π], ∀ t ∈ [0, tf ]}, for some tf > 0. In
this example, the cost function that has to be minimized is
expressed in Mayer form as

J (u) = −x1(tf ), (23)

and subject to the boundary conditions

x1(0) = 0, x2(0) = 0, x2(tf ) = 0. (24)

For this example, we let tf = 1, and p0 = 10. Apart from
maximizing the length that the boat can traverse along the
shore while meeting the boundary conditions, the optimal
trajectory has to be desensitized with respect to the variations
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Fig. 1: Results obtained for the Zermelo’s path optimization
problem with trajectory desensitization

in p. The goal can be facilitated by obtaining the sensitivity
equation under nominal conditions (p0 = 10), using (12),

Ṡ =

[
Ṡ1

Ṡ2

]
=

[
p0S2 + x2

0

]
, S(0) =

[
0
0

]
, (25)

where

Si(t) =
∂xi(p, t)

∂p

∣∣∣∣
x=x(p0,t)

, i = 1, 2, (26)

and then by penalizing the terms S1 and S2 in an aug-
mented cost function, as shown in (17). Note that S2(t) =
0, for all t ≥ 0, which means that the state x2 is not affected
by the uncertainty of the currents along a nominal trajectory.
Therefore, in this particular example, just penalizing S1 is
sufficient. The augmented cost function can then be written
as

Ja(u) = −x1(tf ) +

∫ tf

t0

αS2
1(t) dt. (27)

The weighting factor α (which is a constant in this case) is
chosen by the designer. For α = 0, the optimal solution for
the original cost function (23) is obtained. Several test cases
were run for α = {0, 75, 200, 500, 5000}, using GPOPS-
II [23], and the results are shown in Figs. 1 and 2.

The levels of desensitization can be clearly observed in
Fig. 1. As the value of α increases, the trajectory becomes
more conservative by staying closer to the shore, while trying
to maximize x1(tf ); see Fig. 1(a). At the same time, the

magnitude of the sensitivity of x1 with respect to p (that
is, S1) also decreases along the trajectory which is observed
in Fig. 1(b). Monte-Carlo simulations, shown in Fig. 1(c),
illustrate the idea of trajectory desensitization. It can be seen
that with high weight on α, the trajectories obtained using
open-loop control under parameter variations stay closer to
the corresponding optimal trajectory. For the Monte-Carlo
simulations that are shown in Fig. 1(c) and in the rest of the
paper, the corresponding parameter p was chosen randomly
between±10% about its nominal value and it is kept constant
for one Monte-Carlo run.

For the simulations with feedback controller in Fig. 2, a
linear quadratic regulator is constructed by minimizing the
cost

Jf =
1

2
‖∆x(tf )‖2 +

∫ tf

0

∆u2(t) dt, (28)

where ∆x(t) = x(t)− x∗(t), ∆u(t) = u(t)− u∗(t), and by
linearizing the dynamics along the reference trajectory as

∆ẋ = A(t)∆x+ B(t)∆u, ∆x(t0) = 0n×1, (29)

where

A(t) =
∂f(x, p0, u, t)

∂x

∣∣∣∣
x=x∗(t), u=u∗(t)

, (30)

B(t) =
∂f(x, p0, u, t)

∂u

∣∣∣∣
x=x∗(t), u=u∗(t)

. (31)

Consequently, the control effort required to track the optimal
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feedback control
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Fig. 2: Results for trajectory desensitization with feedback control

trajectory (for some α) under parameter variations, using the
feedback controller, reduces as the value of α increases, as
can be observed in Fig. 2(b). These results further corrobo-
rate the proposed approach for desensitized optimal control
that deals with the trade-off between optimality and tracking
effort using a feedback controller.

B. Final State Desensitization
For this example, the dynamics presented in the previous

subsection (22), and the initial conditions (24) are retained.
The vehicle, starting from the origin, has to reach a point
along the shore (2, 0) in minimum time. However, the
parameter p is uncertain, and the goal state (2, 0) has to be
reached as accurately as possible i.e., the sensitivity of final



state with respect to the parameter variation is of concern.
For this purpose, the augmented cost function, equivalent to
(18), can be constructed as

Ja(u) = tf + αS2
1(tf ). (32)

The sensitivity equation (25) too remains the same for this
example, as it only depends on the dynamics of the problem
and the targeted parameters, but not on the original cost
function. The results obtained from the simulations for α =
{0, 25, 75, 1000}, while minimizing the cost function (32)
are presented in Fig. 3.
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Fig. 3: Results obtained for the Zermelo’s path optimization
problem with final state desensitization

All optimal trajectories meet the boundary conditions at
the initial and final times, but they differ in their final state
sensitivity with respect to the uncertain parameter. A clear
trade-off between the time taken to reach the goal state
(tf ) and final state sensitivity (S1(tf )) can be observed
from Figs. 3(b) and 3(c). A Pareto frontier can be drawn
to quantitatively establish the trade-off between S1(tf ) and
tf , which is also shown in Fig. 3(b). The Monte-Carlo
simulations, in which the parameter is again randomly varied
between ±10% about the nominal value, further strengthen
the claim that the dispersion in the final state can be reduced
at the cost of the time it takes to reach the goal state. Note
the similarity in the trends of the sensitivity term S1 with the
trajectory desensitization by comparing Figs. 1(b) and 3(b).
The reason behind the similarity could be because of the fact
that since S2(t) = 0, for all t ≥ 0, Ṡ1 = x2. This implies
that S1 is almost always increasing along the trajectory,

as the slope is mostly positive, and penalizing S1 at the
final state indirectly penalizes its slope at every point along
the trajectory, thus desensitizing the entire trajectory in this
example. The results can also be compared with Seywald’s
in Ref. [15]. The effect of desensitization remains the same,
while achieving the goal with fewer number of states in our
approach. The number of states in the augmented model is
4 with the proposed approach, whereas it is 21 in the case
of Seywald’s approach.
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Fig. 4: Monte-Carlo simulations for non-desensitized trajectory
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In Fig. 4, a comparison between the non-desensitized tra-
jectory with feedback controller and a desensitized trajectory
(α = 75, the color code remains the same as in Fig. 3)
with open-loop control is made again using Monte-Carlo
simulations. The feedback controller design is same as the
one developed in Section IV-A. It can be observed that the
dispersion in x1 at final time (x1(tf )) is almost the same in
both cases. However, the energy of the overall control signal,∫ tf
t0

(u(t) + ∆u(t))2dt = 0.08, on an average is significantly
higher in the non-desensitized case, as opposed to 0.02
in the case of desensitization (open-loop). This indicates
that by employing desensitization to work, the dispersion
in the final state can be reduced with lesser control effort by
compromising on the original cost, which is travel time in
this example.
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parameter is fixed

The results obtained for Zermelo’s problem while directly
fixing the value of S1 at final time for different cases,



S1(tf ) = {not fixed, 0.12, 0.08, 0.04, 0}, are presented in
Fig. 5. It is interesting to observe that the optimal trajectory
for the case S1(tf ) = 0 goes along the shore without
venturing into the currents, as to be expected from the
physics of this problem.

C. Discussion

The proposed scheme outperforms the approach presented
in Ref. [15] in terms of the computation complexity with
just n+n` number of states, as opposed to (n+ `)2 +n+ `
number of states in the latter approach. Also, the freedom in
formulating desensitized optimal control schemes, especially
for trajectory desensitization, is significant with sensitivity
functions. However, given the dynamics and the constraints,
(2)-(3), there exists a set of trajectories, and each trajectory
has an associated sensitivity cost

(∫ tf
t0
‖ vecS(t)‖2Q(t)dt

)
.

Given the original cost function (1), the optimal trajectory
that minimizes the cost function also has an associated
sensitivity cost. In the proposed approached with an aug-
mented cost function, by penalizing the sensitivity cost, one
expects to find another trajectory that is less sensitive, while
satisfying all the constraints. Such a trajectory, however,
may not exist. There is an implicit assumption here, namely,
that there exists a path that is less sensitive to parametric
variations compared to the optimal one, given the original
cost function along with state and control constraints. In
some problems, it could be the case where the solution
to the original optimal control problem can no longer be
desensitized. Analysis on “desensitizability” of an optimal
control problem is a potential direction for future work.

Similarly, in the case of final state desensitization where
the sensitivities at the final time are fixed, it is assumed that
the control u is able to drive the augmented state, with the
sensitivity terms added to the original state vector x, given
the constraint in the original optimal control problem. In that
case, in order to be able to desensitize a given system, there
is an implicit assumption that the system with the augmented
state [x> (vecS)>]> is controllable. Otherwise, the control
input u may not have enough authority to drive the additional
states introduced via the sensitivity function. In such cases,
an additional feedback term is the only available option to
handle the parameter variations. Finally, a close connection
between the state covariance matrix and the sensitivity matrix
has been established [21]. This offers another interesting
direction for future work.

V. CONCLUSION

The idea of desensitized optimal control is explored us-
ing sensitivity functions, and the corresponding sensitivity
equation. Various schemes for trajectory/state desensitization
are proposed which compete with the existing approaches
in terms of the computational complexity, and it is realized
that the sensitivity function is more tractable compared to
the Seywald’s sensitivity matrix. The proposed schemes are
demonstrated using fixed final time, and minimum time
Zermelo’s optimal control problems.
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