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Abstract— The majority of work in pursuit-evasion games
assumes perfectly rational players who are omnipotent and have
complete knowledge of the environment and the capabilities of
other agents and, consequently, are correct in their assumption
of the game that is played. This is rarely the case in practice.
More often than not, the players have different knowledge
about the environment either because of sensing limitations
or because of prior experience. In this paper, we wish to
relax this assumption and consider pursuit-evasion games in a
stochastic setting, where the players involved in the game have
different perspectives regarding the transition probabilities
that govern the world dynamics. We show the existence of a
(Nash) equilibrium in this setting and discuss the computational
aspects obtaining such an equilibrium. We also investigate a
relaxation of this problem employing the notion of correlated
equilibria. Finally, we demonstrate the approach using a grid-
world example with two players in the presence of obstacles.

I. INTRODUCTION

Game theory studies multi-agent decision problems in
which the payoff of each player depends not only on its
own actions, but also on the actions of the other player(s).
Traditionally, pursuit-evasion games have been studied in the
context of differential games [1]–[3]. In these formulations,
it is typically assumed that both players are in agreement in
regards to the environment in which their interactions take
place. Moreover, it is also assumed that the two players not
only mutually agree about the environment they operate in,
but they are also aware of this agreement, a situation that is
referred to in the literature as “common knowledge” [4]. In
pursuit-evasion problems this leads to modeling the strategic
interaction between the two players as a zero-sum differential
game. We would like to progressively relax this assumption.
We start by investigating the case when the two players have
potentially different perceptions of the evolution of the over-
all system. This implies that the equilibrium calculations for
each player may be performed under potentially erroneous
assumptions about the environment.

In order to illustrate the peculiarities of the proposed
problem formulation, we investigate a pursuit-evasion prob-
lem where the two players have different perceptions of the
transition probabilities of the overall system, in the context

D. Larsson is a PhD student with the D. Guggenheim School of Aerospace
Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0150,
USA. Email: daniel.larsson@gatech.edu

G. Kotsalis is with the H. Milton Stewart School of Industrial & Systems
Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0150,
USA. Email: gkotsalis3@gatech.edu

P. Tsiotras is a Professor with the D. Guggenheim School of Aerospace
Engineering and the Institute for Robotics and Intelligent Machines, Georgia
Institute of Technology, Atlanta, GA, 30332-0150, USA. Email: tsio-
tras@gatech.edu

of a stochastic game [5]. Stochastic games provide a discrete
analog of differential games and offer a natural framework
to study pursuit-evasion problems. The term stochastic game
refers to the scenario where multiple players interact in a
dynamic probabilistic environment comprising of a finite
number of states where each of the players have finitely many
actions at their disposal.

The motivation for studying this problem stems from
situations of asymmetric and imprecise information on the
underlying characteristics of the game as a result of decep-
tion [6], insufficient measurement capabilities [7] or erro-
neous modeling assumptions about the environment. Con-
sider, for example, a pursuit-evasion scenario between two
small UAVs in the presence of an external wind field. The
presence of the wind field may have a large impact on the
ensuing vehicle trajectories [8]–[11]. For a pursuit-evasion
problem, accurate knowledge, (or lack thereof) will thereby
impact the outcome of the game. Depending on the on-board
sensors and the individual player’s modeling assumptions,
every player is faced with a problem where each player’s
perception about the environment (and, subsequently, each
other’s dynamics) may differ. This discrepancy on each
player’s belief about the true state of the world is called
“lack of common knowledge.”

In our work, we investigate the impact of lack of common
knowledge to a pursuit-evasion game in a stochastic setting.
We show that lack of common knowledge leads naturally to
a non-zero-sum setting even if the reward structure for both
players initially leads to a zero-sum game (under common
knowledge). We show the existence of an equilibrium in a
such case, and provide a discussion regarding the numerical
aspects of computing equilibria for such general (that is, non-
zero-sum) games in Section V. Finally, we present a simple
two-player pursuit-evasion game where the players do not
share the same understanding of the world dynamics.

II. NOTATION AND PRELIMINARIES

The set of non-negative integers is denoted by Z0, the set
of positive integers by Z+, the set of real numbers by R
and the set of non-negative reals by R+. For n ∈ Z+ let
Rn denote the Euclidean n-space and Rn+ the non-negative
orthant in Rn. For n,m ∈ Z+ let Rn×m denote the space
of n-by-m real matrices. Typically, vectors and matrices will
be written with boldface letters. The transpose of the column
vector x ∈ Rn is denoted by xT and for i ∈ Z+, [x]i
refers to the i-th entry of x. Similarly for i, j ∈ Z+, [A]ij
refers to the (i, j)-th entry of the matrix A ∈ Rn×m. The
vector of 1’s in Rn is denoted by 1n =

[
1 · · · 1

]T
.

∆n = {x ∈ Rn+ |
∑n
i=1[x]i = 1} denotes the simplex



in Rn. Given x ∈ Rn, ‖x‖∞ = maxi∈{1,...,n} |[x]i|, and

‖x‖2 =
(∑n

i=1[x]2i
) 1

2 . Similarly for f : {1, . . . , n} → R,
‖f‖∞ = maxi∈{1,...,n} |f(i)| and x,y ∈ Rn, 〈x,y〉 denotes
the inner product of two vectors. For vectors representing
joint probability distributions xj,k = Pr {J = j & K = k}
for random variables J, K. For payoff matrices Ai ∈ Rn×m,
Ai
j,k is the entry corresponding to Player i playing action

k when all others play action j. For a given set A, the set
of probability measures on A will be denoted by P[A]. The
power set, (the set of all subsets) of A, will be denoted by 2A.

III. PROBLEM FORMULATION

The notation and terminology used in this work is taken
mainly from [5]. We consider a discrete time, infinite-horizon
differential game with two players, indexed by i ∈ I =
{1, 2}. The game evolves on the finite state space S =
{1, . . . , N}, where N ∈ Z+, N ≥ 2. We will refer to
discrete time instances as stages. At each stage t ∈ Z0

the system occupies a state, say, st ∈ S and player i
chooses an action ait from the set Ai = {1, . . . ,mi}. For
notational simplicity, we assume that the action sets are not
state dependent. The sample space is Ω = (S ×A1×A2)∞,
and its sigma-algebra is denoted by Σ = 2Ω. For t ∈ Z0,
i ∈ I we define the maps St : Ω → S and Ait : Ω → A,
where for ω = (ω1, ω2, . . .) = ((s0, a

1
0, a

2
0), (s1, a

1
1, a

2
1), . . .)

such that the relationships St(ω) = st and Ait(ω) = ait hold.
We assume that at each stage t ∈ Z0, and for all ω ∈ Ω,
both players have access to the full state St(ω) ∈ S of
the system. We restrict ourselves to randomized Markovian
strategies [12]. This means that when the system occupies
the state s ∈ S each player i ∈ I will select a probability
distribution on Ai that depends on previous system states and
actions only through the current state. Formally, the strategy
of player i ∈ I is given by the map f i : S × Ai → R+

where, for all s ∈ S, one has∑
ai∈Ai

f i(s, ai) = 1. (1)

The set of all strategies of player i ∈ I will be de-
noted by F i. For each i ∈ I, and every f i ∈ F i, let
us write f i = [f i

T

1 , . . . , f
iT

N ]T where for s ∈ S, f is =
[f i(s, 1), . . . , f i(s,m1)]T.

Each player i ∈ I has its own perception about the
evolution of the system, encoded in the transition map pi :
S ×S ×A1×A2 → R+. In particular, player i ∈ I believes
that for each (s, a1, a2) ∈ S×A1×A2 the system will make a
transition to the state s′ ∈ S with probability pi(s′, s, a1, a2).
Given a pair of strategies

f = (f1, f2) ∈ F = F1 ×F2, (2)

the evolution of the system on S is Markovian. For a given
initial condition s0 ∈ S and a fixed strategy pair f ∈ F ,
the measurable space (Ω,Σ) will be equipped with two mea-
sures, namely, µif,s0 , i = 1, 2, as follows. Given t ∈ Z0, con-
sider the path ((s0, a

1
0, a

2
0), (s1, a

1
1, a

2
1), . . . , (st, a

1
t , a

2
t )) ∈

(S ×A1 ×A2)t+1 and let O ∈ Σ denote the corresponding
cylinder set, O = {ω ∈ Ω | Sk(ω) = sk, A

i
k(ω) = aik, i ∈

I, 0 ≤ k ≤ t}. Then, for i ∈ I, and f ∈ F , one has

µif,s0 [O] =

( t∏
k=1

f1(sk−1, a
1
k−1)f2(sk−1, a

2
k−1)

pi(sk, sk−1, a
1
k−1, a

2
k−1)

)
f1(st, a

1
t )f

2(st, a
2
t ).

Let ri : S×A1×A2 → R, denote the reward map of player
i ∈ I. For each choice (a1, a2) ∈ A1 × A2 at state s ∈ S ,
player i will collect an immediate reward ri(s, a1, a2). For
the class of differential games we have in mind (e.g., pursuit-
evasion games) the players are in a purely antagonistic
situation. We will therefore assume that r1(s, a1, a2) =
−r2(s, a1, a2) for all (s, a1, a2) ∈ S ×A1 ×A2.

For t ∈ Z0, i ∈ I, define Rit : Ω→ R, as follows

Rit(ω) = ri(St(ω), A1
t (ω), A2

t (ω)). (3)

We may write Eif,s0 [Rit] = Eif [Rit | S0 = s0], to denote the
expected value of the reward Rit of player i ∈ I at stage
t ∈ Z0 for a given strategy pair f ∈ F , initial state s0 ∈ S
under measure µif,s0 . Let β ∈ [0, 1) denote a discount factor.
For a fixed strategy f ∈ F we denote the discounted value
map of player i, by vif : S → R, where for s0 ∈ S,

vif (s0) =

∞∑
t=0

βtEif,s0 [Rit]. (4)

The vector of discounted values for player i ∈ I of the
streams of expected rewards resulting from the use of the
strategy pair f ∈ F for every initial state s0 ∈ S , is then
given by vif = [vif (1), . . . , vif (N)]T, with joint Q-values for
each player defined by [5], [13]–[19][

Qi
f (s,vif )

]
a1,a2

=[
ri(s, a1, a2) + β

∑
s′∈S

pi(s′, s, a1, a2)vif (s′)
]
.

(5)

The joint Q-values defined in (5) will serve as single-stage
payoff matrices when formulating optimization problems
for computing equilibrium strategies, as discussed in Sec-
tion V. We will refer to the collection of objects G =
{β, I,S,A1,A2, r1, r2, p1, p2} as a discounted stochastic
game. Note that if we assume, as we do in this paper, that
p1 6= p2, then G is a stochastic game with lack of common
knowledge.

At this point we need to establish which pair f =
(f1, f2) ∈ F is a solution to the stochastic game G.

Definition 3.1: A pair of strategies fo = (f1,o, f2,o) ∈ F
is a Nash equilibrium of the stochastic game G if

v1
(f1,f2,o) ≤ v1

(f1,o,f2,o), ∀f1 ∈ F1, (6a)

v2
(f1,o,f2) ≤ v2

(f1,o,f2,o), ∀f2 ∈ F2. (6b)
The above inequalities are understood component-wise

with respect to the partial order induced by the non-negative
orthant RN+ . The solution concept considered is that of a
Nash equilibrium for a non-zero-sum stochastic game.

When p1 = p2 the stochastic game G reduces to a
traditional zero-sum stochastic game and the two sets of



inequalities (6) reduce to a single set of saddle-point inequal-
ities

v(f1,f2,o) ≤ v(f1,o,f2,o) ≤ v(f1,o,f2), ∀f ∈ F ,

where for f ∈ F , it holds vf = v1
f = −v2

f . We first turn
our attention to showing the existence of an equilibrium in
the sense of (6).

Remark: For the two player zero-sum case, it can be
shown [5], [18] that

vifo(s) = Nashi(Q1
fo(s,v1

fo),Q2
fo(s,v2

fo)) i ∈ I, (7)

where Nashi(·) is the expected payoff to player i when
players use fo ∈ F . The computation of this value and other
aspects of the problem are discussed in Section V.

IV. EXISTENCE OF EQUILIBRIA

The equilibria and the corresponding strategies are com-
puted via the calculation of the best response maps for each
agent. To this end, and for each i ∈ I, let −i stand for the
opponent of player i, i.e. −i ∈ I\{i}.

Definition 4.1: The best response map for each player i ∈
I is the set-valued map defined by Bi : F−i ⇒ F i, where,
for f−i ∈ F−i,

Bi(f−i) = arg max
fi∈Fi

vif . (8)

The best response map for each player can be easily
computed by noticing that, given f−i ∈ F−i, agent i is
faced with a one-sided optimization problem, which is a
Markov decision process (MDP). To see this, let us take the
perspective of Player 1, keeping in mind that the analysis
for Player 2 is completely analogous. Accordingly, let us fix
f2 ∈ F2 and define the transition map p1

f2 : S ×S ×A1 →
R+, where for (s′, s, a1) ∈ S × S ×A1,

p1
f2(s′, s, a1) =

∑
a2∈A2

p1(s′, s, a1, a2)f2(s, a2). (9)

The immediate expected reward map for Player 1 as a
function of the randomized strategy of Player 2 is r1

f2 :

S ×A1 → R, where for (s, a1) ∈ S ×A1,

r1
f2(s, a1) =

∑
a2∈A2

r1(s, a1, a2)f2(s, a2). (10)

The collection of objects M1
f2 = {β,S,A1, p1

f2 , r1
f2} is

referred to as the MDP faced by Player 1 when Player 2
employs the randomized strategy f2 ∈ F2. Given M1

f2 let

v1,o
f2 = max

f1∈F1
v1
f . (11)

Each element f1 ∈ B1(f2) then satisfies the relation v1
f =

v1,o
f2 . The above optimization problem is standard in the

theory of Markov decision processes and it is well posed
for every β ∈ [0, 1).

Define now the composite response map for all players as
B : F ⇒ F , where for f ∈ F ,

B(f) =

[
B1(f2)
B2(f1)

]
. (12)

The map B denotes the best response map for the game.
In view of (6), the existence of a fixed point of the map
B is equivalent to the existence of an equilibrium for the
given stochastic game G. The existence of a fixed point for
B can be shown using Kakutani’s fixed point theorem, see
for instance [4].

Theorem 4.2 ( [4] ): Let X ⊂ Rn be a compact and
convex set and let F : X ⇒ X be a set-valued map such
that:
i) For all x ∈ X the set F (x) is non-empty and convex.
ii) The graph of F is closed, i.e., for all sequences {xk}

and {yk} in X such that ∀k ∈ Z+, yk ∈ F (xk),

xk → x, yk → y ⇒ y ∈ F (x).

Then there exists x∗ ∈ X such that x∗ ∈ F (x∗).
Next, we show that the set-valued map B satisfies the

assumptions of Theorem 4.2.
Theorem 4.3: The stochastic game G has at least one

equilibrium.
Proof: The convexity of F i, for i ∈ I, follows directly

from its definition. For compactness, consider, for each i ∈
I, the map

Hi :

N∏
k=1

∆mi

→ F i,

where for u = [uT
1, . . . ,u

T
N ]T ∈

∏N
k=1 ∆mi

, and Hi[u] = f i

with ukl = f i(k, `), k ∈ S, ` ∈ A, and notice that Hi is a
continuous bijection with a compact domain. Since F i are
convex and compact for all i ∈ I, the same holds for F .
Inspection of (8) suggests that for i ∈ I and f−i ∈ F−i
fixed, player i in the process of calculating the elements of
the set that constitute Bi(f−i) is faced with a one-sided
optimization problem which is a Markov decision process
(MDP). Since the solution of this problem always exists, an
optimal best response to f2 ∈ F2 exists and thus B1(f2) is
not empty.

For s ∈ S, f2 ∈ F2, let P1
f2,s ∈ Rm1 × RN defined by

[P1
f2,s]ij = p1

f2(j, s, i), (13)

and r1
f2,s ∈ Rm1

defined by [r1
f2,s]i = r1

f2(s, i). Every
element f1 ∈ B1(f2) satisfies for each state s ∈ S Bellman’s
equations of optimality [5], [12]

[v1,o
f2 ]s = max

f1s

〈 f1
s , r1

f2,s + β P1
f2,s v1,o

f2 〉. (14)

From the linear programing formulation of MDP’s, see for
instance [5], the optimal policies are obtained as the solution
of a linear program, and as such the convex combination of
two optimal policies is optimal as well. Thus, we have shown
that for f2 ∈ F2, B1(f2) is non-empty and convex and by
a symmetric argument so is B2(f1) for f1 ∈ F1. It follows
that for every f ∈ F the set B(f) is non-empty and convex.

It remains to show that the graph of B is closed. To this
end, consider a sequence {f̄2

n} ∈ F2 such that f̄2
n → f̄2 ∈

F2. Furthermore consider the sequence {f1
n} ∈ F1 such

that for every n ∈ Z+, f1
n ∈ B1(f̄2

n) and suppose that f1
n →

f1 ∈ F1. It must be shown that f1 ∈ B1(f̄2), which will
involve sensitivity arguments in regards to the variations of



the optimal value and strategy of Player 1 as a function of
the strategy of Player 2.

To this end, consider the map V1 : F1×F2×RN → RN
where for any (f1, f2,v) ∈ F1 ×F2 × RN and s ∈ S

[V1(f1, f2,v)]s = 〈 f1
s , r1

f2,s + β P1
f2,s v 〉.

The map V1
β is continuous, since each of its coordinates is

polynomial in its arguments and linear in f1. For a fixed
f2 ∈ F2 define the Bellman operator U1

f2 : RN → RN of
the corresponding the MDP of player 1 (M1

f2 ) as

[U1
f2(v)]s = max

f1s

[V1(f1, f2,v)]s,

where v ∈ RN and s ∈ S. It is known from standard theory
of MDPs [12] that for every f2 ∈ F2 the mapping U1

f2 is
a contraction with respect to the max-norm and as such its
fixed point v1,o

f2 is unique. Furthermore, the family of maps
{U1

f2 | f2 ∈ F2} is equicontinuous. For v ∈ RN consider
the map W1

v : F2 → RN where for f2 ∈ F2

W1
v(f2) = U1

f2(v).

The map W1
v is continuous on its domain and for

any closed and bounded set B ⊂ RN , the family of
maps {W1

v | v ∈ B} is equicontinuous. It follows
that if v1,o

f̄2
n
→ v0 then v1,o

f̄2 = v0. Employing the
triangle inequality, one has ‖V1(f1, f̄2,v0) − v0‖∞ ≤
‖V1(f1, f̄2,v0)−V1(f1

n, f̄
2
n,v

1,o

f̄2
n

)‖∞+‖V1(f1
n, f̄

2
n,v

1,o

f̄2
n

)−
v0‖∞ = ‖V1(f1, f̄2,v0) − V1(f1

n, f̄
2
n,v

1,o

f̄2
n

)‖∞ + ‖v1,o

f̄2
n
−

v0‖∞. By taking the limit n → ∞, it follows that
V1(f1, f̄2,v0) = v0, showing that f1 ∈ B1(f2). In other
words, the best response map B1 has a closed graph. By
a similar argument so does the best response map B2 and
therefore B has a closed graph.

V. COMPUTATIONAL ASPECTS

We have shown that if two players have different per-
ceptions of the environment, then the associated discounted
stochastic game G has an equilibrium. We now consider the
computational aspects of the problem, discussing both the
Nash and correlated equilibria and how such solutions can
be found in games under lack of common knowledge.

An inherently attractive approach is to solve the single-
sided MDPs M1

f and M2
f . Solutions to these optimization

problems are well-known and can be found through linear
programming or value iteration [5], [20]. The resulting
optimal policy in Mi

f is stationary as well as deterministic
and is constructed as follows. With knowledge of the optimal
value of player i, vi,of−i , form the single-agent Q-values

Qi,of−i(s, a
i) = rif−i(s, ai) + β

∑
s′∈S

pif−i(s′, s, ai)v
i,o
f−i(s

′),

(15)
where then the optimal policy in s ∈ S is then f i,o(ai, s) =
δ(ai − ai,o(s)), with ai,o(s) = arg maxai Q

i,o
f−i(s, a

i) [5],
[15], [21]. While existence of equilibrium in stochastic
games is guaranteed, they need not be deterministic and
thus the above method will not generally yield NE [15].
Secondly, the presence of other players that do not have fixed

behavior (e.g., due to learning) induces non-stationarity in
the MDP transitions defined by (9), violating assumptions of
reinforcement learning techniques that have been suggested
to solve this problem [19], [21]–[23].

Instead, one can view zero-sum games as a collection of
matrix games, replacing single-stage payoff matrices with the
joint Q-values given by (5) [5], [14]–[17], [23]. However, for
the game to be zero-sum it must be of common knowledge
(p1 = p2) so that the condition in vf = v1

f = −v2
f is

satisfied. In this case, finding NE is done by recursively
solving a linear program, as the traditional zero-sum structure
guarantees the existence of uniquely-valued NE [5], [14]–
[16], [24]. However, in the case addressed in this paper, this
structure is lost as p1 6= p2. Unfortunately, such non-zero
sum games may have multiple NE and finding these solutions
amounts to solving a non-concave quadratic program, as
follows [5], [25]–[27].

For each s ∈ S , let Q1
f (s,v1

f ), Q2
f (s,v2

f ) be the payoff
matrices and take f1

s and f2
s to be the strategies for players

1 and 2, respectively. The NE strategy and value for each
player can be found by solving

max
f1s ,f

2
s ,α,γ

f1T

s

[
Q1
f (s,v1

f ) + Q2
f (s,v2

f )
]
f2
s − α− γ, (16)

subject to

Q1
f (s,v1

f )f2
s − α1m1 ≤ 0,

Q2T

f (s,v2
f )f1

s − γ1m2 ≤ 0,

〈1m1 , f1
s 〉 − 1 = 0,

〈1m2 , f2
s 〉 − 1 = 0,

[f1
s ]j ≥ 0 ∀ j ∈ {1, . . . ,m1},

[f2
s ]k ≥ 0 ∀ k ∈ {1, . . . ,m2},

(17)

where α, γ ∈ R are the expected payoffs to players 1 and 2,
respectively, when playing the strategy pair (f1,o

s , f2,o
s ) (i.e.,

Nash1(·) = α, Nash2(·) = γ). Although the problem is
non-concave, the objective function has a global maximum
of zero corresponding to NE [25], [26]. Thus, a feasible
solution to (17) with objective function equal to zero is a NE
[25]. Other approaches to the problem have been formulated
that involve solving larger nonlinear programs, opting to not
break the game into smaller state-wise components [28]–
[30]. These approaches are high-dimensional and nonlinear,
making the problem no easier to solve. While these programs
provide means to find NE, they may converge to non-
Nash solutions [22]. Thus, in order to arrive at quantifiable
solutions, we consider the correlated equilibrium.

Definition 5.1: Consider the two player game defined by
payoff matrices Q1

f (s,vif ) and Q2
f (s,vif ) with ` = m1m2

and let zo ∈ ∆` be a joint strategy. The strategy zo is a
Correlated Equilibrium if∑
a−i∈A−i

(
Qi
f (s,vif )a−i,aik

−Qi
f (s,vif )a−i,aih

)
zoa−i,aik

≥ 0,

(18)
is satisfied ∀ aik, aih ∈ Ai, i ∈ I.

The correlated equilibrium (CE) is defined on the joint
strategy space and allows for correlation of player actions,



thus relaxing the requirement that strategies be indepen-
dent [13]. Therefore, the set of CE contains the NE, since
the NE are the cases where the joint strategy can be factored
into independent distributions satisfying definition 3.1 [13].
The CE assumes that a third party recommends actions to
players according to zo and hence agents are not aware of
the actions given to their opponent(s). The attractiveness of
CE is that, even in the general-sum case, they can be found
by solving a linear program [13]. The optimization problem
requires two components: (1) a selection function, defining
the CE to seek and (2) constraints encoding definition 5.1.
Given payoff matrices Q1

f (s,v1
f ), Q2

f (s,v2
f ), take c ∈ R`

as c = F(Q1
f (s,v1

f ),Q2
f (s,v2

f )), where F is a selection
function, then the solution to

max
z∈∆`

cTz, (19)

such that
Lz ≥ 0, (20)

is a CE, where L ∈ Rn×`, n =
∑2
i=1m

i(mi − 1), enforces
definition 5.1 [13], [31]. The expected value to player i ∈ I
is given by CEi(·) and is found by taking the expectation of
the player’s payoff under the strategy zo [13], [31].

Then, provided a model of the environment, finding a CE
is reduced to a recursive linear program similar to value
iteration [31]. The stochastic game is again viewed as a
collection of static games, where the value of player i ∈ I
is updated according to

[vifk+1
]s = CEi(Q1

fk
(s,v1

fk
),Q2

fk
(s,v2

fk
)). (21)

Although the iterations suggested by (21) may not converge
to a stationary strategy, the algorithm may give other mean-
ingful solutions such as cyclic-correlated equilibrium [31].
These concepts are next shown with an example of a pursuit-
evasion game under the lack of common knowledge.

VI. NUMERICAL EXAMPLE

We consider a two-player pursuit-evasion game on a 6x6
grid world, as shown in Fig. 1. The evading player wins the
game and is awarded +100 points for reaching any of the
two evade states alone (may not co-occupy with pursuer).
Capture occurs if the evader occupies the same or any one
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Fig. 1: Grid for pursuit evasion game: start, goal and obstacle cells
are indicated.

of the neighboring cells in the four cardinal directions as the
pursuer, thereby paying -100 points and losing the game. If
both navigate into obstacles on the same move, the game is
over with 0 points being given to each (draw). In the event of
a crash, the game is awarded to the non-crashing player and
classified as either evasion (pursuer crash) or capture (evader
crash).

For moves within the game, the evading player is given
rewards according to r2(s) = κ‖∆p(s)‖2, where κ > 0 and
∆p(s) ∈ R2 is the relative x-y position of the players when
in s ∈ S . Since the game is zero-sum, r1(s) = −r2(s)
for all s ∈ S . Each agent has the same action set, and
can select to move in one of the four cardinal directions
of the grid by selecting up (U), down (D), left (L) or right
(R) and therefore A1 = A2 = {U,D,L,R}. The discount
factor is β = 0.7. Transitions are generally stochastic and are
created by providing each agent an action success probability
and distributing the remaining probability uniformly over
neighboring cells. We can view stochastic transitions as
a UAV navigating an environment in the presence of a
disturbance.

In what follows, we seek CE that maximize the joint
rewards of the players, with resulting strategy simulated
over 5,000 games. To understand how the differences in
asymmetric environment knowledge change the game, we
consider a number of scenarios as follows. CKD: Game is
common knowledge with deterministic world dynamics, with
both agents able to deduce the absence of a disturbance.
CKS: Agents have the same perception of the world and
are both able to sense a disturbance. LOCK-EV: Lack of
common knowledge game with evader aware of a disturbance
and pursuer is not. LOCK-PS: Lack of common knowledge
game with pursuer aware of the lack of a disturbance and
evader is not. Fig. 2 shows sample trajectories for CKD and
CKS, with Table I showing results for all cases. Fig. 3 dis-
plays player movements under lack of common knowledge.

(a) (b)

Fig. 2: Sample trajectories given the stochastic game with common
knowledge. Both cases show the game won by the evading player.
(a) CKD; (b) CKS.

In CKD the evading player wins all games electing to pass
directly next to the obstacles, maintaining its 2-cell advan-
tage. Contrasting to CKS, where both agents are aware of the
disturbance but the probabilistic nature of the environment
makes evasion substantially more difficult, since a single
mistake when executing a maneuver may lead to capture.

Further, note that in the sample trajectory for this case
(Fig. 2(b)), the evading player tends to pass further away
from obstacles. Interestingly, LOCK-EV does not differ
greatly from CKS, albeit there are a greater number of games
in which the evader wins, with an increased number of pur-
suer crashes, indicative of its false information regarding the
environment. In LOCK-PS, the evader again navigates away
from obstacles with the pursuer able to threaten interception



(a) (b)

Fig. 3: Sample trajectories given the stochastic game with lack
of common knowledge. Both cases show the game won by the
pursuing player. (a) LOCK-EV; (b) LOCK-PS.

which forces the evader to back-track leading to eventual
capture.

TABLE I: Capture and Evasion percentages with corresponding
scenario numbering. Results are for 5,000 simulated games.

CKD CKS LOCK-EV LOCK-PS

Capture 0 77.5 77 94
Due to Evader Crash 0 2.9 2.8 0

Evasion 100 22.5 23 6
Due to Pursuer Crash 0 9.6 11.8 0

Average Number Moves 9 7.7 8 19.7

In this case, the success of evasion is drastically lower
than CKD when it holds the correct understanding of the
environment. Nonetheless, the evader manages to prolong
capture by requiring a substantial number of moves, on
average, until capture occurs.

VII. CONCLUSION

In this paper we considered the problem when two players
engage in a pursuit-evasion scenario in a stochastic setting
while having different perspectives about the probabilistic
environment at their disposal. Under this assumption, we
have established that there exists an equilibrium for the
corresponding non-zero-sum stochastic game and provided
an illustrative example utilizing the correlated equilibrium.
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