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Abstract— In this paper we consider a differential game of
pursuit and evasion involving two players with constant, but
different, speeds, and different maneuverability constraints.
Specifically, the evader has limited maneuverability, while the
pursuer is completely agile. This problem is an asymmetric
version of the well-known Game of Two Cars. The aim of this
paper is to derive the optimal strategies of the two players and
characterize areas of initial conditions that lead to capture if
the pursuer acts optimally, and areas that guarantee evasion
regardless of the pursuer’s strategy. It is shown that the
problem reduces to a special version of Zermelo’s Navigation
Problem (ZNP) for the pursuer. Therefore, the well-known ZNP
solution can be used to validate the results obtained through
the differential game framework as well as to characterize the
time-optimal trajectories. The results are directly applicable to
collision avoidance problems.

I. INTRODUCTION

The topic of pursuit and evasion has received particular
attention in the theory of differential/dynamic games. The
pioneering work of Isaacs [1] on the extension of game
theory to the framework of differential games, includes a
plethora of examples of pursuit and evasion. Classical results
also include [2], wherein the authors examined conditions
under which capture is possible in a two-player linear-
quadratic pursuit-evasion game: if both players are subject to
single integrator dynamics and have no control constraints,
then the necessary and sufficient condition for interception
is that the speed of the pursuer is higher than that of the
evader.

When curvature constrains are introduced, two-player
pursuit-evasion games exhibit significantly more compli-
cated solutions. Games as such include Isaacs’ Homicidal
Chauffeur problem [1], [3] and the Game of Two Cars [4].
Necessary and sufficient conditions for capture, regardless
of the initial conditions of the players were derived in [5].
Reference [5] states that a pursuer is guaranteed to capture
the evader regardless of initial conditions only if she is faster
than the evader, and does not have a major maneuverability
disadvantage against the evader.

One of the most extensively studied games in this setting
is the Game of Two Cars [4]. The Game of Two Cars entails
two players having the same speed and the same maneuver-
ability restrictions, i.e., they are identical, and capture occurs
when the distance between the players becomes less than a
constant, which is known as the “kill zone.” As with any
pursuit-evasion game in which different initial conditions
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lead to different game outcomes, an essential part of the
solution of the game is the determination of the barrier [1].
Simply put, the barrier is the surface that separates initial
states of the game that lead to capture under optimal play,
from states in which capture is impossible, as long as the
evader plays optimally, and evasion is guaranteed.

Several extensions and generalizations of the Game of
Two Cars appear in the literature under the name maritime
collision avoidance [6], [7], [8], [9], [10], [11], [12]. In this
game setting, the two agents have different constant speeds
and different minimum turning radii. Analytic expressions
for the barriers do exist [10], but practical implementation
is problematic in several cases because of the underlying
assumptions: the exact maneuvering capability of the oppo-
nent is assumed to be known a priori, and a continuous mea-
surement of her instantaneous orientation is also necessary.
Motivated by these technical difficulties, in this paper we
propose to investigate the following variation of the Game
of Two Cars: the players have different constant speeds, and
the pursuer is assumed to be completely agile. This leads to a
game of reduced dimensionality that utilizes the least amount
of information on the characteristics of the pursuing agent.
Because of this reduced dimensionality, the game exhibits
an inherently different solution, which cannot be obtained as
a special case from similar games of higher dimensionality.
Relevant work on this problem can be found in [13], [14].
The first one treats this problem as a special case of the Game
of Two Cars and presents a purely geometric procedure to
obtain a solution, without offering an analytic expression for
the barrier, while the second one focuses on the investigation
of feedback control laws for the pursuer.

II. PROBLEM STATEMENT

Consider two players, a pursuer and an evader, moving
on a plane. The subscripts p and e will be reserved for
the “pursuer” (P) and the “evader” (E), respectively. The
pursuer’s objective is capture, that is, interception of the
evader in finite time, whereas the evader’s objective is
evasion, a state in which she avoids interception indefinitely.
The agents have the different constant speeds ve and vp.
The pursuer is assumed to be agile, in the sense that she can
change the orientation of her velocity vector instantaneously.
On the other hand, the evader is less agile and cannot take
turns that have a radius smaller than her minimum turning
radius R. In this setting, it is a well known fact [5] that if the
pursuer is also faster, then capture is guaranteed regardless of
initial conditions. We will therefore limit our analysis to the
more interesting case when vp ≤ ve. We wish to investigate
the conditions under which capture is possible, and extract
the corresponding optimal strategies for both P and E.



A. A Sufficient Condition for Evasion

The equations of motion for the pursuer and the evader,
written in an inertial frame of reference with coordinates x
and y are given by

ẋp = vp cosφp, (1)
ẏp = vp sinφp, (2)
ẋe = ve cosφe, (3)
ẏe = ve sinφe, (4)

φ̇e = −
ve
R
u, u ∈ [−1, 1]. (5)

Let z , (xp − xe, yp − ye) be the vector pointing from the
evader’s instantaneous position to the pursuer’s instantaneous
position. Furthermore, let ve(t) and vp(t) be the velocity
vectors, at time t, of the evader and the pursuer, respectively,
such that ‖ve(t)‖ = ve ≥ ‖vp(t)‖ = vp.

Theorem 1: If, at any time t0, the inner product between
the velocity vector of the evader, ve(t0), and the relative
position vector z(t0) is non-positive, that is, if

〈z(t0),ve(t0)〉 ≤ 0, (6)

then capture is not possible for all t ≥ t0, and the evader
escapes.

Proof: Without loss of generality, we will assume that
t0 = 0. The proof is similar to the proof of Theorem 1.a
of [15], for the limiting case of one pursuer. To prove the
theorem, it suffices to find a strategy for the evader that leads
to escape if (6) holds. To this end, assume that the evader
will not change the orientation of her velocity vector after
t = 0, that is, ve(t) = ve(0) = ve for all t ≥ 0. The relative
position vector z then satisfies

z(t) = z0 +

t∫
0

vp(τ) dτ − tve. (7)

where z0 = z(0). We may define v̂p(t) = 1
t

t∫
0

vp(τ) dτ ,

which satisfies

‖v̂p(t)‖ = ‖
1

t

t∫
0

vp(τ) dτ‖ ≤
1

t

t∫
0

‖vp(τ)‖dτ = vp, (8)

for all t ≥ 0, and thus equation (7) becomes z(t) = z0 +
tv̂p(t)− tve. Since ‖ve‖ = ve, and ve ≥ vp, it follows from
(6) that ‖z(t)‖ ≥ ‖z0−tve‖−‖tv̂p(t)‖ ≥ ‖z0−tve‖−tvp =√
‖z0‖2 − 2t〈ve, z0〉+ v2et

2 − vpt > 0, for all t ≥ 0, and
the proof is complete.

The proof of Theorem 1 states that, given E’s maneuver-
ability restriction, capture is possible only if E’s velocity
at some time t ≥ 0 has a component pointing towards
P. In such a case, E’s best strategy is clearly to eliminate
this velocity component as fast as possible. If E cannot
eliminate her velocity component pointing towards P fast
enough, capture will occur. On the other hand, as stated
in Theorem 1, if at no point in time E’s velocity has a
component pointing towards P, then the maneuverability

superiority of P is inconsequential and P will not be able to
intercept E. Next, we investigate the more interesting case
when E’s initial velocity vector has a component pointing
towards P. In this case, as evidenced by Theorem 1, capture
may be possible.

III. DIFFERENTIAL GAME FORMULATION AND
SOLUTION

We seek to answer the following problem: given that the
condition of Theorem 1 is not satisfied, determine the initial
positions of the two agents that lead to capture and the
initial positions that lead to evasion under optimal play by
both agents. The answer to this problem is obtained through
the solution of a game of kind. In a game of kind, we
are interested in an outcome which is essentially an event
(in our case, capture or evasion), as opposed to a game of
degree, in which the outcome is the value of a certain variable
(e.g., how much time did P need to intercept E). However,
instead of solving the game of kind, we will consider a
corresponding game of degree, the solution of which will
illuminate the solution of the game of kind as well.

A. Differential Game Setup

We transform the problem from the fifth-dimensional
realistic game space (1)-(5) to a two-dimensional reduced
game space, by fixing the origin of a coordinate system
on E’s current position and by aligning the y-axis with
E’s velocity vector ([1], see also Figure 1). The evader
action then consists of choosing her center of curvature at
a point C = (R/u, 0) on the x-axis as shown in Figure
1. Consequently, the reduced game space has only two
coordinates, namely the (x, y) coordinates of P relative to E
in the evader’s fixed, velocity-aligned frame. The equations
of motion of P in this frame are given by

ẋ = −ve
R
yu+ vp cosφ, (9)

ẏ =
ve
R
xu+ vp sinφ− ve, u ∈ [−1, 1], (10)

where φ is P’s control in this new reference frame, given by
φ , φp + π/2− φe.
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Fig. 1. Reference frame for the reduced state space.

With the assistance of Theorem 1, one can reduce the
state space under investigation by formulating a simplified
differential game of degree. To this end, note that Theorem
1 implies that if, at any instant of time, the game state (x, y)



reaches the closed lower half plane of the reduced game
space (i.e., y ≤ 0) while x 6= 0, evasion is guaranteed.
Therefore, we only need to consider the upper half plane
as the game space, and introduce as terminal surface the
entire x-axis, thus eliminating the problem of dealing with
a low-dimensional terminal surface. Furthermore, instead of
considering time until interception as the payoff (which may
be infinite if no interception occurs), one can equivalently
consider as payoff the distance traveled from the origin when
the game state vector penetrates the x-axis. The pursuer’s
objective is then to minimize this distance, with interception
occurring if the zero value is attained (the minimum possible
value), while the evader’s objective is to maximize this
distance. Finally, one can easily observe that the problem
is symmetric; analysis of the upper right quadrant is enough
to extend the results to the case of the upper left quadrant.

To proceed, we define the cost

J(x, φ, u) =
1

2
x2(tf ), (11)

where x = [x, y]T ∈ E ,
{
x ∈ R2 : x ≥ 0, y ≥ 0

}
is

the state, and tf denotes the time at game termination. We
seek to solve the problem of conflicting actions represented
by u (maximizing control) and φ (minimizing control) that
maximize/minimize the terminal cost (11) with state space E
and terminal surface C , {x ∈ E : y = 0} under the dynamic
equations (9) and (10).

B. Solution of the Game
In order to solve the game defined above, we apply

the framework developed in [1]. Specifically, the Hamilton
Jacobi Isaacs (HJI) equation for this problem is:

min
φ

max
u

{
∂V (x)

∂x
ẋ+

∂V (x)

∂y
ẏ

}
= 0, (12)

or, alternatively,

min
φ

max
|u|≤1

{ve
R

(
Vy(x)x− Vx(x)y

)
u

+vp
(
Vx(x) cosφ+ Vy(x) sinφ

)
− veVy(x)

}
= 0,

(13)

where Vx and Vy are the partial derivatives with respect to
x and y of the Value V ∈ C1 of the game, which is defined
as

V (x) , min
φ

max
u

J(x, φ, u) = max
u

min
φ
J(x, φ, u),

with boundary condition V (x)|x∈C = 1
2x

2. Notice that
the Minimax Assumption [1], which states that the order
of minimization and maximization is inconsequential, holds
in our case because the dynamic equations (9), (10) are
separable in terms of the control inputs, and the cost is
terminal.

In general, the game space may be divided into regions
separated by singular surfaces [1]. Within each such region
of the game space, V (x), if it exists, will be a C1 class
function and satisfies the HJI equation. Similarly, in each
region, except possibly on the singular surfaces, the optimal
controls will be continuous functions of the state.

We may now proceed to the calculation of the optimal
controls from (13). Since u ∈ [−1, 1], it follows from (13)
that

u∗(x) = sign
(
Vy(x)x− Vx(x)y

)
, σ(x), (14)

which implies that E’s optimal control is bang-bang. Fur-
thermore, applying the Lemma on Circular Vectograms [1]
on (13) for the minimization of the term Vx(x) cosφ +
Vy(x) sinφ in terms of φ, yields the optimal action for the
pursuer, as follows:

cosφ∗(x) = −Vx(x)
ρ(x)

, sinφ∗(x) = −Vy(x)
ρ(x)

,

ρ(x) =
√
V 2
x (x) + V 2

y (x) > 0.

(15)

Note that the corresponding minimum value of the term
Vx(x) cosφ

∗ + Vy(x) sinφ
∗ in equation (13) is −ρ(x).

The next step is to derive the Retrogressive Path Equations
[1]. These are the equations arising when one solves the
game backwards in time, starting from the terminal surface
C. For this reason, we introduce the reverse time variable
τ = tf − t. Denoting with (◦) the partial derivative with
respect to τ , the (inverse) evolution of the partial derivatives
of the value V are given by

◦
V xk

=

2∑
i=1

Vxi
(x)

∂fi(x, φ
∗, u∗)

∂xk
, k = 1, 2, (16)

where fi (i = 1, 2) denotes the right-hand-side of the differ-
ential equations (9) and (10) respectively (for our problem,
x1 = x and x2 = y). One readily computes from (16) and
(9), (10) that

◦
V x = σ(x)

v

R
Vy(x), (17)

◦
V y = −σ(x) v

R
Vx(x). (18)

To obtain the boundary conditions for (17) and (18), we
parameterize the terminal surface C with n − 1 variables,
n being the dimension of the game space. In our case, only
a single variable (s) is needed, and the parameterization has
the form

(
h1(s), h2(s)

)
= (s, 0), s ≥ 0, i.e., x = s on the

x-axis. The value V on C should be equal with the terminal
cost J , i.e. V (x)|x∈C = J(s) = 1

2s
2. Then, the boundary

conditions for the Value partial derivatives can be acquired
from the relation [1]

∂J

∂s
=

2∑
i=1

Vxi
(x)

∂hi
∂s

, x ∈ C, (19)

which yields,

s = Vx(x), x ∈ C, s ≥ 0. (20)

The second boundary condition is obtained by enforcing
the HJI equation (13) on the terminal surface under the
parameterization x = s. Noting that on C, y = 0 and Vx = s,
and by virtue of the optimal controls (14) and (15), we obtain
ve
R
|Vy(x)s| − vp

√
V 2
y (x) + s2 − veVy(x) = 0, x ∈ C.

(21)



Solving for Vy(x) yields two solutions, depending on its
sign. Keeping in mind that s ≥ 0, equation (21) yields, for
Vy(x) > 0,

Vy(x) =
Rsvp√

v2e(R− s)2 −R2v2p

, (22)

while for Vy(x) ≤ 0 one readily computes

Vy(x) = −
Rsvp√

v2e(R+ s)2 −R2v2p

, s ≥ 0, x ∈ C.

(23)
The corresponding signs of u∗ are obtained immediately with
the help of equation (14), which on C becomes

u∗(x) = sign(Vy(x)s), s ≥ 0, x ∈ C. (24)

Thus, (22) corresponds to u∗ = 1 on C (game ends while
the evader is steering towards the pursuer), while (23)
corresponds to u∗ = −1 on C (game ends while the evader
is steering away from the pursuer).

It is claimed that only the latter is a valid boundary
condition for our game. The argument to support this claim
emerges through the analysis of the usable part [1] of
the terminal surface for both cases of boundary conditions
provided by (22) and (23). It is not uncommon for a terminal
surface of a game to be divided into two regions: the usable
part and the nonuseable part, which are separated by what
is known in the literature as the boundary of the usable part
(BUP). The usable part is the subset of the terminal surface
in which the game can end under optimal play, that is, if both
players act optimally. The nonusable part, on the contrary, is
the rest of the terminal surface in which the game would end
only if at least one of the players does not play optimally.
Essentially, no retrograde optimal paths exist emanating from
the nonusable part (see [1] for further details). To identify
the usable part, let ν , [ν1 ν2]

T be the vector normal to C
from x on C and extending into E . Then, the usable part of
C is the region in which the following inequality holds:

min
φ

max
u

2∑
i=1

νifi(x, u, φ) < 0, x ∈ C, (25)

while the nonusable part has the inequality sign reversed.
Since the terminal surface in the game we consider is
the (nonnegative) x-axis, the vector normal to the terminal
surface extending into the game space at each point of the
terminal axis is ν = [0 1]T . Recall that on C we have x = s,
y = 0, and Vx = s. Thus, condition (25) can be rewritten,
by virtue of the dynamics (9), (10) and the optimal controls
(14) and (15), as

ves

R
sign(Vy(x))−vp

Vy(x)√
V 2
y (x) + s2

−ve < 0, x ∈ C, s ≥ 0.

(26)
Evaluating the right-hand-side of the above expression for
the two different boundary values of Vy given by equations
(22) and (23) leads to the following two observations: for the
negative boundary value of Vy given by (23), the inequality

(26) is satisfied for any s > 0. This implies that the
entire terminal surface is usable, i.e., the game can terminate
optimally anywhere on C. However, for the positive boundary
value of Vy given by (22), the right-hand-side is positive for
any s > 0, rendering the entire terminal surface nonusable.

The evader’s best response is therefore established: Re-
gardless of P’s strategy, E will try to steer away from P with
her maximum turning capability (u∗ = −1), in an attempt
to eliminate the velocity vector component pointing towards
P as fast as possible. The evader’s strategy is depicted in
Figure 2.
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(a) u∗ = −1
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Fig. 2. Optimal evader strategies: (a) for x > 0 and (b) for x < 0,
by virtue of the symmetry of our problem. The arrows indicate the
corresponding rotation of the LOS and the reference frame. If the
game state reaches the closed lower half plane, except the origin,
escape is guaranteed.

It remains to integrate the system of ordinary differential
equations subject to the appropriate boundary conditions.
Since we have limited our analysis to the upper right
quadrant, we apply u = −1 for the rest of this section.
The corresponding retrogressive path equations for the game
states can be established if one applies the optimal controls
u∗ = −1 and φ∗ in equations (9) and (10) and switches the
sign to reverse the time flow. Thus, setting c , ve/R we are
left with the system:

◦
V x(τ) = −cVy(τ), (27)
◦
V y(τ) = cVx(τ), (28)
◦
x(τ) = −cy(τ) + vp

Vx(τ)

ρ(τ)
, (29)

◦
y(τ) = cx(τ) + vp

Vy(τ)

ρ(τ)
+ ve, (30)

subject to the boundary conditions (20) and (23) for Vx and
Vy respectively, and x(0) = s and y(0) = 0 for the state.
The solution to this system can be obtained analytically, and
since we are primarily interested in paths that lead to capture,
we may take the limit as s tends to zero. After extensive
algebraic manipulation involving trigonometric formulas, we
finally obtain

x(τ) = −R+R cos(cτ) + vpτ sin(γ − cτ), (31)
y(τ) = R sin(cτ) + vpτ cos(γ − cτ), τ ∈ [0, τmax], (32)

where γ = arccos(−vp/ve). Equations (31) and (32) define
the barrier of the game that separates the game space into
two regions; a region in which optimal play of both agents
leads to capture and a region in which optimal play leads to



evasion. To obtain τmax, it is important to note that the barrier
expression is invalidated as soon as two barrier branches
intersect – the part of the barrier arc beyond the point of
intersection is then no longer valid and is therefore discarded.
In our case, the two branches of the barrier intersect on the
y-axis, because of the inherent symmetry of the problem at
hand. Thus, we may obtain τmax as the root of x(τ) = 0,
i.e., τmax is the solution of the transcendental equation

vpτmax sin(γ − cτmax) = R−R cos(cτmax). (33)

Figure 3 depicts the barrier for vp = ve = 1, R = 0.7.
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Fig. 3. The barrier, given by equations (31) and (31) for ve =
vp = 1 and R = 0.7, for the case in which the pursuer appears in
the upper right quadrant. By virtue of symmetry, a reflection on the
y-axis will provide the barrier for the case in which the pursuer is
located at the upper left quadrant.

So far, we have characterized which states lead to capture
and which states lead to evasion. We will now turn our
attention to the time-optimal problem when the outcome
is capture, that is, we shall consider the states that lead to
capture under optimal play, and examine the characteristics
of the time-optimal capture trajectories.

IV. TIME-OPTIMAL CHARACTERISTICS AND
EQUIVALENCE TO ZNP

Zermelo’s Navigation Problem (ZNP) is a well-known
result in optimal navigation which has received lots of
attention in the literature (see for example [16], [17], [18]).
Initially stated by the German mathematician E. Zermelo in
1931, the problem formally reads: “In a given vector field of
currents, which is a function of position (and possibly time),
a vehicle moves with constant speed relative to the currents.
How should the vehicle be navigated in order to reach a
given destination in minimum time?” [19], [20]. In ZNP, the
equations of motion for the vehicle are

ẋ = v cosφ+ U(x, y), (34)
ẏ = v sinφ+Q(x, y), (35)

where U , Q are known functions that correspond to the
components of the vectorfield along the x and y direction,
and φ is the control input. The goal is to minimize time
until the vehicle reaches a target location. Returning to our

problem, it is easy to observe that if we apply E’s optimal
strategy (u = −1 for the upper right quadrant), equations (9)
and (10) assume the form

ẋ = vp cosφ+
ve
R
y, (36)

ẏ = vp sinφ−
ve
R
x− ve, x, y ≥ 0, (37)

and the target location which P intends to reach in minimum
time is the origin (0, 0). By comparing equations (34)-(35)
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Fig. 4. Applying the evader’s strategy induces a vectorfield that
resembles a current, which P needs to overcome in order to intercept
E in minimum time. Plotted for ve = vp = 1, R = 0.7.

with (36)-(37) it is evident that E’s optimal control results
in an induced vectorfield that resembles a current, which
P needs to overcome in order to intercept E in minimum
time. This vectorfield is shown in Figure 4. This interesting
fact allows us to use the well-known Zermelo’s Navigation
Formula [20] which states that the optimal control φ∗ obeys

φ̇∗ = sin2 φ∗
∂Q(x, y)

∂x
− cos2 φ∗

∂U(x, y)

∂y

+ sinφ∗ cosφ∗(
∂U(x, y)

∂x
− ∂Q(x, y)

∂y
),

(38)

which, for U(x, y) = vey/R and Q(x, y) = −vex/R − ve,
yields

φ̇∗ = −ve
R
. (39)

The problem therefore reduces to a two-point boundary value
problem consisting of integrating equations (36), (37) and
(39) subject to initial conditions (x, y) and φ∗(0) that will
lead to a trajectory passing through the origin (0, 0). Alter-
natively, one can consider integrating this system of ODEs
backwards in time, i.e., by flipping the sign of the right-
hand sides of (36), (37) and (39) and using the variable τ ,
subject to the retrograde boundary conditions (x, y) = (0, 0)
and a variable retrograde boundary condition φ∗f ∈ [0, 2π]
for (39). This will yield a parametric family of curves,
and it remains to locate the one that passes through the
original point (x, y) of interest. In fact, this integration can
be performed analytically to obtain the following parametric



family of curves

x(φ∗f ; τ) = −R+R cos(cτ)− vpτ cos(φ∗f + cτ), (40)

y(φ∗f ; τ) = R sin(cτ)− vpτ sin(φ∗f + cτ), τ ∈ [0, τmax],
(41)

where φ∗f is the free parameter and τmax is the solution to
the transcendental equation

vpτmax cos(φ
∗
f + cτmax) = R−R cos(cτmax). (42)

Figure 5 illustrates several time optimal trajectories, mem-
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Fig. 5. Members of the parametric family of curves given by (40)
and (41), corresponding to different values of φ∗

f , ve = vp = 1,
R = 0.7.

bers of the parametric family of curves given by (40) and
(41), corresponding to different values of φ∗f . The barrier,
i.e., the rightmost time optimal trajectory, is obtained for
φ∗f = 3π/2 − γ, wherein the expressions (40) and (41)
become identical to the barrier given by (31) and (32).

Remark 1 Note that, although the pursuer control action
leads to a curved path of the game state in the evader fixed
reference frame, as seen in Figure 5, its trajectory in the
inertial reference frame is a straight line. This can be easily
seen from the fact that φ = φp+π/2−φe, thus φ̇p = φ̇+ φ̇e
which, by virtue of the ZNP solution of equation (39) and the
evader dynamics given by equation (5) for u = −1, results
in φ̇∗p = −v/R+ v/R = 0.

V. CONCLUSIONS

In this paper we have investigated the pursuit and evasion
differential game between an agile pursuer and an evader
having maneuverability restrictions, both of different con-
stant speeds. It was shown that if the initial velocity vector
orientation of the evader does not have a component pointing
towards the pursuer, then capture is not possible and the
evader escapes without having to alter her velocity vector
orientation. If this condition is not satisfied, capture may be
possible. For this case, the solution of the game admits a
characterization of the barrier that separates states that lead
to capture under optimal play, and states that lead to evasion
regardless of the pursuer’s actions. Time-optimal trajectories
were obtained by recognizing the equivalence of this problem
to the well-known Zermelo navigation problem in optimal

control. The results have immediate application in collision
avoidance problems. Specifically, the barrier delineates a
region of non-capturability outside of which a collision is
not possible even against a malicious – and more agile –
pursuer.

Acknowledgment: This work has been supported by NSF
award CMMI-1160780 and AFOSR award FA9550-13-0029.
The first author also acknowledges support from the A. S.
Onassis foundation.

REFERENCES

[1] R. Isaacs, Differential Games. New York: Willey, 1965.
[2] Y. Ho, A. Bryson, and S. Baron, “Differential games and optimal

pursuit-evasion strategies,” IEEE Transactions on Automatic Control,
vol. 10, pp. 385–389, 1965.

[3] A. Merz, Homicidal Chauffeur- A Differential Game. PhD thesis,
Stanford University, 1971.

[4] A. Merz, “The game of two identical cars,” Journal of Optimization,
Theory and Applications, vol. 9, pp. 324–343, 1972.

[5] E. Cockayne, “Plane pursuit with curvature constrains,” SIAM J. Appl.
Math., vol. 15, pp. 1511–1516, 1967.

[6] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory.
Academic Press, 1995.

[7] A. Merz, “Optimal evasive maneuvers in maritime collision avoid-
ance,” Journal of the Institute of Navigation, vol. 20, No. 2, pp. 144–
152, 1973.

[8] T. L. Vincent and W. Y. Peng, “Ship collision avoidance,” Workshop
on Differential Games, Naval Academy, Annapolis, USA, 1973.

[9] T. Miloh and S. D. Sharma, “Bericht nr. 319: Determination of critical
maneuvers for collision avoidance,” tech. rep., Institut fur Schiffbau,
Technische Universitat Hamburg, 1975.

[10] T. Miloh and S. D. Sharma, “Bericht nr. 329: Maritime collision
avoidance as a differential game,” tech. rep., Institut fur Schiffbau,
Technische Universitat Hamburg, 1976.

[11] G. J. Olsder and J. L. Walter, “Collision avoidance of ships,” tech.
rep., Dept. of Applied Mathematics, Twente University of Technology,
1977.

[12] G. J. Olsder and J. L. Walter, “A differential game approach to
collision avoidance of ships,” Optimization Techniques, Lecture Notes
in Control and Information Sciences, vol. 6, pp. 264–271, 1977.

[13] L. I. Meier, “A new technique for solving pursuit-evasion differential
games,” IEEE Transactions on Automatic Control, vol. 14, No. 4,
pp. 352–359, 1969.

[14] D. Salmon, “Policies and controller design for a pursuing vehicle,”
IEEE Transactions on Automatic Control, vol. 14, No. 5, pp. 482–
488, 1969.

[15] B. Pshenichnyi, “Simple pursuit by several objects,” Kibernetika,
vol. 3, pp. 145–146, 1976.

[16] E. Bakolas and P. Tsiotras, “Time-optimal synthesis for the Zermelo-
Markov-Dubins problem: the constant wind case,” in American Con-
trol Conference, (Baltimore, MD), pp. 6163–6168, June 30–July 2
2010.

[17] E. Bakolas and P. Tsiotras, “Feedback navigation in an uncertain flow-
field and connections with pursuit strategies,” Journal of Guidance,
Control, and Dynamics, vol. 35, No. 4, pp. 1268–1279, 2012.

[18] B. Li, C. Xu, L. T. Kok, and J. Chu, “Time optimal Zermelo’s
navigation problem with moving and fixed obstacles,” Journal of
Applied Mathematics and Computation, vol. 224, pp. 866–875, 2013.

[19] E. Zermelo, “Uber das Navigationsproblem bei ruhender oder veran-
derlicher Windverteilung,” Zeitschrift fuer Angewandte Mathematik
und Mechanik, vol. 11, pp. 114–124, 1931.

[20] A. Bryson and Y. Ho, Applied Optimal Control: Optimization, Esti-
mation and Control. Taylor and Francis Group, 1975.


