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Abstract— We consider a variation of the classical Markov-
Dubins problem dealing with curvature-constrained, shortest
paths in the plane with prescribed initial and terminal positions
and tangents, when the lower and upper bounds of the curva-
ture are not necessarily equal. The motivation for this problem
stems from vehicle navigation applications when the vehicle
may be biased in taking turns at a particular direction due
to hardware failures or environmental conditions. We employ
optimal control to characterize the structure of the shortest
path and we resort to geometric techniques to provide sufficient
conditions for optimality of the resulting path.

I. INTRODUCTION

The roots of the problem regarding curvature-constrained
planar paths of minimal length with prescribed positions and
tangents can be traced back to the end of the nineteenth
century when the Russian mathematician A. A. Markov
posed the problem for the first time. It was Dubins in 1957
who solved completely the problem by characterizing the
structure of the minimal-length paths using a number of
constructive, geometric arguments [1]. We shall refer to
the problem of finding the shortest, curvature-constrained
path as the Markov-Dubins problem (MD), as suggested
by Sussmann [2]. The solution of the MD is commonly
interpreted as the trajectory of a car-like vehicle, known
as the Dubins vehicle, which travels only forward with
constant unit speed, and which is constrained to perform
turns of radius equal or greater than one. Cockayne and
Hall [3] characterized the accessibility sets of the Dubins
vehicle, conceived as an oriented point, as a function of
the travel time. Furthermore, Reeds and Shepp examined a
generalization of the MD when the vehicle can move both
forward and backwards, that is, the path may contain cusps
[4].

All the aforementioned results were based more or less on
constructive proofs. These approaches, even though sufficient
for the examination of each particular optimization problem,
are of limited use as tools for addressing other similar prob-
lems. A number of authors during the 1990’s argued that the
systematic application of optimal control techniques would
provide more rigorous proofs to the MD and a more general
framework for addressing similar problems in the future. In
particular, Sussmann and Tang [5] and Boissonnat et al [6]
treated both the MD and the Reeds-Shepp problem (RS)
using Pontryagin’s Maximum Principle along with geometric
control ideas, and provided more general and rigorous proofs,
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refining the original results of [1] and [4]. The path synthesis
problem, that is, the characterization of the optimal control
for all possible boundary conditions, for the MD was studied
by Bui et al in [7], [8], while the same problem for the RS
was addressed by Souères and Laumond in [9].

Numerous extensions of the MD problem have appeared in
the literature. We highlight the work by Monroy-Pérez [10]
regarding the MD on a Riemannian manifold. Furthermore,
the shortest-length, bounded-curvature problem in three di-
mensions has been investigated by Sussmann in [11]. Other
interesting variations of the MD can be found in [12], [13],
[14], [15], [16].

In this work we examine the curvature-constrained, short-
est paths in the plane with prescribed positions and tangents
when the lower and upper bounds of the curvature are not
necessarily equal. The motivation for this problem stems
from vehicle navigation applications when the acceleration
steering capacity of the vehicle performing clockwise or
counterclockwise turns is different. A typical case would be
an aircraft with a damaged aileron or a missing wingtip.
Our analysis shows that while the structure of the solution
is similar to the standard MD, the synthesis of the shortest
paths, however, is different.

The rest of the paper is organized as follows. In Section II
we present the kinematic model and we formulate the
minimum-time problem. In Section III we carry out a PMP
analysis and derive conditions that allow us to characterize
the minimum-time trajectories given arbitrary prescribed
boundary conditions (synthesis problem). In Section IV we
solve the synthesis problem and we compare our results with
those of the standard MD. Finally, we conclude the paper
with Section V.

II. KINEMATIC MODEL AND PROBLEM FORMULATION

In this paper we are interested in the solution of the planar,
curvature-constrained, shortest-path problem with prescribed
initial and final positions and tangents, when the lower and
upper bounds of the path curvature are not necessarily equal.
Equivalently, we can cast the problem as a minimum-time
problem for the Dubins vehicle that moves in the plane
subject to the following set of equations

ẋ = cos θ, ẏ = sin θ, θ̇ = u/ρ, (1)

where x, y are the cartesian coordinates of a reference point
of the vehicle, θ is the vehicle’s orientation (always tangent
to the ensuing path), u is the control input and ρ a positive
constant. We assume that the set of admissible control inputs
U consists of all measurable functions u over [0, T ] with

u(t) ∈ U
�
= [−δ, 1]. It follows that ρ and �

�
= ρ/δ



is the minimum turning radius for counterclockwise and
clockwise turns respectively. The case U = [−1, δ] can be
treated similarly. We call the system described by (1) the
asymmetric, sinistral/dextral Dubins vehicle1.

It is a well-known fact that the Dubins vehicle is a
completely controllable system [5]. To establish that the
asymmetric, sinistral/dextral Dubins vehicle is a completely
controllable system as well, let us consider the steering
problem from configuration x to y, where x, y ∈ R2×S1. To
both x and y we associate two circles of radii ρ, tangent
to each other, namely Lx,Rx and Ly,Ry respectively, as
shown in Fig. 1. Let us, furthermore, restrict the input
u to take values over the set U ′ = {0, 1} ⊂ U , and
thus, the vehicle is not allowed to move along Rx or Ry.
Furthermore, we consider the tangent lines Si between Lx

and Ly (four line segments if the two circles do not intersect
and two otherwise). From these line segments only one,
namely S1 can form, along with arcs from Lx and Ly, a path
concatenation that connects x and y, and which is compatible
with the forward only motion requirement. As demonstrated
in Fig. 1 the line segment S1 always exists regardless of the
relative position of the circles Lx and Ly with each other and
thus the system is completely controllable.
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Fig. 1. The asymmetric, sinistral/dextral Dubins vehicle is com-
pletely controllable even if constrained to performing exclusively
counterclockwise turns and/or following line segments.

To this end, we formulate the following minimum-time
problem with fixed initial and terminal boundary conditions.

Problem 1: Given the system described by equations (1)
and cost functional

J(u) =
∫ Tf

0

L(x(t), u(t)) dt =
∫ Tf

0

1 dt = Tf , (2)

where Tf is the free final time and x : [0, Tf ] �→ R2 × S1

with x = (x, y, θ), is the trajectory generated by the control
u ∈ U , determine the control input u∗ ∈ U such that

1The term sinistral (dextral) means “inclined to left (right)” [17].

1) The trajectory x∗ : [0, Tf ] �→ R2×S1 generated by the
control u∗ satisfies the boundary conditions

x∗(0) = (0, 0, 0), x∗(Tf ) = (xf , yf , θf ). (3)

2) The control u∗ minimizes the cost functional J(u)
given in (2).

To show the existence of an optimal solution to Problem 1
one can apply a special case of Filippov’s general theorem on
minimum-time problems with prescribed initial and terminal
states [18], [19]. Using similar arguments as in [18] for
the existence of optimal paths for the MD, the following
proposition can be shown easily.

Proposition 1: The minimum-time Problem 1 from the
origin (0, 0, 0) to any terminal condition xf ∈ R2 × S1 has
always a solution.

III. ANALYSIS OF THE MINIMUM-TIME PROBLEM

In this section we characterize the structure of the optimal
paths using a similar approach as in [5], [13]. We shall not
present a detailed analysis since the archetypes of the proofs
are in most cases similar to the standard MD problem. To
this end, consider the Hamiltonian H : R2 × S1 × R3 �→ R

of Problem 1 as follows

H(x, p, u) = p0 + p1 cos θ + p2 sin θ + p3u/ρ, (4)

where p0 is some scalar and p : [0, Tf ] �→ R3, where p =
(p1, p2, p3), is an arbitrary continuous function. From PMP
it follows that if x∗ is a time-optimal trajectory generated
by the control u∗, then there exists a scalar p∗0 ∈ {0, 1} and
an absolutely continuous function p∗ : [0, Tf ] �→ R3, where
p∗ = (p∗1, p

∗
2, p

∗
3), known as the costate, such that

1) ‖p∗(t)‖ + |p∗0| never vanishes,
2) p∗(t) satisfies for almost all t ∈ [0, Tf ] the canonical

equations ṗ∗ = −∂H(x∗, p∗, u∗)/∂x, equivalently,

ṗ∗1 = 0, ṗ∗2 = 0, ṗ∗3 = p∗1 sin θ∗ − p∗2 cos θ∗, (5)

3) p∗(Tf ) satisfies the transversality condition associated
with the free final-time Problem 1

H(x∗(Tf ), p∗(Tf ), u∗(Tf )) = 0. (6)

Because the Hamiltonian does not depend explicitly on time,
it follows from (6) that H(x∗(t), p∗(t), u∗(t)) = 0, for almost
all t ∈ [0, Tf ], which furthermore implies, by virtue of (5),
that

−p∗0 = p∗1(0) cos θ∗ + p∗2(0) sin θ∗ + p∗3u
∗/ρ. (7)

Furthermore, the optimal control u∗ satisfies

H(x∗(t), p∗(t), u∗(t)) = min
v∈[−δ,1]

H(x∗(t), p∗(t), v), (8)

for almost every t ∈ [0, Tf ]. It follows that

u∗(t) =

⎧⎪⎨
⎪⎩

+1 if p∗3(t) < 0,

v ∈ [−1, 1] if p∗3(t) = 0,

−δ if p∗3(t) > 0.

(9)

Using similar arguments as in [5], [13] on can show



Proposition 2: The optimal control u∗ that solves Prob-
lem 1 belongs necessarily to U∗, where

U∗ �
= {{u±, 0, u±}, {u±, 0, u∓}, {u±, u∓, u±}}, (10)

where u+ �
= 1 and u−

�
= −δ.

Proposition 2 implies that the time-optimal paths of Prob-
lem 1 are concatenations of at most three segments, namely
two bang arcs denoted as R and l for u∗ = −δ and u∗ = 1
respectively and a singular arc, denoted as s, that corresponds
to u∗ = 0. Note that a R and l segment correspond to a
circular arc C of radius � and ρ respectively whereas a s
segment corresponds to a straight line segment S. It follows
that the minimum-time paths have necessarily one of the
following structures

1) Rαs�Rγ , lαs�lγ , Rαs�lγ and lαs�Rγ (paths of type
CαS�Cγ),

2) or lαRβ lγ and RαlβRγ (paths of type CαCβCγ).

where the subscripts α, β, γ and 
 denote the duration of
motion along each path segment.

Remark 1 When σ > 0, where σ ∈ {α, β, γ, 
} we say that
the corresponding path segment is non-trivial and it is trivial
otherwise.

Proposition 2 provides us with six families of paths that
suffice to connect any arbitrary two configurations in R2×S1

in minimum time. However, no information regarding the
switching times is yet available, something that renders the
synthesis problem more complicated.

Let us consider an open interval I ⊂ [0, Tf ] for which
p∗3(t) �= 0 for all t ∈ I. The restriction of the optimal control
u∗ on I is a piecewise constant function with at most two
jumps and u∗(t) ∈ {−δ,+1} for all t ∈ I. By virtue of (5)
and (7) p∗3 satisfies

p̈∗3(t) = −
(

u∗(t)
ρ

)2

p∗3(t) −
u∗(t)p∗0

ρ
, (11)

for all t ∈ I. It follows readily that

(
ρṗ∗3(t)
u∗(t)

)2

+
(

p∗3(t) +
ρp∗0

u∗(t)

)2

= C2
1 +

(
ρC2

u∗(t)

)2

, (12)

where C1, C2 are constants. The phase portrait of (p∗3, ṗ
∗
3)

is given in Fig. 2 and, in particular, in Fig. 2(a) for the
normal case (p∗0 = 1) and in Fig. 2(b) for the abnormal case
(p∗0 = 0). Contrary to the standard MD, the phase portrait of
(p∗3, ṗ

∗
3) is not symmetric w.r.t. the axis p3 = 0 (compare for

example, with [13]).

Proposition 3: A path CαCβCγ of non-trivial C seg-
ments, corresponds to an optimal trajectory for Problem 1
only if

1) β ∈ (πρ, 2πρ), β ∈ (π�, 2π�)

A B

p∗3

u∗ = +1 u∗ = −δ

ṗ∗3

(a) Normal case p∗0 = 1

A

p∗3

u∗ = +1 u∗ = −δ

ṗ∗3

(b) Abnormal case p∗0 = 0

Fig. 2. Phase portrait of (p∗
3, ṗ

∗
3) when u∗ �= 0.

2) max{α, γ} = ε(δ, β), where

ε(δ, β) = 2π� + 2� atan
(

δ tan
β

2ρ

)
, (13)

ε(δ, β) = 2πρ + 2ρ atan
(

δ−1 tan
β

2�

)
, (14)

3) min{α, γ} < (β − π)�, min{α, γ} < (β − π)ρ,

for RαlβRγ and lαRβ lγ paths respectively.

Proof: We investigate only the case when the path is
of type RαlβRγ . The case when the path is of type lαRβ lγ
can be treated similarly. First, we consider the abnormal case
p∗0 = 0. It follows from Fig. 2(b) that a point in the (p∗3, ṗ

∗
3)

plane stays in the half plane p3 ≤ 0 for exactly time β = πρ,
which is the time required for a particle with coordinates
(p∗3(t), ṗ

∗
3(t)) to travel half of the circumference of a circle

centered at the origin with constant angular speed ω = 1/ρ.
However, using the same geometric argument as in Lemma
23 in [5] we can show that the resulting path is not optimal.
Hence, all optimal extremals are normal.

We therefore let p∗0 = 1 in (11)-(12). In Fig. 3, we observe
that the phase portrait of (p∗3, ρṗ∗3/|u∗|) consists of clockwise
circles centered at points A and B, with coordinates (−ρ, 0)
and (�, 0), and radii r and rδ for u∗ = +1 and u∗ = −δ
respectively; we denote these circles by C(A; r) and C(B; rδ)
respectively. Note that a jump from u∗ = −δ to u∗ = +1 and
vice versa occurs only if C(B, rδ) intersects C(A, r) along
the axis p∗3 = 0, that is, r ≥ ρ and rd ≥ � and furthermore,
rδ =

√
r2 + �2 − ρ2 as shown in Fig. 3.



From Fig. 3 it follows that the time β corresponds to
the travel time from D to C along the circle C(A; r) with
constant angular speed ω = 1/ρ. The times α and γ are
upper bounded by the travel time from C to D along the
circle C(B; r) with constant angular speed ω = 1/�. We
observe that πρ is a strict lower bound for β since ρ, � > 0.
Furthermore, 2πρ and 2π� is a strict upper bound for β and
both α and γ respectively, given the vector field of the system
(1) being 2πρ and 2π� periodic when u∗ = 1 and u∗ = −δ
respectively.

Next, we improve the upper bound on α, γ. In par-
ticular, we observe in Fig. 3 that given β, where β =
2(π − ĈAO)ρ, either α or γ is maximized if and only if

ε
�
= max{α, γ} ≤ 2(π − D̂BO)�. Equivalently, α or γ is

maximized if and only if the point (p∗3(τ), ρṗ∗3(τ)/|u∗(τ)|),
for τ ∈ {0, Tf} coincides with C or D respectively. It
follows from Fig. 3 that D̂BO and ĈAO belong to [0, π/2) .
Furthermore, using simple geometric arguments along with
δ ∈ (0, 1], it follows that D̂BO = atan

(
δ tan ĈAO

)
. Thus,

ε = 2
(
π − atan

(
δ tan ĈAO

))
�, and β = 2(π − ĈAO)ρ.

Equation (13) now follows readily.

Finally, the third condition of the Proposition is proved as
in Lemma 3 of [8].
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Fig. 3. Phase portrait (p∗
3, ρṗ∗

3/u∗).

Proposition 4: An Rαs�Rγ path corresponds to a time-
optimal trajectory of Problem 1 only if α + γ ≤ 2π�.

Proof: See the proof of Lemma 5 of [8].

Remark 2 Lemma 5 of [8] does not apply for lsl paths in
our case. In particular, we observe in Fig. 4 that a vehicle
starting from the origin reaches the terminal configuration
xf = (xf , yf , θf ) by traversing an lsl path along which the
total change of orientation θ is strictly greater than 2π. The
total elapsed time is the same as if the vehicle had traversed
an RsR path of total change of orientation θ strictly less
than 2π. That is, if the path RsR is time-optimal, then
the lsl path is necessarily time-optimal as well. Thus, we
conjecture that there exist time-optimal lsl paths along which
the total change of orientation θ is strictly greater than 2π and

necessarily upper bounded by 2π + θf . As we demonstrate
in Section IV our conjecture is indeed correct.

Proposition 5: An lαs�lγ path corresponds to a time-
optimal trajectory of Problem 1 only if α+ γ ≤ (2π + θf )ρ.

Finally, for Rsl and lsR paths, as in the standard MD, we
simply take the most conservative bounds. In particular, we
have the following proposition.

Proposition 6: An lαs�Rγ and an Rαs�lγ path corre-
sponds to a time-optimal trajectory of Problem 1 only if
max{α, δγ} < 2πρ and max{δα, γ} < 2πρ, respectively.
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�

Fig. 4. Paths of the lαs�lγ type along which the total change of
orientation θ, namely 2π + θf = (α + γ)/ρ, is larger than 2π can
be still optimal contrary to the standard Markov-Dubins problem.

IV. TIME-OPTIMAL SYNTHESIS

The synthesis problem deals with the complete charac-
terization of the optimal control/trajectory pairs when the
vehicle starts from (0, 0, 0) at time t = 0 and reaches any
fixed terminal configuration (xf , yf , θf ) at minimum time
t = Tf . Following the approach employed by Bui et al [7],
[8], given θf we characterize the optimal trajectories for all
(xf , yf ) ∈ R2; the plane θ = θf in R2 × S1 is known as
the Pθ plane. In particular, we partition the plane Pθ in a
number of domains, such that any terminal configuration
in the interior of any of these domains can be reached in
minimum time in a unique fashion. In our case, there exist
at most six domains (not necessarily connected), one for each
path type; the number of domains depends on the ratio δ−1 =
�/ρ. Figure 5 demonstrates why the synthesis of an optimal
feedback controller for the asymmetric, sinistral/dextral Du-
bins vehicle is quite different than for the standard Dubins
vehicle. In particular, we consider the problem of steering the
vehicle from (0, 0, 0) to (0, 0, π). For the standard Dubins
vehicle the optimal path is either an lαRβ lγ path or an
RαlβRγ path, where α = γ = πρ/3 and β = 5πρ/3, as
shown in Fig. 5(a). It follows from Fig. 5(b) that for the
asymmetric, sinistral/dextral Dubins vehicle the optimal path
is an RαlβRγ path, where α = γ = � acos (1/(1 + δ)) and
β = πρ + 2δα, and an lαs�lγ path, where α = γ = 3πρ/2
and 
 = 2ρ for δ ≥ δ̃ and δ ≤ δ̃ respectively, where δ̃ is



the solution of 1/(1 + δ) + cos ((π − δ)/(1 + δ)) = 0. In
particular, for the lαs�lγ path we have α + γ = 3πρ, a case
that would not be optimal for the standard Dubins vehicle
problem. An lαRβ lγ path is never optimal for δ ∈ (0, 1).

O
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ρ

ρ

(a) Classical Markov-Dubins case.

O

ρ

ρ

ρ

�

�

�

(b) Asymmetric sinistral/dextral Markov-Dubins case.

Fig. 5. The shortest path for the steering problem from (0, 0, 0)
to (0, 0, π) for the classical and the asymmetric sinistral/dextral
Dubins vehicle.

The synthesis problem is solved in two steps, as proposed
in [7], [8]. First, we construct the reachable sets for each of
the six optimal candidate control sequences uk ∈ U∗, where
k ∈ {1, . . . , 6}. In particular, for each uk ∈ U∗, and given
the total time of motion tk ∈ [0,∞) we integrate equations
(1) from 0 to t ∈ [0, tk] with (x(0), y(0), θ(0)) = (0, 0, 0);
we denote the solution as ϕk : [0,∞) �→ R2 × S1, where
ϕk(t) = (xk(t), yk(t), θk(t)). By virtue of Proposition 2, for
each k ∈ {1, . . . , 6} the solution ϕk depends on two path
parameters, namely α and β̂, where β̂ ∈ {β, 
} for CαCβCγ

and CαS�Cγ paths respectively; we write ϕk(t;α, β̂). Note
that given the total time tk, the time of motion along the third
segment γ is uniquely defined by γ = tk −α− β̂, with tk ≥
α + β̂, for all types of admissible paths. Using Propositions
3-6 we can readily obtain for each k the intervals Ik

α and
Ik

β̂
on which α and β̂ belong to. To this end, we define the

projection Πθ from R2 × S1 to Pθ with

Πθ

(
(xk, yk, θk)

) �
=

{
(xk, yk), if θk = θ,

∅, otherwise
. (15)

The reachable set for the control sequence uk is thus given

by

Rk,θ
�
=

⋃
α∈Ik

α,β̂∈Ik
β̂

tk≥α+β̂

Πθ

(
ϕk(tk;α, β̂)

)
⊂ Pθ. (16)

Given a point (x, y) in Pθ with (x, y) ∈ Rk,θ, where
k ∈ K, where K �= ∅ and K ⊆ {1, . . . , 6}, then uκ ∈ U∗

for κ ∈ K is a time-optimal control sequence if and only if
the time tκ for which Πθ

(
ϕκ(tκ;α, β̂)

)
= (x, y) satisfies

tκ = mink∈K tk; we write tκ = Tf (x, y; θ). Repeating the
process for each (x, y) ∈ Pθ we construct the time-optimal
partition of Pθ, that is, we divide Pθ into six domains,
R∗

k,θ with k ∈ {1, . . . , 6}, not necessarily connected, such
that any terminal configuration that lies in R∗

k,θ can be
reached in minimum time by application of the optimal
control sequence u∗ = uk ∈ U∗. Furthermore, the terminal
configurations that correspond to nonempty intersections of
the boundaries of two or more domains R∗

k,θ can be reached
in minimum time with the application of more than one of
the six control sequences; we denote the union of all these
nonempty intersections as ∂R∗

θ . Finally, we shall write from
now on, R∗

lsR to denote the domain R∗
k,θ for k ∈ {1, . . . , 6}

such that uk ∈ U∗ equals {+1, 0,−δ}.
The partition of Pθ, for θ = π/3, for different values of

the ratio δ−1 = �/ρ, is given in Fig. 6. We observe that
as the ratio �/ρ increases the domains R∗

lsl R∗
Rsl and R∗

lsR,
primarily, and the domain R∗

RlR, secondary, expand against
the domain R∗

RsR as well as the disconnected components
of R∗

lsR and R∗
Rsl that are close to the origin. We observe, in

particular, that for �/ρ = 1.8 (Fig 6(c)) the partition of Pθ

consists of five domains since the domain R∗
lRl is reduced

to the empty set. Similarly, for �/ρ = 2 (Fig 6(d)) only
four domains are non-empty since R∗

RsR = R∗
lRl = ∅. As

observed in Fig 6(a)-6(d) the boundaries of each domain
change significantly as the ratio �/ρ varies.

V. CONCLUSION

In this article we have proposed and solved a generaliza-
tion of the MD regarding the construction of time-optimal
trajectories for an asymmetric Dubins’ vehicle, which has a
bias towards left (equivalently, right) turns, a situation that
may be the result of an actuator failure. In the formulation
of our problem the constraints over the curvature associated
to clockwise and counterclockwise turns are not necessarily
equal. Our analysis reveals that while the structure of the
optimal control is qualitatively the same with the standard
MD, the synthesis problem, that is, the determination of the
optimal path for arbitrary prescribed boundary conditions, is,
nonetheless, significantly different.
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Fig. 6. Partition of Pπ/3 and contours of Tf = Tf (x, y) for
different values of the ratio δ−1 = �/ρ.


