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CONTROL OF SPACECRAFT SUBJECT TO
ACTUATOR FAILURES: STATE-OF-THE-ART
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Panagiotis Tsiotras�and Viktoria Doumtchenko†

Georgia Institute of Technology
Atlanta, GA 30332-0150, USA

Recent advances in spacecraft and satellite control systems have succeeded in
solving several challenging problems dealing with attitude tracking, robust con-
trol of flexible spacecraft, optimal slew maneuvers, precision pointing, formation
flying, etc. Most (if not all) of these results assume that the spacecraft is actively
controlled with a sufficient number of actuators equal to, or larger than, the de-
grees of freedom of the system. Although this is certainly the case with most
current spacecraft, these control laws – by and large – do not account for unex-
pected actuator and/or sensor failures. Recent mishaps (e.g., Mir, Galaxy IV) have
shown that the risk of such failures is not negligible. In this paper we review the
main results in the area of active control of spacecraft with one actuator failure.
We emphasize the qualitative characteristics that make this a challenging control
problem. We also present a series of new results that solve the problems of de-
tumbling with simultaneous attitude stabilization about the unactuated axis, and
the complete attitude stabilization and feasible trajectory generation problems for
a spacecraft with one actuator failure.

INTRODUCTION

Despite the recent advances in active spacecraft control using techniques from nonlinear,1–6 adaptive,7–12

optimal13–21 and robust control9,22–25the issue of spacecraft control in case of actuator and sensor failures
has not received its due attention in the literature. This is rather surprising, since several catastrophic failures
of spacecraft in orbit have been attributed to failures of the attitude control system (ACS), either due to a
hardware or a software problem. The scope of this paper is to emphasize the challenges associated with
the attitude stabilization problem in case of actuator failures. As it turns out, this problem – apart from its
obvious practical importance – requires answering several interesting control-theoretic questions as well. We
first present a brief survey of the main stabilization results for the case of spacecraft actuator failures. Subse-
quently, we introduce a series of new results including detumbling maneuvers, complete attitude stabilization,
and feasible trajectory generation.

The first theoretical investigation of the equations of the rotational motion of a rigid body is probably
due to Crouch,26 where he provided necessary and sufficient conditions for the controllability of a rigid
body in the case of one, two and three independent control torques. This paper also showed that in the case of
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momentum exchange devices, controllability is impossible with fewer than three devices. This article sparked
a renewed interest in the area of control of rigid spacecraft with less than three control torques. Additional
results on the small-time controllability of the rigid body equations were given by Kera¨ı,27 where it was
shown that, with one control, the system is never small-time locally controllable. Stabilization of the angular
velocity equations has been addressed, for example, in Refs. 28–32 and 33. In Ref. 28 it was shown that the
angular velocity equations can be made asymptotically stable about the origin by means of two torques, each
applied along a principal axis. In Ref. 29 the author addresses the problem of feedback stabilization of the
zero solution of Euler’s angular velocity equations using one torque aligned with a principal axis. It is shown
that there exists a smooth stabilizing feedback control law if the moment of inertia of the rigid body along
that principal axis is either the larger or smaller than the remaining two. Moreover, this control law is robust
relative to changes in the parameters defining the control law. In Ref. 30 the authors provide a methodology
to asymptoticallystabilize Euler’s equations with a single (in fact, linear) control law. It is also shown that
a single control aligned with a principal axis cannot asymptotically stabilize the system. The control law
construction in Ref. 30 requires that the body has no symmetry axes. Sontag and Sussman31 extended the
results of Ref. 30 by showing that the angular velocity equations can be smoothly stabilized with a single
(nonlinear) torque for a rigid body with an axis of symmetry. This result was rederived in Ref. 32 as an
application of the Jurdjevic-Quinn method.34 Andriano33 showed that the angular velocity equations of an
axi-symmetric rigid body can be globally asymptotically stabilized by means of a liner feedback when two
control torques act on the body. References 35 and 36 derive a control law that stabilizes a uniform rotation
of a rigid body about its intermediate axis using a single torque about its major or minor axis.

The complete attitude equations were addressed in Ref. 37 and 38. In particular, Byrnes and Isidori38

proved that there is no smooth state variable feedback law that locally asymptotically stabilizes a rigid space-
craft about a desired reference attitude with two control torques. Stabilization about an equilibrium manifold
is, however, possible.37,38 In Refs. 39,40 the authors investigated the attitude stabilization of an axially sym-
metric spacecraft. The control torques were assumed to be supplied by two pairs of gas jet actuators about
axes spanning the two-dimensional plane orthogonal to the axis of symmetry. According to the results of
Refs. 39,40, the complete dynamics of the spacecraft system fails to be controllable or even accessible in this
case. It is, however, strongly accessible and small-time locally controllable in a restricted sense, namely when
the unactuated axis angular velocity is zero (for the case of gas jets) or when the total angular momentum is
zero (for the case of momentum/reaction wheels). Even in this case, the restricted spacecraft dynamics cannot
be asymptotically stabilized using smooth feedback, due to failure of Brockett’s necessary condition.28 In
Refs. 39,40 the authors provide a nonsmooth feedback control strategy for the restricted case which achieves
arbitrary reorientation of the spacecraft. The stabilization problem of the axi-symmetric spacecraft was re-
visited by Tsiotras et al.41 and by Tsiotras and Luo.42,43 Bounded stabilizing and tracking control laws were
also derived by the same authors in Ref. 44. Thus, the stabilization problem for the axi-symmetric case can be
considered solved, although there is still work to be done in addressing robustness questions (see, for exam-
ple, Ref. 45 for a discussion on robustness for the angular velocity stabilization problem of an underactuated
rigid body.) The stabilization problem for a non-symmetric spacecraft in case of one actuator failure turned
out to be much more challenging, but finally several approaches were proposed with much success.46–49 The
authors in Ref. 47 and 48 use time-varying control laws to circumvent the topological obstruction to smooth
stabilizability due to Brockett’s condition. Especially innovative is the control law proposed by Coron and
Keraı̈,49 where they construct an almost continuous, periodic control law by switching between two different
control laws.

In this paper we provide some new results for the problem of the attitude stabilization of a non-symmetric
rigid body spacecraft using two pairs of gas jet actuators. We propose both time-invariant and time-varying
discontinuous stabilizing control laws. We emphasize the problem of feasible trajectory generation for an
underactuated spacecraft and we provide a solution to this problem using ideas from the theory of differen-
tially flat systems. Numerical simulations accompany the theoretical developments. We also provide some
discussion on open problems in this framework. It turns out that these control problems are significant not
only because of their use in applications but also because of their challenging theoretical aspects.
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STABILIZATION RESULTS

In this section we present some new results for the attitude stabilization problem in case of a single actuator
failure. For simplicity, it will be assumed that the available control torques are provided by pairs of thrusters.
We will also restrict the discussion at the kinematic level. Thus, we assume that the actuators can implement
angular velocity commands directly. This is not a major restriction if the actuators have sufficiently high
bandwidth and saturation limits. In this case these kinematic (i.e., angular velocity) control laws can be
extended to torque control laws using known results from the theory of cascaded systems.50–53

Euler’s Equations

Assuming a principal axes reference frame at the center of mass, Euler’s equations of motion take the form

I1ω̇1 = (I2� I3)ω2ω3+M1 (1a)

I2ω̇2 = (I3� I1)ω3ω1+M2 (1b)

I3ω̇3 = (I1� I2)ω1ω2+M3 (1c)

whereω1, ω2, ω3 are the components of the angular velocity vector along the principal axes of this body-fixed
reference frame,M1;M2;M3 denote the external torques andI1, I2, I3 denote the principal moments of inertia.
Here we assume that there is no control along the 3-axis of the vehicle due to, say, an actuator failure. In
contrast to the results of Refs. 41 and 39, we do not impose any symmetry assumptions along the 3-axis (i.e.
I1 6= I2). Also, it is not necessary to impose the (somewhat artificial) conditionω3(0) = 0, in order to ensure
controllability.39

Introducing the variables

a=
I2� I3

I1
; ε =

I1� I2
I3

we obtainI1 andI2 in terms ofa, ε andI3

I1 =
ε+1
1�a

I3; I2 =
1+aε
1�a

I3

LettingM3 = 0, andu1 = M1=I1, u2 = M2=I2, and substituting into equations (1) yields

ω̇1 = aω2ω3+u1 (2a)

ω̇2 = � a+ ε
1+aε

ω2ω3+u2 (2b)

ω̇3 = εω1ω2 (2c)

A trivial redefinition of the control inputs finally yields the dynamic equations

ω̇1 = u1 (3a)

ω̇2 = u2 (3b)

ω̇3 = εω1ω2 (3c)

The variableε gives a measure of the body asymmetry about its unactuated axis. In case the spacecraft is
nearly symmetric about the unactuated axis,jεj � 1. The axi-symmetric case corresponds toε = 0. In this
case Eq. (3c) reduces tȯω3 = 0 and, without additional assumptions, the system is not controllable at the
origin. The symmetric case has been addressed, for example, in Refs. 40, 41, 43. In this work will assume
thatε 6= 0.
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Attitude Equations

We use the variables introduced in Refs. 41, 54 to describe the attitude of the spacecraft. According to the
results of Ref. 41, the relative orientation between two reference frames can be represented by the following
system of differential equations

ẇ1 = ω3w2+
1
2
(1+w2

1�w2
2)ω1+w1w2ω2 (4a)

ẇ2 = �ω3w1+
1
2
(1�w2

1+w2
2)ω2+w1w2ω1 (4b)

ż = ω3+w1ω2�w2ω1 (4c)

The state variablesw1;w2 andzare true kinematic coordinates for the attitude, in the sense that they provide
a unique parameterization of the rotation matrix54

R(w;z) =
1

1+w2
1+w2

2

2
4 (1+w2

1�w2
2)cz�2w1w2sz (1+w2

1�w2
2)sz+2w1w2 cz �2w2

2w1w2 cz� (1�w2
1+w2

2)sz 2w1w2 sz+(1�w2
1+w2

2)cz 2w1

2w2cz+2w1sz 2w2sz�2w1cz 1�w2
1�w2

2

3
5

wherew= [w1 w2]
T and cz and sz denote cosz and sinz, respectively. Conversely, for any rotation matrixR,

the parametersw andzcan be computed from54

w1 =
R23

1+R33
; w2 =� R13

1+R33
(5)

and

cosz =
1
2

�
(1+w2

1+w2
2) trace(R)+ jwj2�1

�
(6a)

sinz =
1

1+w2
1+w2

2

�
(1+w2

1�w2
2)R12+2w1w2R22+4w1w2R32

�
(6b)

Time-Invariant Control Laws

From Eqs. (3) the control inputsu1 andu2 affect directly only the angular velocity componentsω1 andω2,
which then can be used to controlω3 from (3c) andw1, w2 andz from Eqs. (4). The angular velocitiesω1 and
ω2 play the role of “virtual” control inputs for the system (3c)-(4) that must be designed to achieve the control
objectives. Once an acceptable control action in terms of the angular velocities(ωd1;ωd2) has been selected,
standard results can be used to design the control inputs at the dynamic level. For example, the control law

u1 = �γ(ω1�ωd1)+ ω̇d1 (7a)

u2 = �γ(ω2�ωd2)+ ω̇d2 (7b)

with γ > 0, will force ωi track ωdi (i = 1;2) exponentially with rate of convergenceγ. For large enoughγ,
one can ensure that the trajectories of the complete system in Eqs. (3)-(4) with the control law in Eq. (7) will
be arbitrarily close to those of (3c)-(4) withωi = ωdi (i = 1;2).

The previous discussion allows one to basically reduce the original control problem to one of controlling
the differential system in Eqs. (3c)-(4), withω1 andω2 as the control inputs. This system is re-written below
for future reference as follows

ω̇3 = εω1ω2 (8a)

ẇ1 = ω3w2+
1
2
(1+w2

1�w2
2)ω1+w1w2ω2 (8b)

ẇ2 = �ω3w1+
1
2
(1�w2

1+w2
2)ω2+w1w2ω1 (8c)

ż = ω3+w1ω2�w2ω1 (8d)
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For a symmetric spacecraft (ε = 0) the previous system is controllable only under the additional assump-
tion thatω3(0) = 0. In this case,ω3(t) = 0 for all t � 0 and the system (8) reduces to

ẇ1 =
1
2
(1+w2

1�w2
2)ω1+w1w2ω2 (9a)

ẇ2 =
1
2
(1�w2

1+w2
2)ω2+w1w2ω1 (9b)

ż = w1ω2�w2ω1 (9c)

In Ref. 41 it was shown that the following control law

ω1 = �κw1+µ
z

w2
1+w2

2

w2 (10a)

ω2 = �κw2�µ
z

w2
1+w2

2

w1 (10b)

whereµ> κ=2> 0 globally asymptotically stabilizes (9). To avoid the singularity whenw= 0, a saturated
version of the previous control law can be used55

ω1 = �κ
w1p

1+ jwj2 +µ sat

�
z
jwj
�

w2

jwj (11a)

ω1 = �κ
w2p

1+ jwj2 �µ sat

�
z
jwj
�

w1

jwj (11b)

wherejwj2 = w2
1+w2

2 and whereµ> κ=2> 0 if jzj=jwj � 1 andµ>�κ > 0 if jzj=jwj> 1.

In order to extend the control laws (10) or (11) to the non-symmetric spacecraft case, one needs to consider
the time history ofω3 from (8a). Notice that by imposingw! 0 andz! 0 ast ! ∞ it follows from Eq. (4c)
that necessarilyω3 ! 0, assuming that the control inputsω1 andω2 remain bounded. The following two
control laws are thus proposed

ω1 = �κw1+µ
z�λω3

w2
1+w2

2

w2 (12a)

ω2 = �κw2�µ
z�λω3

w2
1+w2

2

w1 (12b)

and

ω1 = �κ
w1p

1+ jwj2 +µ sat

�
z�λω3

w2
1+w2

2

�
w2

jwj (13a)

ω1 = �κ
w2p

1+ jwj2 �µ sat

�
z�λω3

w2
1+w2

2

�
w1

jwj (13b)

with λ > 0 andµ> 0, andκ > 0. The previous two control laws are special cases of the control laws in (10)
and (11) withλ = 0.

It is conjectured that forω3(0) � 0 and for all initial conditions(w(0);z(0)) 2 Bε, a compact set� of
R

2 � S1, there exist constant positive gainsκ;µ andλ such that the system in (8) will be asymptotically
stable, i.e.,w(t)! 0; z(t)! 0 andω3(t)! 0 ast ! ∞.

Figure 1 shows a numerical simulation using the control law (12). The following initial conditions and
control gains were used:w1(0) = �0:1; w2(0) =�0:2; z= 0:7 (rad),κ = 0:05; µ= 3; λ = 12; ω3(0) = 0
(rad/sec). The asymmetry parameter was chosenε = 0:2. The corresponding angular velocity (control input)
history is shown in Fig. 2.
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Figure 1: Time history ofw;zandω3 (µ= 3;λ = 12;κ = 0:05;ε = 0:2).
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Figure 2: Time history of angular velocities(µ= 3;λ = 12;κ = 0:05;ε = 0:2).
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If ω3 is initially large, a detumbling maneuver may be necessary to make the value ofω3 small enough.
The control laws of Refs 28 or 33 can be used for this purpose. An alternative detumbling maneuver that also
achieves partial attitude stabilization is presented next.

Detumbling with Partial Attitude Stabilization

In this section we present a control law that will achieveω3 = 0, while at the same time drivew to zero.
The last objective, although not necessary for applying the control laws (12) and (13), is beneficial for cases
of partial attitude stabilization, namely, stabilization of the spacecraft about the unactuated axis. Before
presenting the detumbling control law we need to introduce some mathematical preliminaries.

Let λ > 0 and any set of positive scalarsri > 0, i = 1; :::;n. Then thedilation operatorδλ with weightsri

is defined byδλ (x1; :::;xn) = (λr1x1; :::;λrnxn). A functionh :Rn !R is said to bepositively homogeneousof
degreek with respect to a given dilationδλ if h(δλ (x1; :::;xn)) = λkh(x1; :::;xn). A vector field f :Rn !R

n is
said to behomogeneous of degree kwith respect to a given dilationδλ if its ith coordinate is a homogeneous
function of degreeri +k, i.e.,

fi (δλ (x1; :::;xn)) = λri+k fi (x1; :::;xn)

where fi denotes theith component of the vector fieldf . Having introduced the concept of homogeneity, it is
now possible to state some important properties of homogeneous functions and vector fields. The following
Theorem is taken from Ref. 56.

Theorem 1 Let f be a homogeneous vector field of degree k with respect to a given dilationδλ and let g be
a continuous vector field, both defined onRn, such that

gi (δλ (x1; :::;xn))

λk+ri
! 0; i = 1; :::;n

uniformly asλ! 0. Then if the trivial solution x= 0 of ẋ= f (x) is locally asymptotically stable, the same is
true for the trivial solution of the perturbed systemẋ= f (x)+g(x)

Homogeneous systems, defined by homogeneous vector fields have certain appealing properties. The
following fact, taken from Ref. 57, along with Theorem 1, justify our interest in homogeneous systems.

Theorem 2 Let f be a homogeneous vector field of degree zero. Then local asymptotic stability of the origin
of ẋ= f (x) is equivalent to global exponential stability with respect to the homogeneous normρ, defined by

ρ(x) = jxc=r1
1 +xc=r2

2 + � � �+xc=rn
n j1=c where c is a positive integer evenly divisible by ri .

To apply the previous results to the underactuated spacecraft problem, re-write system (8a)-(8c) as

2
4 ω̇3

ẇ1

ẇ2

3
5 =

2
4 εω1ω2

1
2ω1
1
2ω2

3
5+

2
4 0

w1w2ω2+w2ω3+
1
2ω1

�
w2

1�w2
2

�
w1w2ω1�w1ω3+

1
2ω2

�
w2

2�w2
1

�
3
5 (14)

= f (ω1;ω2)+g(ω3;w1;w2;ω1;ω2)

and introduce the following dilation operator

δλ (ω3;w1;w2;ω1;ω2) =
�
λ2ω3;λw1;λw2;λω1;λω2

�
(15)

�The setBε will, in general, depend on the asymmetry parameterε.
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It can be easily seen thatf is homogeneous of degree zero with respect to the previous dilation operator, since

f1 (δλ(�)) = λ
�1

2ω1
�
= λ f1(�); f2 (δλ(�)) = λ

�1
2ω2

�
= λ f2(�)

f3 (δλ(�)) = λ2 (εω1ω2) = λ2 f3(�)

wherefi is theith component of the vector fieldf . To make the appropriate use of Theorem 1, the homogene-
ity properties of the vector-valued functiong need to be investigated as well. To this end, notice that

lim
λ!0

g1 (δλ(�))
λ

= lim
λ!0

λ3
�
w1w2ω2+ω2ω3+

1
2ω1

�
w2

1�w2
2

��
λ

= 0

lim
λ!0

g2 (δλ(�))
λ

= lim
λ!0

λ3
�
w1w2ω1�ω1ω3+

1
2

�
w2

2�w2
1

��
λ

= 0

lim
λ!0

g3 (δλ(�))
λ2 = lim

λ!0

0
λ2 = 0

wheregi is theith component of the vector fieldg. By Theorem 1 it is therefore sufficient to find a homoge-
neous control law of degree at least one, such that the trivial solution for the system

ω̇3 = εω1ω2; ẇ1 =
1
2

ω1; ẇ2 =
1
2

ω2 (16)

is asymptotically stable. Such a control law is presented next.

Without loss of generality assume thatε > 0. Then the transformation

ωn
1 =

p
ε ω1; ωn

2 =
p

ε ω2; wn
1 =

p
4ε w1; wn

2 =
p

4ε w2; ωn
3 = ω3 (17)

results in the system

ω̇n
3 = ωn

1ωn
2 (18a)

ẇn
1 = ωn

1 (18b)

ẇn
2 = ωn

2 (18c)

Dropping the superscriptn for notational simplicity, let the control for the system (18) defined by

ω1 =�κw1+sw2 ψ; ω2 =�κw2+sw1 ψ (19)

wheres= ω3+
1
2w1w2 and

ψ =
µq

w4
1+w4

2+(µs)2
; µ> 4κ (20)

Then this control law will asymptotically stabilize the system given by (18). This, in turn, will guaran-
tee asymptotic stability for the original system (14). The proof of this result can be found in Tsiotras and
Schleicher.58

In addition, notice that sinces(δλ(�)) = λ2s(�) and

ω1 (δλ(�)) = �λκw1+
1
2

λ3

λ2

µw2sq
w4

1+w4
2+(µs)2

= λω1(�)

ω1 (δλ(�)) = �λκw2+
1
2

λ3

λ2

µw1sq
w4

1+w4
2+(µs)2

= λω1(�)
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the control inputsω1 andω2 are homogeneous of degree one with respect to the given dilation. This im-
plies that the closed-loop system (18)-(19) is homogeneous of degree zero. According to Theorem 2 the
closed-loop system is globally exponentially stable with respect to the homogeneous norm associated with
the dilation operator (15).

Figure 3 shows numerical simulations of the system (14) with the control law in (19)-(20). The following
initial conditions were used in these simulations:w1(0) = 5,w2(0) = 1, (rad),ω3(0) =�0:5 (rad/sec),µ= 7,
κ = 1 andε = 0:2.
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Figure 3: Time history of states and angular velocities(µ= 7;κ = 1;ε = 0:2).

A Time-Varying Control Law

The control laws in Eqs. (12) and (13) are time-invariant. Any time-invariant control law that stabilizes (8)
cannot be continuous at the origin due to the violation of Brockett’s necessary condition for stabilization.28

A time-varying control law can be used instead, to avoid this condition. Such time-varying control laws have
been proposed, for example, by Coron and Kera¨ı49 and Morin and Samson.59 The control law of Coron and
Keraı̈ is almost continuous. The control by Morin and Samson is continuous, but not smooth at the origin.
Smooth, periodic control laws have been proposed in Ref. 48. It is worthwhile mentioning that smooth
control laws cannot achieve exponential convergence rates.59,60 This justifies our interest in non-smooth or
even discontinuous control laws.

In this section we propose a time-varying control law that locally asymptotically stabilizes the complete
attitude equations (8). To this end, consider the new control inputs

ω1 = v1+ jvj 1
2 cos(t=e); ω2 = v2+sgn(v)jvj 1

2 cos(t=e) (21)

wherev1;v2 andv are auxiliary controls and 0< e� 1. Substituting (21) in Eq. (8), lettingτ = t=e and
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considering the averaged system, one obtains†

˙̄ω3 = ε(v1v2+
v
2
) (22a)

˙̄w1 = ω̄3w̄2+
1
2
(1+ w̄2

1� w̄2
2)v1+ w̄1w̄2v2 (22b)

˙̄w2 = �ω̄3w̄1+
1
2
(1� w̄2

1+ w̄2
2)v2+ w̄1w̄2v1 (22c)

˙̄z = ω̄3+ w̄1v2� w̄2v1 (22d)

whereω̄3; w̄1; w̄2; z̄ are the states of the averaged system withv1;v2 andv the new inputs. Notice that the
averaged system has an extra control input,v. The idea for a stabilizing control law for the averaged system
is then simple: use the extra control input to driveω̄3 to zero in finite time, saytc. For all t � tc the system
(22) reduces to (9). The control law (10) or (11) can then be used to stabilize the complete system. Results
from averaging theory‡ then ensure that the original system is also asymptotically stable about an arbitrarily
small neighborhood of the origin.

Following these observations, a control law that stabilizes the averaged system (22) is given by

v = �2v1v2�2αsgn(εω̄3)jω̄3j 1
2 (23a)

v1 = �κ w̄1+µ
z̄

w̄2
1+ w̄2

2

w̄2 (23b)

v2 = �κ w̄2�µ
z̄

w̄2
1+ w̄2

2

w̄1 (23c)

whereµ> κ=2> 0 andα > 0. The corresponding stabilizing control for (8) in terms ofω1 andω2 is then
given by (21).

Figures 4 show numerical simulations of the closed-loop system (8) with the control law (21) and (23).
The initial conditions and the control gains we chosen asw1(0) = 1; w2(0) =�1; z(0) = 1 (rad),ω3(0) = 0:5
(rad/sec),κ = 1; µ= 2; α = 5; e= 0:1; ε = 0:2.

An alternative control law that is continuous at the origin can also be implemented instead of (23) using
the results of Ref. 63. This control law§ is given by

v1 = �κ w̄1+µz̄cosθ (24a)

v2 = �κ w̄2�µz̄sinθ (24b)

θ̇ = z̄ (24c)

whereµ> 0;κ > 0. Figures 5-6 show numerical simulations with this control law.

FEASIBLE TRAJECTORY GENERATION

In contrast to the stabilization problem of an underactuated spacecraft, which has been extensively treated in
the literature, the attitude tracking problem has not been dealt with in great detail. An exception is Ref. 44
where the attitude tracking problem for an axially symmetric spacecraft unactuated about its symmetry axis
was solved. Closely associated to tracking is the feasible (reference) trajectory generation problem. For the
axi-symmetric spacecraft the feasible generation problem was completely characterized and solved in Ref. 64
using ideas from differentially flat systems.

†The reader is referred to Refs. 61, 62 for a more in-depth discussion on averaging.
‡A straightforward extension of the standard results of averaging theory may be necessary since the closed-loop system with the

control laws (10) or (11) is not continuous at the origin.
§Notice that this control law is dynamic.
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Figure 4: Time history of states and angular velocities(µ= 2;κ = 1;ε = 0:2).
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Figure 5: Time history ofw;z andω3 (µ= 2;κ = 1;ε = 0:2;e= 0:1).
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Figure 6: Time history of angular velocities(µ= 2;κ = 1;ε = 0:2;e= 0:1).

In this section we address the feasible generation problem for a general (not necessarily axi-symmetric)
spacecraft with one actuator failure along the 3-axis. That is, given the dynamical system in Eq. (8) and
a time history of the state variables(ω3(t);w1(t);w2(t);z(t)) defined over some interval 0� t � t f , it is
desired to find control input historiesω1(t);ω2(t) such that the differential equations (8) are be satisfied for
all 0� t � t f . We call such state trajectoriesfeasiblesince there exist a control input that generates them.
Feasible trajectories are important in tracking problems since they offer reference trajectories that (subject to
the correct initial conditions) can be trackedexactlyby a suitable control law.

To appreciate the difficulties associated with the feasible generation problem for the system at hand, notice
that since (8) has less control inputs than states, not every trajectory is feasible. To see this, assume we are
given some time histories(ω3(t);w1(t);w2(t);z(t)). Rewrite (8b)-(8d) as follows2

4ẇ1

ẇ2

ż

3
5 =

2
4

1
2(1+w2

1�w2
2) w1w2

w1w2
1
2(1�w2

1+w2
2)

�w2 w1

3
5
�

ω1

ω2

�
+

2
4 w2

�w1

1

3
5ω3

= F1(w)

�
ω1

ω2

�
+F2(w)ω3 (25)

or 0
@
2
4ẇ1

ẇ2

ż

3
5�F2(w)ω3

1
A= F1(w)

�
ω1

ω2

�
(26)

For everyt 2 [0; t f ] the previous equation is satisfied for someω1(t) andω2(t) if and only if the vector in the
left hand side of (26) is in the range of the matrixF1(w). Clearly, for arbitrary functions(ω3(t);w1(t);w2(t);z(t))
this does not hold, in general. Even when one can solve (26) for everyt 2 [0; t f ], from

�
ω1

ω2

�
= F†

1 (w)

0
@
2
4ẇ1

ẇ2

ż

3
5�F2(w)ω3

1
A (27)

with F†
1 (w) the pseudo-inverse ofF1(w), this solution must satisfy the additional dynamic constraintω̇3 =

εω1ω2 for all t 2 [0; t f ], an unlikely possibility. Not every trajectory in the(ω3;w1;w2;z) space is thus
feasible.
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Recall that perfect tracking can be achieved only for feasible trajectories. In the literature the difficulty
in generating feasible trajectories for systems that are not (stably) left-invertible is typically being avoided
by using a copy of the plant¶ for generating the reference trajectories. This does not solve the problem of
feasible trajectory generation, but rather relegates it to the choice of the command input for the exosystem.
This approach has been used in Ref. 44 where the attitude tracking problem (in terms ofw andz) for the
an axi-symmetric spacecraft with two control inputs has been addressed. In Ref. 44 the exosystem was
called the “virtual” spacecraft. The advantage of this approach was that one could guaranteea priori that the
trajectories of this exosystem are feasible and perfect tracking can be achieved. As mentioned previously,
such an assumption is not realistic. In practice, a target attitude is typically provided and the control logic
must use this information to generate a trajectory to be followed by the actual spacecraft. If an arbitrary target
reference history is given, we wish to find (and subsequently track) a feasible trajectory that is as close to the
given trajectory as possible.

Before presenting a feasible trajectory generation algorithm for the underactuated rigid spacecraft prob-
lem, we briefly review the main facts and definitions from differentially flat systems.

Differential Flatness and Flat Outputs

To solve the feasible trajectory generation problem, we will use the notion of differential flatness.65,66 Let
the system

ẋ= f (x;u) (28)

wherex2 Rn is the state, andu 2 Rm are the control variables. This system is differentially flat if one can
find outputsy2 Rm (the same as the number of inputs) of the form

y= y(x;u; u̇; : : : ;u(p)) (29)

such that all states and inputs of the system can be written as algebraic functions of these flat outputs and
their derivatives. In other words, equation (29) can be inverted, such that

x = x(y; ẏ; : : : ;y(q)) (30)

u = u(y; ẏ; : : : ;y(q)) (31)

From the previous equations it becomes evident why flat outputs play a significant role in trajectory generation
problems. If the flat output historyy(t) is known, then (30) and (31) can be used to compute the corresponding
state and input trajectories. Every path in the flat output space is mapped to a feasible trajectory and thus, the
trajectory generation problem for flat systems is trivial.

Differentially flat systems are extremely nice since, they are equivalentk to an algebraic system, i.e., a
system without dynamics. The downside of this approach is that most nonlinear systems are not flat. Also,
except the case of configuration flat Lagrangian systems withn degrees of freedom andn�1 controls,68 to
date, there does not exist a systematic way for finding the flat outputs (if they exist) although very often they
have intrinsic physical significance.66

Flat Outputs for the Attitude Problem

In this section we use vibrational control and averaging to construct a differentially flat system that approxi-
mates (8). We show that this new system is differentially flat by explicitly computing its flat outputs. In fact,

¶The so-called “exosystem”.
kThis type of equivalence is called Lie-B¨acklund equivalence and it is quite well-known in physics. This transformation does not

necessarily preserve state dimension. See also Ref. 67.
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the approximated system is exactly the averaged system introduced in (22). The use of vibrational control for
approximating non-flat systems with flat ones has been used previously by Fliess et al.66 to control several
mechanical systems.

To this end, we rewrite the averaged system in (22), dropping the bars for convenience, as follows

ω̇3 = ε(v1v2+
v
2
) (32a)

ẇ1 = ω3w2+
1
2
(1+w2

1�w2
2)v1+w1w2v2 (32b)

ẇ2 = �ω3w1+
1
2
(1�w2

1+w2
2)v2+w1w2v1 (32c)

ż = ω3+w1v2�w2v1 (32d)

It is claimed that system (32) with inputsv1;v2 andv is differentially flat. The flat outputs are given by

y1 = 2 arctan

�
w2

w1

�
+z (33a)

y2 = z (33b)

y3 = ω3 (33c)

First note that, trivially,z andω3 can be written as functions ofy1 y2 andy3. It suffices to show thatw1 and
w2 can be written as functions ofy1;y2;y3 and, possibly, their derivatives.

Differentiating Eq. (33a) we get

ẏ1 =
1�jwj2
jwj2 (ẏ2�y3)�2y3+ ẏ2 =

ẏ2

jwj2 �
1+ jwj2
jwj2 y3 (34)

or

jwj2 = ẏ2�y3

ẏ1+y3
(35)

Moreover, we have that

arctan

�
w2

w1

�
=

y1�y2

2
(36)

The previous two equations together imply that

w1 =

r
ẏ2�y3

ẏ1+y3
cos

�
y1�y2

2

�
; w2 =

r
ẏ2�y3

ẏ1+y3
sin

�
y1�y2

2

�
(37)

which, together with equations,

z= y2; and ω3 = y3 (38)

provide the desired result.

We have shown thatw1;w2;z andω3 can be written as algebraic functions ofy1;y2;y3 and their time
derivatives. Let us now rewrite Eqs. (32b)-(32d) in the compact form

2
4ẇ1

ẇ2

ż

3
5= F1(w)

�
v1

v2

�
+F2(w)ω3 (39)
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Oncey1;y2;y3;w1;w2 and their time derivatives are known, one can solve Eq. (39) forv1 andv2 as follows

�
v1

v2

�
=

�
FT

1 (w)F1(w)
��1

FT
1 (w)

0
@
2
4ẇ1

ẇ2

ẏ2

3
5�F2(w)y3

1
A

=
4

(1+w2
1+w2

2)
2
�

�1
2(1+w2

1�w2
2) w1w2 �w2

w1w2
1
2(1�w2

1+w2
2) w1

� 0@
2
4ẇ1

ẇ2

ẏ2

3
5�

2
4 w2

�w1

1

3
5y3

1
A (40)

Oncev1 andv2 have been computed from Eq. (40), the remaining inputv can be computed from Eq. (32a)

v=
2
ε

ẏ3�2v1v2 (41)

It follows thatv1;v2 andv can be written as functions ofy1;y2;y3 and their time derivatives. Therefore,y1;y2

andy3 are flat outputs for the system in Eqs. (32), as claimed.

The procedure to follow in order to generate a feasible trajectory is relatively simple.69 Given an initial
point (ω30;w10;w20;z0), a final point(ω3 f ;w1 f ;w2 f ;zf ), a final timet f , and a series of̀ intermediate points
(ω3k;w1k;w2k;zk), k = 1; : : : ; `, we want to meet, we calculate the corresponding points in the flat output
spacey(0);y(t f );y(t1); : : : ;y(t`). We then introduce some smooth basis functionsφ j(t), j = 1; : : : ;N, such
that

yi(0) =
N

∑
j=1

Ai j φ j(0); yi(t f ) =
N

∑
j=1

Ai j φ j(t f ); yi(tk) =
N

∑
j=1

Ai j φ j(tk); k= 1; : : : ; ` (42)

where 1� i � 3. We therefore obtain the system of linear equations2
666664

y(0)
y(t f )
y(t1)

...
y(t`)

3
777775
=

2
666664

φ1(0) : : : φN(0)
φ1(t f ) : : : φN(t f )
φ1(t1) : : : φN(t1)

...
. . .

...
φ1(t`) : : : φN(t`)

3
777775

2
6664

A11 A21 A31

A12 A22 A32
...

...
...

A1N A2N A3N

3
7775= ΦAT (43)

which can be solved for the unknown coefficientsAi j , 1� i � 3;1� j � N assuming that the(`+ 2)�N
matrix Φ has full rank. Once the time history of the flat outputsy1(t);y2(t);y3(t) is known, the correspond-
ing state histories can be computed from (37) and (38) and the corresponding inputsv1(t);v2(t) andv(t)
and from (40) and (41). The angular velocities commandsωd1(t) and ωd2(t) that generate the solution
(ω3(t);w1(t);w2(t);z(t)) for the given initial, final and intermediate conditions can be computed from (21).

Care must be taken when choosing the basis functionsφ j in order to make sure that the flat output histories
satisfy the additional requirement that(ẏ2�y3)(ẏ1+y3)� 0; see (37). One way to circumvent this difficulty
is by time re-parameterization in the flat output space.64

Figure 7 shows a feasible trajectory for the system in (8) calculated using the previous procedure. The
initial conditions are given by(ω3(0);w1(0);w2(0);z(0)) = (0:5;1;�1;0) and the final conditions are given
by (ω3(t f );w1(t f );w2(t f );z(t f )) = (�1;0;2;0:5). The final time was choset f = 20 sec. The solid lines in
Fig. 7 indicate the trajectory computed from the flat outputs (shown in Fig. 8(a)) and the dashed lines show the
actual trajectory followed when using the angular velocity commandsω1d andω2d. These angular velocity
commands are shown in Fig. 8(b). The angular velocity input, as expected, is oscillatory, but in practice the
frequency also depends on the total maneuver time.

For simplicity, four Legendre polynomials were used for basis functions in (42). Also, in order to allow
for any possible value forjw(0)j andjw(t f )j we impose the extra constraints that ˙y2� y3 = ẏ1+ y3 = 0 for
t = 0 andt = t f .
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Figure 7: Time history of feasible states(ε = 0:2;e= 0:1).
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OPEN PROBLEMS

The angular velocity stabilization problem for the case of one or two actuator failures is well-understood and
can be considered solved, although some work still remains for momentum exchange actuators. On the other
hand, despite the recent advances, the complete attitude stabilization problem is not completely understood.
For example, all control laws proposed so far are time-varying and local in nature. That is, they work in a
sufficiently small neighborhood of the origin. There is no proof of their region of attraction. No globally
stabilizing control law has been reported in the literature, as far as the authors know. In addition, due to their
periodic (often high frequency) nature these time-varying control laws may not be suitable for spacecraft
with flexible parts, antennas, fuel slosh, etc. In such cases, these control laws may induce unacceptable
transient response and even instability. Most likely, time-invariant control laws have to be used, instead. This
justifies our interest in time-invariant control laws. Our experience seems to indicate that such control laws
have to be discontinuous at the origin, a property that rises several practical and theoretical questions. Also,
dynamic controllers – with the exception of (24) – have not been sufficiently explored. It should be pointed
out here that the time-invariant control laws in (12) and (13) are suggested as possible candidates for the
global stabilization based on purely physical intuition and extensive numerical simulations. No formal proof
is available at this point.

Another issue of great practical importance is the use of momentum exchange devices (momentum /re-
action wheels, or control moment gyros) as actuators. It is well known26 that for the case of even one such
actuator failure the system is not controllable. It may be controllable in a restricted sense, however, i.e., about
an equilibrium manifold. What is the most one can expect in such a case? With the exception of Ref. 44
no tracking control laws have been reported in the literature for the underactuated rigid spacecraft problem.
Moreover, the robustness question is still open; see Ref. 45 for some early results on this topic.

An equally important problem to actuator failure that has not been addressed in satisfactory detail is that
of sensor failure. The only exceptions seem to be Refs. 6 and 70. These references solve the stabilization
problem without any angular velocity information (say due to a rate gyro failure). Cases of combined rate
gyro/attitude sensor failure do no seem to have been addressed. Closely related is the issue of observability for
the complete system equations. It would extremely helpful if we had a comprehensive theory that completely
characterize the observability question in case of multiple sensor failures. That would also open the door to
output feedback control laws, an issue virtually unexplored.

CONCLUSIONS

We have provided a series of new results dealing with the problem of stabilization of a rigid spacecraft
when one of the torque actuators has failed. This control problem is challenging since it requires completely
nonlinear, non-standard techniques. We have presented time-varying and time-invariant feedback controllers
for this problem. We have also addressed the problem of feasible trajectory generation for a spacecraft with
two control torques, borrowing ideas from differentially flat systems. These feasible trajectories can be used
as reference trajectories in attitude tracking problems. It is hoped that our results will motivate more research
in the challenging but important problem of spacecraft control subject to actuator (and, possibly, sensor)
failures.

REFERENCES

[1] B. Wie, H. Weiss, and A. Arapostathis. Quaternion feedback regulator for spacecraft eigenaxis rotation.
Journal of Guidance, Control, and Dynamics, 12:375–380, 1989.

17



[2] B. Wie and P. M. Barba. Quaternion feedback for spacecraft large angle maneuvers.Journal of Guid-
ance, Control, and Dynamics, 8(3):360–365, 1985.

[3] S. R. Vadali. Variable-structure control of spacecraft large-angle maneuvers.Journal of Guidance,
Control, and Dynamics, 9(2):235–239, 1989.

[4] T. A. W. Dwyer and R. P. Sena. Control of spacecraft slewing maneuvers. InProc. of the 21st Conference
on Decision and Control, pages 1142–1144, 1982. Orlando, FL.

[5] J. J. Sheen and R. H. Bishop. Spacecraft nonlinear control. InAIAA/AAS Astrodynamics Conference,
Hilton Head, SC, Aug. 10-12, 1992. Paper AAS 92-172.

[6] F. Lizarralde and J. T. Wen. Attitude control without angular velocity measurement: A passivity ap-
proach.IEEE Transactions on Automatic Control, 41(3):468–472, 1996.

[7] J. J. E. Slotine and M. D. Di Benedetto. Hamiltonian adaptive control of spacecraft.IEEE Transactions
on Automatic Control, 35:848–852, 1990.

[8] J. T. Wen and K. Kreutz-Delgado. The attitude control problem.IEEE Transactions on Automatic
Control, 36(10):1148–1162, 1991.

[9] S. A. Singh. Robust nonlinear attitude control of flexible spacecraft.IEEE Transactions on Aerospace
and Electronic Systems, 23(2):380–387, 1987.

[10] O. Egeland and J.M. Gødhavn. Passivity-based adaptive attitude control of a rigid spacecraft.IEEE
Transactions on Automatic Control, 39(4):842–846, 1994.

[11] J. Ahmed, V. Coppola, and D. S. Bernstein. Adaptive asymptotic tracking of spacecraft attitude motion
with inertia matrix identification.Journal of Guidance, Control, and Dynamics, 21(5):684–691, 1998.

[12] H. Schaub, M. R. Akella, and J. L. Junkins. Adaptive control of nonlinear attitude motions realizing
linear closed-loop dynamics. InProceedings of the American Control Conference, pages 1563–1567,
1999. San Diego, CA.

[13] J. L. Junkins and J. Turner.Optimal Spacecraft Rotational Maneuvers. Elsevier, New York, 1986.

[14] T. A. W. Dwyer, M. S. Fadali, and N. Chen. Single step optimization of feedback-decoupled spacecraft
attitude maneuvers. InProc. of the 24th Conference on Decision and Control, pages 669–671, 1985. Ft.
Lauderdale, FL.

[15] H. Schaub, R. D. Robinett, and J. L. Junkins. Globally stable feedback laws for near-minimum-fuel and
near-minimum-time pointing maneuvers for a landmark-tracking spacecraft.Journal of the Astronauti-
cal Sciences, 44(4):443–466, 1996.

[16] M. Dalsmo and O. Egeland. State feedbackH∞-suboptimal control of a rigid spacecraft.IEEE Trans-
actions on Automatic Control, 42(8):1186–1189, 1997.

[17] S. R. Vadali, L. G. Kraige, and J. L. Junkins. New results on the optimal spacecraft attitude maneuver
problem.Journal of Guidance, Control, and Dynamics, 7(3):378–380, 1984.

[18] S. R. Vadali and J. L. Junkins. Optimal open-loop and stable feedback control of rigid spacecraft attitude
maneuvers.Journal of the Astronautical Sciences, 32(2):105–122, 1984.

[19] H. Bourdache-Siguerdidjane. Further results on the optimal regulation of spacecraft angular momentum.
Optimization, Control, Applications and Methods, 12:273–278, 1991.

[20] H. Shen and P. Tsiotras. Time-optimal control of axi-symmetric spacecraft.Journal of Guidance,
Control, and Dynamics, 22(5):682–694, 1999.

[21] M. Osipchuk, S. Bharadwaj, and K. Mease. Achievimg good performance in global attitude stabiliza-
tion. In Proceedings of the American Control Conference, pages 403–407, 1997. Albuquerque, NM.

[22] Q. M. Lam, P. K. Pal, A. Hu, R. Welch, W. Grossman, and D. C. Freesland. Robust attitude control using
a joint quaternion feedback regulator and nonlinear model-follower. InAIAA Guidance, Navigation, and
Control Conference, pages 817–827, 1996. San Diego, CA.

18



[23] B. V. Lintereur and L. K. McGovern. ConstrainedH2 design via convex optimization applied to pre-
cision pointing attitude control. InProc. of the 36th IEEE Conference on Decision and Control, pages
1300–1304, 1997. San Diego, CA.
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