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Abstract

Recent results show that a nonsmooth, time-
invariant feedback control law can be used to stabi-
lize an axi-symmetric rigid body using only two con-
trol torques to the zero equilibrium. This method,
however, may require a significant amount of con-
trol effort, especially for initial conditions close to
an equilibrium manifold. In this paper we propose
a control law which reduces the control effort re-
quired. The new control law renders the equilibrium
manifold unstable and drives the trajectories of the
closed-loop system into a “safe” region where the
original control law can be subsequently used.

1. Introduction

The problem of stabilization of a rigid body using
less than three control inputs has received a lot of
attention in the recent literature. Both the prob-
lems of the stabilization of the dynamics, and the
stabilization of the kinematics have been treated in
the literature!™®. The stabilization problem of the
complete system, i.e., the dynamics and the kine-
matics, has been addressed in Refs. 7-13. The atti-
tude stabilization of an axially symmetric rigid body
using two independent control torques was studied
by Krishnan, et al®® and Tsiotras et al'?. If the
uncontrolled principal axis is not the axis of sym-
metry the system is strongly accessible and small
time locally controllable’. When the uncontrolled
axis coincides with the axis of symmetry, the com-
plete system fails to be controllable or even acces-
sible. However, the system equations are strongly
accessible and small time locally controllable in the
case of zero spin rate. A nonlinear control approach
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was developed in Ref. 8, which achieves arbitrary
reorientation for this restricted case. In Refs. 14,15
the authors presented a new formulation of the atti-
tude kinematics which was used in Ref. 10 to solve
the same problem avoiding the successive switch-
ings of Ref. 8. References 8 and 10 treat the axi-
symmetric case. The non-symmetric case is dealt
with in Refs. 11-13 and 16.

In this paper, we provide a modification of the
control law presented in Ref. 10 for the attitude sta-
bilization of an axi-symmetric rigid body using two
independent control torques. Because the system
has an equilibrium manifold which includes the ori-
gin, Brockett’s necessary condition for smooth sta-
bilizability 1s not satisfied and thus, any stabiliz-
ing control law is necessarily nonsmooth. (Stabiliz-
ing time-varying smooth control laws may still exist,
however.) This nonsmoothness is evident in Ref. 10
in the form of the non-differentiability of the control
law at the origin. Because of this singularity at the
origin, this control law may take large values, espe-
cially for initial conditions close to the equilibrium
manifold. Compared to the control law in Ref. 10
the control law proposed in this paper remedies this
high control authority problem by driving the tra-
jectories of the closed-loop system away from the
singular equilibrium manifold and to a region in the
state space where the “high authority” part of the
control input remains small and bounded. The pro-
cedure is simple and can be easily validated from
phase portrait considerations. A numerical example
illustrates the control effort improvement using the
new control law.

2. The Underactuated Spacecraft

The dynamics of a rigid spacecraft with two controls
can be written as

@1 = ajwaws + uq (1&)
@2 =  AsWwswi + u»2 (1b)
@3 = dasWwiws (1(3)



where a; are the inertia parameters satisfying a; +
as + az + ajasaz = 0. Here we assume a body-fixed
reference frame along the principal axes of inertia.
Equations (1) describe an underactuated space-
craft with no control authority about the 3th prin-
cipal axis. Notice that in this case w3 can be con-
trolled only indirectly through judicious choice of
the time histories of w1 (t) and wa(t). In case of an
azi-symmetric body (about the 3-axis), az = 0 and

a; = —az = a and Eqns. (1) reduce to
@1 = awsgw2 + Uq (2&)
@2 = —awsgwi + U9 (2b)
@3 = 0 (2(3)

where w3(0) = wap is constant. Introducing the com-
plex variables w = wy +iwy and u = uy +{uy (with
i = +/—1) the previous equations can be written as

W= —iawsw + u (3)

3. Kinematics of the Attitude Motion

The orientation of a rigid spacecraft can be specified
using various parameterizations, for example, Eu-
lerian Angles, Euler Parameters, Cayley-Rodrigues
Parameters, Cayley-Klein parameters, etc. Recently,
a new parameterization using a pair of a complex
and a real coordinate was introduced'*! which was
shown to have some significant advantages for atti-
tude analysis and control problems!®'"8  Accord-
ing to these results, the relative orientation between
two given reference frames can be represented by
two rotations, one corresponding to the real coordi-
nate (z) and the other corresponding to the complex
coordinate (w).

The kinematic equations, which provide the geo-
metric constraints of the motion and relate the rates
of the kinematic parameters z and w to the angular

velocity vector, can be written as follows!0:1®
W= —iW3W—|—g—|—gW2 (4a)
2 = ws+ Im(ww) (4b)

where w = w; +1iws and w = wy+1¢ ws. Notice that
these equations can take the convenient form

d

p wi2 = (14 |w|*)Re(ww) (ba)

2 = ws+ Im(ww) (5b)
where bar denotes complex conjugate, Re(-) and
Im(-) denote real and imaginary parts of a com-
plex number respectively, and | - | denotes absolute

value. In Eq. (bb) only the imaginary part of the
product ww appears, while in Eq. (5a) only the real
part appears. This duality (or anti-symmetry) of
Eqgs. (ba) and (bb) is desirable and can be used
to derive stabilizing control laws for the system of
Egs. (4). Clearly, w = 0 if and only if |w| = 0 and
stabilization of the system in Eqs. (4) is equivalent
to stabilization of the system in Eqgs. (5).

4. Problem Statement

Consider an axi-symmetric body with the applied
torque vector in the plane which is perpendicular
to the symmetry axis. In such a case the system 1s
described by Egs. (2) and thus wg remains constant.
If initially w3(0) # 0, no control input can bring
the system to the equilibrium. The system is not
controllable to the equilibrium but it 1s controllable
to the submanifold w = w = 0 in the (w,ws, z, w)-
space. For a more detailed discussion on this issue,
one may peruse Refs. 8-10. Therefore, for an axi-
symmetric body, the stabilization to the equilibrium
of the system in Eqgs. (3)-(4) really makes sense only
if wg = 0. In this case, the system equations simplify
to

w = u i (6a)
o= W (6b)
2 = Im(ww) (6¢)

This system can be stabilized to the origin, but any
time-invariant stabilizing control law has to be nec-
essarily nonsmooth, since Eqgs. (6) fail Brockett’s
necessary condition for smooth stabilizability®. One
is therefore compelled to use nonsmooth (albeit time-
invariant) stabilizers for this system.

Equations (6) represent a system in cascade form,
with the kinematics (6b)-(6¢) the driven subsystem
and the dynamics (6a) the driving subsystem. The
methodology in Ref. 10 used this fact to derive a
non-smooth control law to stabilize Eqs. (6). In
essence, the controller design consists of a two-step
process. In the first step only stabilization of the
kinematics is addressed, with the angular velocity
treated as the control input. In the second step the
control torque u is chosen to shape the desired ve-
locity profile. Since the angular velocity in the first
step is (necessarily) a nonsmooth function of w and
z, caution should be exercised when implementing
this angular velocity in the second step. The nons-
mooth controller of Ref. 10 along with its potential
drawbacks is summarized in the next section.



5. A Nonsmooth Controller for the
Kinematics

In Ref. 10 a nonsmooth control law was proposed
for the kinematic system described by

W= g—i—%wz (7a)
2 = Im(ww) (7b)

and was later implemented though the integrator in
Eq. (6a). The proposed control law in Ref. 10 was
motivated by the decoupling of these equations with
respect to the product ww, as it is evident from the
discussion following Eqgs. (5). This control law is
given by

w:—;@w—iué (8)
W

where pt > /2 > 0. With this control law the closed
loop system in terms of |w| and z is given by
d|w]?
dt

= &1+ |w]*)|w]? (9a)
io= —pz (9b)

which is globally exponentially stable. As can be
easily inferred by observing Eqgs. (8) and (5) the first
term in the control (8) has an effect only on the dif-
ferential equation for w, whereas the second term in
Eq. (8) has an effect only on the differential equa-
tion for z. Moreover, the second term in Eq. (8) is
a nonsmooth function of z and w.

The main disadvantage of the control law in Eq. (8)

is that the last term, which involves the ratio z/w,
may become unbounded without careful choice of
the gains. The previously imposed gain condition
i > K/2 ensures that the rate of decay of z is at
least as large as the rate of decay of w, such that
their ratio remains bounded. Actually, one can eas-
ily establish from Eqs. (9) that for p > /2, along
the solutions of the system, one has z/w — 0 as
t — oo.

Introducing the variable v = |w|? the system in
Eqgs. (9) takes the form

—k(1 4+ v)v

z = —uz

(10a)
(10b)

v =

This is a system which evolves on IRy x IR. Typical
trajectories and the vector field of the closed-loop
system in Eq. (10) for « = 1 and g = 2 are shown
in Fig. 1. (Since z does not change sign it suffices
to plot only the z > 0 case.)

Although in Eq. (8) the ratio z/w, and hence the
control effort w, remains bounded by proper choice
of control gains, the control input w may take large
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Figure 1: Phase portrait of system in Eqgs. (9).

values in the region where w is small. From Eq. (9a)
|w(t)| < |w(0)|for all £ > 0 and for small initial con-
ditions w(0) the control law may use a substantial
amount of energy, especially in regions where |z] is
large. In Fig. 1, for example, the region which is
close to the z axis is clearly undesirable as far as
control expenditure is concerned. We wish to mod-
ify the control law in Eq. (8) such that the vector
field close to the z axis points away from this axis.
In short, the idea is to divide the (z, v) phase space
into two regions according to the value of the ratio

4 4
1= R (11)

This ratio is a direct indication of the relative mag-
nitude between z and w. This ratio should be kept
small in order to avoid high control effort. Hence, if
initially the states are in an undesirable region where
71 attains large values, the feedback control strategy
should drive the trajectories to a “safe” region in the
state space where 7 remains relatively small. With-
out loss of generality, we choose as undesirable the
region where |p| > 1 and as desirable the region
where || < 1. These two regions, denoted by Dy
and D respectively, are therefore defined by

D, =
Dy =

{(z;v) ER xRy :00 > |n] > 1} (12a)
(G eRx IRy <1} (12b)

These two regions are shown in Fig. 2.

6. Main Results

The proposed modification of the control law in Eq. (8)
is simple. We use positive feedback for v when the
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Figure 2: Regions D and D2 in (z,v) phase space.

trajectory 1sin region D1, while z is decreasing. This
will make the manifold v = 0 (equivalently, w = 0)
unstable and the trajectories will move towards the
region D, and subsequently stay there. The control
law in region Dy is essentially the same as in Eq. (8).
Notice that, by definition, inside the region D, we
have |n| < 1, and since |z|/|w| = |n||w| we can en-
sure that w(-) will not take excessive values as long
as the trajectories remain in D,. These statements
will be made more precise in the sequel.

6.1. Proposed Control Law for Kinematics

The proposed control law for the system in Egs. (7)
is defined by

w = —w()w — in() (13)

where the k(n) and p(n) are smooth functions sat-
1sfying
—r. k() <0, 0<p()<E V(z0)eD (14a)

0<r(m <ne, 5 <pm)<pe, ¥(zv)eDs (14D)

and 0 < k. < p.. One possible choice 1s, for exam-
ple,

2K,

2P arctan (p(1 —n%) (15a)
T

He

He arctan (p(1 —n%) + 5 (15Db)
7
From Egs. (15) we have immediately that

— ke < k() < ke, and 0<pu(n) <p.  (16)

for all n € IR. Moreover, notice that x(n) < 2u(n)
for all (z,v) € Da.

The next theorem gives the main result of the
paper.

Theorem 6.1 Consider the system in Egs. (7) and
let the control law as in FEgs. (13)-(15) with 0 <
Ke < pte. Then for initial conditions (z(0), w(0)) €
IR x (C\{0}) the following properties hold:

(i) w(t) #0,¥t > 0.
(ii) the trajectory(z(-), w(-)) is bounded and

lim (z(¢), w(t)) =0

t—o0

(iii) the controllaw w(-) is bounded and it has bounded
dertvative.

With the control law in Eq. (13) the closed-loop
system takes the form

v =

(17a)
(17b)

—k(n)(1 +v)v
—p(n)z

z =
where v = |w|? and 7 as in Eq. (11). From Eq. (16)
we have that z decays monotonically for all initial
conditions, whereas v increases in the region Dy and
decreases in D5y. The result is that the trajectories
of Egs. (17) tend to D2 and then to the origin, as
required.
Before proving Theorem 6.1 we need to establish
the following two lemmas.

Lemma 6.1 The region Dy is invariant for the sys-
tem in Egs. (17).

Proof. The boundary of the set D is given by the
two lines n = +1 (cf. Fig. 2). On the boundary of
D2 we have that k(n) = 0 and u(n) = p./2. The
vector field on the boundary of D5 is therefore

vo= 0 (18a)

PR (18b)
which points into the interior of D4. Therefore tra-
jectories in Dy cannot escape this region and thus it
is invariant for the closed-loop system in Eqs. (17).

]

This lemma establishes that for initial conditions
in D5 the trajectories of the closed-loop system re-
main in D, for all times. Equivalently, if at some
time ¥’ > 0 the trajectory enters Dy, it stays in Ds
for all t > t'. Figure 2 shows the vector field on the
boundary of Ds.



Lemma 6.2 Consider the system in Egs. (17). For
all initial conditions (z,v) € Dy the trajectories en-
ter the region Do in finite time.

Proof. As long as (z,v) € Dy from Eq. (14a) we
have that 0 < u(n) < p./2. This implies that z is
bounded. Actually, |z(¢)| < |z(0)| for all ¢ > 0. Note
that z does not change sign for all £ > 0. Without
loss of generality we can assume that z(0) > 0 (the
case z(0) < 0 being similar). If (z(0),v(0)) € Dy
then, by definition n(0) > 1. The derivative of 5 in
D 1s then
z oz,

o= -
v v?

—p(mn + k()1 +v)n
< —p(n)n <0 (19)

since £(n) < 0 and v > 0; hence 5 is bounded in D;.
Let ¢l Dy denote the closure of Dy in IR?, that is,

Dy =D1U{(z,v) ER xRy : |y =1}
W(z,v) eER xRy :v=0} (20)

Then it is an easy exercise to show that 5 # 0 for
all (z,v) € el D1\{(0,0)}. Hence there exists ¢ > 0
such that 7 < —e in D7 and consequently,  mono-
tonically decreases. Thus, every trajectory starting
in D will leave this set and enter D5 in finite time.

]

Notice that the set {(z,v) € R x R4 : v =
0 and z # 0} is an unstable manifold for the closed-
loop system. Figure 2 shows the vector field on the
boundary of D;. The following corollary follows di-
rectly from Lemmas 6.1 and 6.2.

Corollary 6.1 Consider the system in FEgs. (17).
For all initial conditions (2(0),v(0)) € Rx(IR4+\{0})
1 1s bounded for allt > 0.

We are now ready to give the proof of Theo-
rem 6.1.

Proof. [Theorem 6.1] From Egs. (17a) and (16) we
have that
v > —ke(l+v)v (21)

where k. > 0. The solution of the differential equa-
tion
&= —k(l +2)m, 2(0) =20 >0 (22)

is given by

where ¢g = (2o + 1)/xg. Clearly, z(t) # 0 for all ¢ >
0 and lim;_o #(t) = 0. Therefore v(-) is bounded
below by the solutions of the differential equation
(22) subject to initial condition z¢ = v(0). Hence,
|w(t)| # 0 for all ¢ > 0 and w(-) approaches the
origin asymptotically.

We now show that limy_.o(2(¢),v(t)) = 0. If
(2(0),v(0)) € D5 then according to Lemma 6.1 we
have that (z(¢),v(t)) € D2 for all t > 0 and D, is
an invariant set for the closed-loop system. Con-
sider now the positive definite, radially unbounded
function V : IR x IR — IR given by

Vi(z,v) = 307 + £27, V(z,v) € Dy (24)

The derivative of V along the trajectories of (17) is

V= —s(n)1 +0)v? — pu(n)z? <0, ¥Y(z,v) €Dy
(25)
therefore, the trajectories are bounded in D5. More-
over, V = 0 if and only if k(n)(1+v)v? +pu(n)z? = 0.
Using the definitions of x(n) and p(n) in D2 and
recalling that v > 0, one establishes that the last
equality is not satisfied in D5 unless z = v = 0. By
LaSalle’s theorem, lim;_ o (2(2),v(t)) = 0, for all
initial conditions in P,. To finish the proof, recall
from Lemma 6.2 that if (2(0), v(0)) € Dy then |z] is
bounded by |z(0)] and there exist a time ¢’ > 0 such
that (z(¢'),v(t')) € D2. This implies that for all
t' >t > 0 the trajectories in D1 are bounded, and
are confined inside the strip |2(¢)] < |2(0)|. How-
ever, according to the previous discussion, the tra-
jectory with initial condition (z(¢'),v(t')) satisfies
lim; oo (2(2),v(t)) = 0. Therefore, we have shown
that for all (z(0),v(0)) € IR x (IR4\{0}) the trajec-
tories remain bounded and have the property that
lim; oo (2(2),v(t)) = 0. By the definition of v this
implies that
lim (2(1), w(®)) = 0 (26)
In order to show that w is bounded, write the
ratio z/w = pw. From Eq. (13) one obtains that

|wl < Kelwl| + pelnl|wl (27)

From Corollary 6.1 we have that for all initial con-
ditions (z(0), w(0)) € TR x (C\{0}) n is bounded.
Since w is also bounded, from Eq. (27) it follows
that w is bounded.

From Eq. (7a) it follows immediately that w is
also bounded. Moreover, since

1= —p(n)n+&(n)(1+v)n (28)

and p(n), k(n), v and n are all bounded, we have that
7 is bounded.



The derivative of w is given by

w = —k(mw—rmw —ip(nnw
—ip(n)nw — i p(n)nw (29)

Using Eqgs. (15) one has

. _ 4k, p .

“(77) - T 1+p2(1 — 772)2 nn (30&)
. 2 I .

) = Loy (30b)

T I

Since 7 is bounded, £(n) and ji(n) are both bounded.
Finally, the boundedness of w follows directly from
Eq. (29) and the fact all the terms in the right hand
side of this equation are bounded. [

The vector field and the corresponding trajecto-
ries of the closed-loop system with the control law
in Eq. (13) is shown in Fig. 3 (compare with Fig. 1).

Remark 6.1 Theorem 6.1 shows that for all ini-
tial conditions w(0) # 0 the control law in Eq. (13)
drives the system trajectories to the origin. This
control law cannot be used if w(0) =0 (and z # 0).
Linearization of system (6) about w = 0, however,
results in

V—

(31a)
(31b)

e IR S

z =

and choosing, for example, a constant control w =
w, € €, one can move away from the z axis into the
D, region; once in Dy, use of the control (13) drives
the system to the origin.

Remark 6.2 Another choice of a feedback control
for Eq. (7) is the sublinear control in terms of w,

w

RS EATH

z
I 9

ine (32)
which renders the closed-loop system

v = —KUV

(33a)
(33b)

z = —uz
globally exponentially stable. The previous method-
ology can be applied mutatis mutandis to this con-
trol law, as well. Moreover, several other similar
modifications can be introduced to the control law
in Eq. (8). Tt should be evident that the results in
this section can be applied to these control laws with
only minor modifications.
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Figure 3: Phase portrait of system in Eqgs. (17).

6.2. Proposed Control Law for Complete Sys-
tem

The control law in Eq. (13) was shown to achieve
lim;—. (2(¢), w(t)) = 0. Moreover, it is a bounded
controller with bounded derivative. This allows one
to implement this control through the dynamics in
Eq. (6a). To this end, define the error

e =w—wy (34)

where wq 1s the desired angular velocity profile given
in Eq. (13). Consider the following feedback control

u=wq—a(w+w(nw+ip(nnw)  (35)

where o > 0 and where wq is given in Eq. (29), along
with Eqgs. (30). The value of # is now given by

o= —p(mn+ k(1 +v)n
+ Im (%) — (14 v)nRe (%) (36)

With the control law in Eq. (35) the closed-loop sys-
tem takes the form

e = —we (37a)
v = —k(n)(1+v)v+ (14 v)Re(ew) (37h)
2 = —p(n)z+ Im(ew) (37¢)

Notice that for e = 0 the system reduces to the one
in Eqgs. (17).

For « large enough, Eq. (37a) is essentially a
boundary layer subsystem to the slow system given
by Egs. (37b)-(37¢). Singular perturbation theory?°
guarantees that as soon as the error becomes small
enough, the (z,v) trajectories of the system will fol-
low the ones of Eqgs. (17).



Next we show that the control law in Eq. (35) is
well-defined, in the sense that it remains bounded
for all ¢ > 0. We show that with « large enough
w(t) # 0 for all ¢ > 0, i.e., w(¢) tends to zero only
asymptotically for all initial conditions inside an a
priori given compact set.

Proposition 6.1 Consider the system in FEgs. (37)
and the compact set

1+w
v

1
2
Mo = (e ewsled (F21) <) o9
where W = € x (C\{0}) x IR, and let p. > k. > 0
and o > %ﬁ Then for all initial conditions in N,
|w| is bounded below by an exponentially decaying
function.

Proof. Equation (37b) can be re-written as

Sl = (U ) (s()wl? = Be(ew))  (39)

Note that from Eq. (37a) |e(¢)] < |e(0)]e™" and
using Eq. (38),

Fct8
o8y

WO \7
|2) e , t>0 (40)

le(t)] < 8 (W

Consider now the differential equation

d 5 2Ny g2
1= (ke + B) A+ [w]7)[w] (41)

The solution of this equation is given by

~ _ rct+B
[w(t)] = —= =0 (42)

15 =
coe 2 =1

where ¢ = (|w(0)]? + 1)/|w(0)]2.
Eqgs. (40) and (42) implies that
le()] < B w(t)l,

where |W| obeys Eq. (41) with |#(0)| = [w(0)].
Notice now that since |Re(ew) < |e||w]|, and us-
ing Eq. (43), one has from Eq. (39) that

Comparison of

Vi>0 (43)

%WIZ > (L [w)(s(lw]* + [ellw])

—(L+ [w ) (s(n)|wl* + Blw]|w]) (44)

\Y

and since —k, < k(n) < k. finally,

d
Wl > = (U [wl?) (e[ w]” + Blwl[w])  (45)

By comparing Eqs. (41) and (45) and since |w(0)| =
|[#(0)|, one obtains

d 9 d . 9
Sw (O > Z1w(0) (16)

Therefore there exist some t* > 0 such that |w(t)| >
|[w(t)| for all 0 < ¢t < t*. We claim that, actually,
|w(t)| > |Ww(t)| for all t > 0, and thus |w]|is bounded
below by the exponentially decaying function |w|.

Assume that at some point ¢’ > 0 we have that
|w(t')| = |w(t')] and L |w(t')| < L|w(t')|; see Fig. 4.
Then

%W(f’)l2 = —(L+ [w(t)P) (ke w(t)]* + Blw()[)
= —(L+ W) (ke + B)lw (@)
d VETAN Y
= —lw(t)] (47)

which leads to a contradiction. Therefore |w(t)| >
|w(t)| and thus w(t) # 0 for all t > 0. |

t’ t
Figure 4: Time history of |w| and |w|.

In Ref. 10 the control law in Eq. (8) was also im-
plemented using the same methodology. That is, the
control for the complete system is given by Eq. (35),
where now k£ = k., p = pic and &£ = o = 0. The
value of the gain « increases with 3, which in turns
increases as |w| decreases. That is, when the initial
condition is close to w = 0 then a faster transient
for w is required. This faster transient i1s achieved
by talking « large enough. A potential problem in
the implementation of the control in Eq. (35) is now
evident. If e does not decay “fast enough” so that
w — wyq sufficiently fast, then there is the danger
that w will move towards the z-axis before the con-
trol law in Eq. (8) becomes effective. This is one
more reason which motivated the choice of the con-
trol law in Eq. (13). Namely, it is beneficial for w



to move away from the z-axis. This can reduce the
value of the gain « significantly.

In most situations it is not necessary to chose
« from Proposition 6.1. Actually, as the numeri-
cal simulations in the next section show, for most
practical examples it suffices to choose « to be “suf-
ficiently larger” than the gains p. and k.. From
Eq. (36) it also clear that « should be at least as
large as k./2.

7. Numerical Example

To illustrate the previous theoretical analysis, we
have simulated the differential equations (6) with
the two control laws in Eqgs. (8) and (13). The gains
are chosen as k., = 0.5 and p. = 2. The value of the
parameter p = 2. The initial conditions were taken
as w(0) = 0.3 —¢0.25 and z(0) = 2.5. The results
are shown in Figs. 5 and 6. Figure 5 shows the corre-
sponding closed-loop trajectories, and Fig. 6 shows
the magnitude of the angular velocity (control in-
put for the kinematics) |w|. Solid lines correspond
to the new control law in Eq. (13) and the dashed
lines correspond to the previous control law given
in Eq. (8). As it is evident from these figures there
is a substantial decrease in control effort by using
the control law in Eq. (13), especially at the initial
portion of the trajectory where z is large and |w| is
small.
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Figure 5: Closed-loop trajectories for the two meth-
ods (kinematics).

This control law was later implemented through
the dynamics in Eq. (6a). A rest-to-rest maneuver
was considered, thus w(0) = 0. Simulations for sev-
eral values of a are shown in Figs. 7-8. The trajec-
tories in the (z, v) space are very similar to the ones
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Figure 6: Control effort for the two methods (kine-
matics).

when w is the control input. In fact, for & = 10 the
trajectories for the complete system are essentially
identical to the ones with control law in Eq. (13).
Figure (8) shows that increasing o may slightly in-
crease the control effort, mainly because of the high-
gain boundary layer part of the controller. At any
rate, the corresponding control effort for the control
law in Ref. 10 is several orders of magnitude higher
and 1t is not shown here. In fact, for &« = 1 and
a = 4, the control effort for this controller is not
bounded. This is due to the fact that the transient
of e was not fast enough for those values of o and
w drifted towards the z-axis before the control law
in Eq. (8) becomes effective.

Phase Portrait Z vs. V
3.5 T

-—-oa=1
a=4
—a=10

051

25 3

Figure 7: Closed-loop trajectories for the complete
system.
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Figure 8: Control effort for the complete system.

8. Conclusions

We have constructed a nonsmooth control law which
stabilizes the kinematics of an underactuated rigid
spacecraft. We have shown that the proposed con-
trol law is well defined and it uses considerably less
control effort than a previously derived control law.
Numerical examples indicate a significant control ef-
fort reduction using the new control scheme. Be-
cause of the limited control torque on-board a space-
craft, for practical situations this may be the differ-
ence between feasibility and infeasibility of a partic-
ular reorientation maneuver. In addition, the rigid
body problem subject to two control inputs is only
but one example of an underactuated mechanical
system. Systems of this form can be found in the
class of systems subject to nonholonomic, i.e., non-
integrable constraints. Future research will be there-
fore directed towards extending the proposed control
law to more general nonholonomic systems.
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