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This paper presents a computationally efficient flight optimization method for improving the fuel
economy of a fixed-wing aircraft following a landing path during the descent and approach phases. The
problem is converted to an optimal control problem with one energy state variable, subject to state and
control input constraints along the path. It is shown that the solution to the energy-optimal path fol-
lowing problem provides a good approximation to the minimum-fuel problem, hence, it can be used for
improving the fuel economy. Compared to standard numerical optimization techniques, the proposed
method is more suitable for onboard real-time trajectory optimization because of its guaranteed con-
vergence, and computational efficiency. Numerical examples are presented to demonstrate the validity
of the proposed approach, and its capability for improving fuel economy during the landing phase.

Nomenclature

s Path coordinate, m
t Time, s
sf Path length, m
tf Final time, s
x, y, z Position, m
v Speed, m/s
γ Path angle, rad
ψ Heading angle, rad
m Mass, kg
g Gravity acceleration, m/s2

T Thrust, N
φ Bank angle, rad
CL Lift coefficient
CD Drag coefficient
CD0

Zero lift drag coefficient
K Induced drag coefficient
S Wing surface area, m2

ρ Air density, kg/m3

CLmin
Minimum lift coefficient

CLmax
Maximum lift coefficient

φmin Minimum bank angle, rad
φmax Maximum bank angle, rad
Tmin Minimum thrust, N
Tmax Maximum thrust, N
E Kinetic energy per unit mass, J/kg
gw Upper bound of kinetic energy, J/kg
g
w

Lower bound of kinetic energy, J/kg
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λt Costate variable associated with t
T ∗ Optimal thrust, N
E∗ Optimal specific kinetic energy, J/kg
C∗

L Optimal lift coefficient,
φ∗ Optimal bank angle, rad

Ẽ Singular specific kinetic energy arc, J/kg

T̃ Singular thrust control, N
D Specific drag force, N/kg

D̃ Specific drag force along singular arc, J/kg
E∗

U Minimum-time specific kinetic energy, J/kg
E∗

L Maximum-time specific kinetic energy, J/kg
Ma Mach number

I. Introduction

With rising fuel cost and environmental concern, it is desirable to improve the fuel efficiency of current
aircraft operations subject to aircraft performance and scheduling constraints. Such a problem can be natu-
rally cast as an optimal motion planning problem, which is a common problem encountered in many indus-
trial and transportation systems, including robotic arms,1–4 ground vehicles,5–8 and aircraft.9, 10 Although
optimal motion planning problems can be solved directly using numerical optimization techniques,11–17

the number of the required computations may grow to impractical levels, especially for real-time applica-
tions. Hence, a hybrid approach is commonly adopted in practice, according to which the motion planning
task is decomposed into multiple levels.18, 19 At the higher level, only the geometric aspects of the path are
considered, while the lower (path-tracking) level deals with the system dynamics and the state and control
constraints, and generates the time-parameterization of the path provided by the higher (geometric) level
planner. This paper focuses on the aircraft path-tracking problem at the lower level. Therefore, throughout
the paper, it is assumed that the flight path to be followed by the aircraft is given.

The assumption that the path is given, and its calculation is not part of the optimization process, is
not as unusual or atypical as one may initially think. Commercial airliners during the terminal landing
phase, are required to follow strict Air Traffic Control (ATC) rules, which guide the airplanes so as to follow
“virtual” three-dimensional corridors all the way to the landing strip. Furthermore, since our approach
leads to very fast computation of feasible trajectories, one can use the approach over new, locally modified
paths repeatedly till a satisfactory path is found. See [20] for a computationally efficient approach to modify
the original path such that it meets certain constraints. Finally, if necessary, the computed trajectories by
the proposed approach can be used as an initial guess for a higher fidelity optimal trajectory generation
solver to further improve the optimality.21 Although from now on it is assumed that the path is given, this
does not mean that the trajectory to be followed is given. A trajectory requires a time-parameterized path
and it is, indeed, the main goal of this paper to provide such a time parameterization so as to meet certain
optimality specifications.

Once the speed along a given path is determined, the aircraft’s motion can be fully determined using
inverse dynamics. Therefore, the aircraft optimal path following problem can be reduced to a speed opti-
mization problem. The minimum-time aircraft path-following problem has been studied in [22, 23]. It is
shown that the time-optimal path following solutions maximize pointwise the speed along the path, and
do not contain any singular arcs. The optimal solution to this time-optimal problem can help achieve faster
aircraft landing in case of an emergency.

When tracking time is not of primary concern, it is often desirable to minimize the fuel consumption
during the flight. Due to the complexity of fuel consumption models, it is typically difficult to find an an-
alytical solution minimizing the fuel consumption. However, because fuel consumption is closely related
to the engine’s mechanical work counteracting the effects of air drag, the issue of fuel efficiency can be
addressed (at least approximately) by solving the minimum-energy problem. The validity of such a simpli-
fying approximation is verified by numerical results later in this paper. Unlike the minimum-time solution,
minimum-energy solutions usually contain singular control arcs in addition to the bang-bang control arcs.
In the case of fixed travel time, which is most important for scheduled ATC operations,5–7 the singular arc(s)
cannot be computed directly, and a numerical procedure must be used to compute the singular arc(s) such
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that the desired travel time and boundary conditions are satisfied.
When using standard numerical methods to solve singular optimal control problems, an approximate

solution is usually obtained at first using standard numerical optimal control techniques, and then a control
switching structure is guessed based on the approximate solution and the analytic expression of the singular
control. Finally, the guessed switching structure is applied to solve the singular control problem.24 These
numerical methods are time-consuming, and require extensive knowledge and experience of the user to
obtain the actual optimal solution. On the other hand, an analytical optimal control approach (such as
in [5–7, 25]), although less general than purely numerical methods, can provide more accurate information
about the singular arcs and switching times in the optimal solution, and thus it is more reliable and efficient.

In this paper we apply the energy-optimal speed optimization method in [25] to the aircraft path fol-
lowing solution to improve the fuel economy. A scalar functional optimization problem is formulated and
solved semi-analytically using optimal control theory. Compared to the somewhat similar minimum-work
problem for train operations,5–7 the aircraft minimum-energy solution exhibits more complicated switching
structures. Some of the basic results used in this paper were introduced in [23] (see also [22, 25]). To avoid
unnecessary repetition, the reader will often be referred to [23, 25] for some of the missing details.

The rest of this paper is organized as follows: the aircraft dynamics is introduced in Section II. In
Section III, the aircraft minimum-energy fixed TOA path-following problem is formulated as an optimal
control problem, and the optimal solution is presented. Section IV describes two algorithms for the energy-
optimal aircraft flight path following operation. Finally, the validity of the proposed methodology is tested
using numerical experiments, and the results are presented at the end of the paper.

II. Aircraft Dynamics

The dynamics of a fixed-wing aircraft considered in this paper is given by the following equations of
motion:26

ẋ = v cos γ cosψ, (1)

ẏ = v cos γ sinψ, (2)

ż = v sin γ, (3)

v̇ =
1

m
[T − FD(CL, v, z)−mg sin γ] , (4)

γ̇ =
1

mv
[FL(CL, v, z) cosφ−mg cos γ] , (5)

ψ̇ = −FL(CL, v, z) sinφ

mv cos γ
, (6)

where x and y denote the position of the aircraft in the horizontal plane, z is the altitude, v is the aircraft
speed, γ is the flight path angle, ψ is the heading angle, and φ is the aircraft bank angle. The aerodynamic
lift force FL(CL, v, z) and the drag force FD(CL, v, z) are given by:

FL (CL, v, z) =
1

2
ρ(z)v2SCL, (7)

FD (CL, v, z) =
1

2
ρ(z)v2SCD =

1

2
ρ(z)v2S(CD0

+KC2
L), (8)

where ρ(z) is the air density given as a function of z,CD0
andK are parameters describing the aerodynamic

properties of the aircraft, and S is the main wing surface area. The drag coefficients CD0
and K depend

continuously on the Mach number, and hence, are continuous functions of the airspeed and the path length
s. The control inputs in this model are the lift coefficient CL, the bank angle φ, and the thrust T . It is
required that the aircraft speed satisfies the bounds v(s) ∈ [vmin(z), vmax(z)], where vmin(z) and vmax(z) are
altitude-dependent minimum and maximum speeds, respectively, and

CL ∈ [CLmin
, CLmax

], φ ∈ [φmin, φmax], T ∈ [Tmin, Tmax], (9)

where CLmin
, CLmax

, φmin, φmax, Tmin and Tmax are (possibly, path-dependent) bounds on the associated
control inputs. It is assumed that CLmin

≤ 0 ≤ CLmax
, −π/2 < φmin < 0 < φmax < π/2, 0 ≤ Tmin < Tmax,
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and γ ∈ (−π/2, π/2). These conditions are generic for a civil fixed-wing aircraft in normal/maneuverable
flight.

Let now (x(s), y(s), z(s)) denote a three-dimensional geometric path, parameterized by its natural path
length coordinate s ∈ [s0, sf ] ⊂ R+. The main objective of this paper is to find a time-parameterization of
the path, or equivalently, a function s(t) with s(0) = s0 and s(tf ) = sf , where t ∈ [0, tf ], and tf is the desired
TOA, such that the corresponding time-parameterized trajectory

(

x(s(t)), y(s(t)), z(s(t))
)

minimizes the
total energy, or mechanical work, while flying along the path, and without violating any state or control
constraints. Since the path coordinate s is related to the speed v as follows

s(t) =

∫ t

t0

v(τ) dτ,

the key step for solving this problem is the optimization of the speed profile v(s) along the path. For

convenience of notation, let E
△
= v2/2 denote the specific kinetic energy per unit mass of the aircraft. It has

been shown in Ref. [22] that the lift coefficient, the bank angle, the load factor, and the speed constraints
can be reduced to lower and upper bounds on the specific kinetic energy E as follows:

E(s)− gw(s) ≤ 0, (10)

g
w
(s)− E(s) ≤ 0, (11)

for all s ∈ [s0, sf ], where gw(s) and g
w
(s) are path-dependant bounds on the specific kinetic energy, which

are determined from the path geometry, and the constraints on the speed, the bank angle and the lift coef-
ficient. The derivative of E satisfies the following ordinary differential equation:22

E′(s) =
T (s)

m
−D(E(s), s)− g sin γ, (12)

where the prime denotes the derivative with respect to s, and

D(E, s) = c1(E(s), s)E(s) +
c2(E(s), s)

E(s)
+ c3(E(s), s), (13)

with

c1(E, s)
△
=

CD0
(E, s)ρ(s)S

m
+

4K(E, s)m

ρ(s)S

(

γ′2(s) + cos2 γ(s)ψ′2(s)
)

, (14)

c2(E, s)
△
=

K(E, s)mg2 cos2 γ(s)

ρ(s)S
, (15)

c3(E, s)
△
=

4K(E, s)mγ′(s)g cos γ(s)

ρ(s)S
. (16)

It is assumed that D(E, s) is continuous with respect to s. It is also assumed that ∂D/∂E 6= 0 and is
differentiable with respect to s, except for at most a finite number of points in [s0, sf ]. Once the optimal
specific kinetic energy E∗(s) is obtained, the optimal thrust profile T ∗(s) along the path can be determined
using equation (12). Subsequently, the other optimal control inputs can also be computed using inverse
dynamics as follows:

φ∗(s) = − arctan

(

cos γ(s)ψ′(s)

γ′(s) + g cos γ(s)/v∗2(s)

)

, (17)

C∗

L(s) =
2m

ρ(s)S cosφ∗(s)

(

γ′(s) +
g cos γ(s)

v∗2(s)

)

. (18)

III. Problem Formulation and the Energy-Optimal Solution

In this section, the energy-optimal aircraft path-following problem with fixed TOA is formulated as a
minimum-energy speed optimization problem, which has been studied in [25], and the optimal solution is
presented.
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Most modern civil airliners are powered by high-bypass turbofan engines for better fuel economy. The
fuel consumption rate for this type of engine is given by27

ḟ = −ηT, (19)

where f is the fuel weight, η is the installed thrust specific fuel consumption, which varies with airspeed,
altitude, type of engine, and throttle conditions, and it is given by

η = (a+ bMa)
√

η0/(1 + cM2
a), (20)

where Ma is the Mach number and a, b, c are constants depending on the engine type. In (20), η0 =
η0(z,Ma) varies with altitude and Mach number and can be determined from look-up data tables.27 The
fuel consumption models for other types of jet engines are similar to equations (19) and (20), but with
different parameters.

With the above model, the fuel consumption during the landing phase can be estimated by

Jf =

∫ tf

t0

−ḟ(t) dt =
∫ tf

t0

η(t)T (t) dt. (21)

From (21) it is clear that the minimum-fuel problem is equivalent to the minimization of the weighted
thrust history, where the weight η(t) is given in (20). The solution to this problem requires the use of
purely numerical techniques. To avoid this difficulty, this paper seeks to minimize, instead, the total energy
(mechanical work) required to fly along the path, which is given by

Jw =

∫ tf

t0

v(t)T (t) dt =

∫ sf

s0

T (s) ds. (22)

As demonstrated in Ref. [28], the optimal speed profile of the minimum-fuel optimization problem
contains singular arcs on which most of the fuel-saving is achieved. It was observed in our numerical
studies that the air speed changes slowly along these singular arcs, in which case the singular arcs of the
fuel-optimal problem can be approximated by those of the energy-optimal problem. As a result, the min-
imization of the energy cost function (22) is expected to provide a reasonably good approximation to the
fuel optimization problem (21). This is verified by the numerical results in Section V. Therefore, once the
path dependent specific kinetic energy bounds gw and g

w
are obtained using the method introduced in

Ref. [23], the minimum-energy speed optimization method in Ref. [25] can be applied to improve flight fuel
economy by minimizing (22).

It needs to be pointed out that the minimum-energy speed optimization method in Ref. [25] does not
address the system’s mass change in the path following process. Since the the change of mass due to
fuel consumption is usually negligible when compared to the total mass of the aircraft during the descent
and approach phases, we can assume that m is constant during the landing phase, and apply results in
Ref. [25] directly. The validity of such an assumption is justified in Ref. [28], which reported that the mass
change has little influence on the fuel-optimal trajectory during the climb and descent phases. However,
this assumption would be invalid during a long cruise phase [29], therefore the fuel economy improvement
method discussed in this paper is not applicable to the long cruise phase.

To account for the fixed final time, the flight time t is treated as a state variable in an augmented system
with the additional differential equation

t′(s) =
1

√

2E(s)
.

With the above assumptions, the minimum-energy aircraft path-following problem with fixed TOA
can be formulated as an optimal control problem involving two differential equations, two algebraic con-
straints, four boundary conditions, and two control constraints, as follows:
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Problem 1 (Minimum-energy path-following problem with fixed TOA).

min
T

∫ sf

s0

T (s) ds, (23)

subject to E′(s) =
T (s)

m
−D(E(s), s)− g sin γ(s), (24)

t′(s) =
1

√

2E(s)
, (25)

E(s)− gw(s) ≤ 0, (26)

g
w
(s)− E(s) ≤ 0, (27)

E(s0) = v20/2, (28)

E(sf ) = v2f/2, (29)

Tmin(s) ≤ T (s) ≤ Tmax(s), (30)

t(s0) = 0, (31)

t(sf ) = tf . (32)

Suppose that the optimal specific kinetic energy E∗ contains a singular arc represented by Ẽ, i.e.,

E∗(s) = Ẽ(s) on some subinterval of [s0, sf ]. For notational convenience, let us denote

∂kD̃

∂Ek
=
∂kD

∂Ek

∣

∣

∣

∣

(Ẽ(s),s)

, k = 1, 2,

and let λ∗t be the optimal costate value, then it can be shown that along the singular specific kinetic energy
profile, we have25

P (Ẽ(s), s) = λ∗t , (33)

where

P (E, s) = 2
√
2mE3/2 ∂D

∂E

∣

∣

∣

∣

(E,s)

(34)

for any E > 0. By the differentiability and non-zero assumption on ∂D/∂E in Section II, E as defined by
(33) is differentiable with respect to s except possibly a finite number of points.

The following assumption on the function D is essential for the main results in Ref. [25] to hold.

Assumption 1. For all E ∈ [v2min/2, v
2
max/2] and s ∈ [s0, sf ]:

∂2D(E, s)

∂E2
+

3

2E

∂D(E, s)

∂E
> 0 (35)

Once the singular kinetic energy profile Ẽ is determined, the singular control T̃ along Ẽ can be obtained
by

T̃ (s) = m
(

Ẽ′(s) +D(Ẽ(s), s) + g sin γ(s)
)

(36)

where Ẽ(s) is differentiable with respect to s. If Ẽ is not differentiable at s (which may happen only at a

finite number of points), the value of T̃ (s) can be defined by a continuation from the proper direction (left

or right). Suppose there exists (sa, sb) ⊆ [s0, sf ] such that E∗(s) = Ẽ(s) but T̃ (s) > Tmax or T̃ (s) < Tmin. It
follows that the corresponding optimal thrust profile cannot contain any singular thrust subarc. Therefore,

in the sequel it is assumed that T̃ (s) ∈ [Tmin, Tmax] for all s ∈ (sa, sb). This assumption is valid as long as
the aircraft is in a normal flight condition, and the path is smooth enough, in the sense that the path angle
and the heading angle change slowly along the path.

The main result regarding the energy-optimal speed optimization in Ref. [25] is given by Theorem III.1
below. The proof of the theorem takes advantage of the optimal solution of a relaxed problem, which is
formed by relaxing the state constraints on some carefully selected intervals. Then it is shown that this so-
lution satisfies the state constraints in the original Problem 1, hence is also the optimal solution to Problem 1.
The reader is referred to Ref. [30] for detailed proof.
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Theorem III.1. Let E∗

U and E∗

L be the minimum-time and maximum-time specific kinetic energy solutions,

respectively. Suppose there exists a real number λt and a function Ẽ given by P (Ẽ(s), s) = λt for all
s ∈ [s0, sf ], such that the specific kinetic energy E∗ given by

E∗ (s) =











E∗

L (s), s ∈ ΓL,

Ẽ (s), s ∈ [s0, sf ] \ (ΓU ∪ ΓL),

E∗

U (s), s ∈ ΓU

(37)

satisfies the desired TOA, where ΓU = {s|E∗

U (s) < Ẽ(s), s ∈ [s0, sf ]}, and ΓL = {s|E∗

L(s) > Ẽ(s), s ∈
[s0, sf ]}. Then E∗ is the optimal solution to Problem 1.

It is interesting to note that although the switching structure of the optimal solution to Problem 1 can
be quite complicated, the expression of the optimal specific kinetic energy E∗ can be written in a very
succinct form in (37), as a combination of the minimum-time solution, the maximum-time solution, and
energy-saving singular arcs.

Remark 1. Before applying the energy-optimal speed profile optimization method in Ref. [25] to the op-
timal flight path following problem, it is necessary to first verify condition (35), because this condition is
essential for the optimality of singular arc, which form the basis for analysis in [25].

Given the importance of condition (35), it is interesting to see how often this condition holds. To this
end, note that since E = v2/2, we have

∂D

∂E
=

1

v

∂D

∂v
(38)

and

∂2D

∂E2
=

1

v

∂

∂v

(

∂D

∂E

)

(39)

=
1

v

∂

∂v

(

1

v

∂D

∂v

)

(40)

=
1

v2
∂2D

∂v2
− 1

v3
∂D

∂v
(41)

Therefore condition (35) can be written equivalently as

1

v2
∂2D

∂v2
− 1

v3
∂D

∂v
+

3

v2
1

v

∂D

∂v
=

1

v2
∂2D

∂v2
+

2

v3
∂D

∂v
> 0.

It follows that condition (35) holds when

∂2D

∂v2
> 0 and

∂D

∂v
> 0,

which is typically the case for atmospheric flight wherein the drag-airspeed curve is monotonically in-
creasing and convex. In particular, when the airspeed of the aircraft is low (typically, < 0.6 Mach), the
aerodynamic parameters CD0

and K are approximately constant. In such a case, it can be verified analyti-
cally that (35) holds. When the Mach number of the aircraft is close to 1, the Mach number dependence of
CD0

and K usually cannot be neglected, and (35) need to be evaluated numerically in general.

Remark 2. Although the wind effect is not accounted for in the current formulation of the energy-optimal
landing problem, it can be shown that the head or tail wind can be taken into consideration as long as
gw and g

w
can be computed, and that the condition (35) is satisfied. While gw can be easily obtained

analytically, g
w

can only be computed numerically when the wind effect can not be neglected. However,
conservative estimation of g

w
can be easily established. After gw and g

w
are computed, the minimum-time

and maximum-time solutions can be computed, and the energy-optimal solution can be constructed as in
(37). A comprehensive study of the wind effect including the cross-wind is not considered in this paper.
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IV. An Energy-Optimal Path-Tracking Algorithm

Theorem III.1 characterizes the switching structure of the optimal solution to the aircraft energy-optimal
path-tracking problem. Although E∗

U can be computed using the algorithm proposed in Ref. [22], and E∗

L

can be computed in a similar manner, the optimal costate value λ∗t is unknown. As a result, one is not

readily able to choose the correct value of Ẽ(s) for each s ∈ [s0, sf ] in order to construct the optimal specific
kinetic energy according to (37). In this section a numerical algorithm is presented for solving Problem 1 by

identifying the optimal costate value λ∗t . This allows the computation of the associated function Ẽ(s) from
(33) and, subsequently, the optimal solution E∗(s) from (37). To identify the constant λ∗t and the associated
singular arcs for a specific TOA, it is necessary to search among a family of extremals associated with the
prescribed geometric path for the correct value of λ∗t .

The algorithm for identifying the minimum-energy path-tracking control is given as follows:

Main Algorithm. For the given path, aircraft parameters and constraints, compute the optimal solution for aircraft
minimum-energy path-tracking operation with fixed TOA.

1. Compute the state bounds gw(s), gw(s), and the functions c1(s), c2(s), c3(s) in Problem 1 as in Ref. [23].

2. Compute and store the values of P (E(s), s) from equation (33) on a selected, adequately fine, mesh
M over the domain [s0, sf ]× [Emin, Emax], where [Emin, Emax] covers the possible range of the specific
kinetic energy.

3. Compute the minimum-time solution E∗

U (s) and the maximum-time solution E∗

L(s) using the algo-
rithm in Ref. [22]. Let the corresponding minimum and maximum TOA be tmin and tmax, respectively.
Proceed to the next step if tmin < tf < tmax. Otherwise, quit the algorithm since the desired TOA is
not possible and the given problem does not have a solution.

4. Apply a Newton-Raphson algorithm with adjusted bounds of the solution31 to find the optimal
costate value λ∗t such that τf = tf , where τf is given by Algorithm 1 below with λ = λ∗t . Then the
corresponding specific kinetic energyE∗(s) associated with the costate value λ∗t , which is returned by
Algorithm 1, is the optimal solution with TOA equal to tf .

5. Compute the optimal thrust T ∗(s), bank angle φ∗(s), and lift coefficient C∗

L(s) histories using equa-
tions (12), (17), and (18), respectively.

Remark 3. If the first derivative of the optimal specific kinetic energy E∗ as given by the Main Algorithm
does not exist at some point s ∈ (s0, sf ), then the value of the optimal thrust T ∗ is not well-defined at s from
(12). These are exactly the points where the derivative of E∗ is discontinuous. The optimal thrust profile T ∗

is therefore discontinuous at those points. The limiting left/right values at these points of discontinuity of
the thrust can be computed by the corresponding left/right limits ofE∗′, which exist sinceE∗ is a piecewise
smooth function.

Step 4 of the Main Algorithm requires the computation of the optimal speed solution and the TOA for a
specific extremal with costate value λ. This can be achieved using the following algorithm.

Algorithm 1 Compute the TOA τf and the corresponding optimal specific kinetic energy profile E∗(s) for a given λ
value.

1. Solve P (Ẽλ(s), s) = λ for the function Ẽλ(s) by interpolating the pre-computed and stored data of
P (E(s), s) for the given path on the mesh M.

2. Compute the optimal specific kinetic energy E∗(s) for the given λ using formula (37) along with the
computed maximum-time specific kinetic energy E∗

L(s) and minimum-time specific kinetic energy
E∗

U (s).

3. Compute the TOA τf for E∗(s) using

τf =

∫ sf

s0

1
√

2E∗(s)
ds.
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4. Return τf and E∗(s).

In Step 1 of the Main Algorithm, one needs to first compute the derivatives of the prescribed position
(x(s), y(s), z(s)) along the path with respect to the path coordinate s and obtain x′(s), y′(s), z′(s),x′′(s),
y′′(s), and z′′(s), where the double prime denotes the second derivative with respect to s. This can be
done analytically when analytic expressions of x(s), y(s) and z(s) are available. Otherwise, numerical
differentiation schemes such as finite difference can be applied. After these derivatives are obtained, gw(s),
g
w
(s), and the functions c1(s), c2(s), c3(s) can be obtained following Ref. [23].
According to the structure of the optimal specific energy profile in (37), it can be easily proved that

the travel time τf of the energy-optimal solution decreases monotonically with increasing λt, since Ẽ(s)

increases monotonically with respect to λt for all s ∈ [s0, sf ] according to the definition of Ẽ as in (33).
In the Newton-Raphson algorithm with adjusted bounds used in Step 4 of the Main Algorithm, a bisec-
tion step is taken whenever the Newton-Raphson algorithm would take the solution outside the prescribed
bounds. Since a bisection method is guaranteed to converge given the monotonicity property of the prob-
lem, such a hybrid method is also guaranteed to converge, and the Newton-Raphson steps can speed up
the convergence.

It is noted that for a given set of aircraft parameters and a fixed flight path, both the minimum-time
and maximum time solutions as well as the P (E(s), s) values on the selected grid can be pre-computed
and stored. Accordingly, the corresponding energy-optimal control with a specific TOA requires only a
Newton-Raphson update in Step 4 of the Main Algorithm, which is computationally efficient. Therefore,
one may easily reschedule the TOA based on the demand of air traffic control using the proposed method
while still maintaining a fuel efficient flight.

V. Numerical Examples

In order to verify its accuracy, optimality and computation speed, the proposed energy-optimal tracking
algorithm is tested using a three-dimensional landing trajectory, as shown in Fig. 1. The initial position of
the aircraft is (−135,−92, 6) km and the final position is (0, 0, 0) km. The initial speed is v0=220 m/s, and the
final speed is vf=95 m/s. Both the initial and final path angles are 0◦. The initial heading angle is 0◦, and
the final heading angle is −20◦. The horizontal projection of the trajectory contains two turning maneuvers,
as shown in Fig. 2.
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Figure 1. 3D Geometric Trajectory.
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Figure 2. X-Y plane projection of the geometric trajectory.

The speed and control bounds considered during the time parameterization process are Ma ≤ 0.8,
where Ma is the Mach number, CLmin

= −0.47, CLmax
= 1.73, φmin = −15◦, φmax = 15◦, Tmin = 0. The wing

surface area S = 510.97m2, the mass m = 288, 938kg. These data correspond approximately to a Boeing
747 aircraft. The aerodynamic parameters K and CD0

are taken from Ref. [32] and stored in look-up tables.
It has been verified numericaly that (35) hold for any subsonic flight along the path. The dependence of the
maximum thrust Tmax (N) on the altitude z and Mach number Ma is taken into account by the following
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formula
Tmax (Ma, z) = (−0.007236z+ 146.1968)(e−1.97967Ma+8.23 + 2133) N,

which fits approximately to the JT9D-7F engine maximum thrust data for a total of four engines.
The path is processed using the algorithm introduced in the previous section with different TOA require-

ments. Figures 3 and 4 show the optimal speed profiles for the minimum-energy aircraft path-tracking for
several TOA values. It can be seen from these figures that with different TOA values tf , different parts
of the minimum-time and/or the maximum-time speed profile can be involved in the minimum-energy
solution, together with the corresponding singular arcs. Figures 5 and 6 are the minimum-energy control
histories for tf = 1300 s and tf = 1600 s, respectively. In these figures, the throttle is the ratio of the actual
thrust to the maximum thrust Tmax. It is clear that all solutions satisfy the speed and control constraints
along the path.
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Figure 3. Energy-optimal speed profiles with different TOA, path coordinate domain.

To evaluate the fuel economy of the energy-optimal solution, a fuel-optimal control problem was solved
using a numerical optimal control approach with the fuel consumption model (21) as the cost function. The
constraints of the fuel-optimal control problem are identical to those of Problem 1. The fuel-optimal control
problem was converted into a nonlinear programming problem via direct transcription,11 and solved using
the sparse nonlinear optimization software SNOPT.33 The density function based mesh refinement method
in Ref. [34] (DENMRA) was used to generate a mesh such that the state bounds (26) and (27) can be approx-
imated more accurately with a limited number of grid points. The parameters for the computation of η0 in
equation (20) were stored in a look-up table, and were provided to the nonlinear optimization solver.

The same four cases shown in Fig. 3 (tf = 1300 s, 1400 s, 1500 s, 1600 s) were solved using the numerical
optimal control approach for the minimum-fuel path-tracking problem, and the results were compared to
those given by the energy-optimal path-tracking algorithm. The comparison of speed profiles are shown in
Figs. 7 and 8. It is clear from these figures that the energy-optimal solutions are very close to the minimum-
fuel solutions. Note that the singular arcs in the minimum-fuel problem cause numerical issues (oscillations
along the singular arcs in Figs. 7 and 8). This is a well-known phenomenon when computing singular arcs
using direct trajectory optimization methods.

To evaluate the effectiveness of the proposed energy-optimal operation method in terms of actual fuel-
saving, the fuel consumptions of the energy-optimal results are simulated using the same fuel consumption
model (21) as used by the numerical approach. The fuel consumption simulation results are compared
with the fuel-optimal numerical optimization results in Talbe 1. As shown in the table, the simulated fuel
consumption of the proposed method matches very well with the numerical optimization results, which
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Figure 4. Energy-optimal speed profiles with different TOA, time domain.
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Figure 5. Energy-optimal control histories with tf = 1300 s.
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Figure 6. Energy-optimal control histories with tf = 1600 s.
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Figure 7. Comparison of fuel-optimal and energy-optimal speed profiles, tf = 1300 s and tf = 1400 s.
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Figure 8. Comparison of fuel-optimal and energy-optimal speed profiles, tf = 1500 s and tf = 1600 s.

are obtained by minimizing the fuel consumption directly.

Table 1. Minimum fuel consumption comparison.

Fuel consumption (kg)

tf (s) NLP Proposed method

1300 1809.2 1816.3

1400 1628.6 1632.9

1500 1612.0 1618.7

1600 1702.2 1704.8

Fig. 9 shows the relation between the optimal fuel consumption and total flight time when the aircraft
is following the flight path in Fig. 1. The fuel consumptions in this figure are evaluated using the energy-
optimal trajectories computed using the proposed method. It is clear that for the particular aircraft type
and flight path considered, there is an optimal flight time which minimizes the fuel consumption. When
the flight time is shorter than this optimal value, fuel savings can be achieved by delaying the flight time.
Beyond this optimal point, however, the optimal fuel consumption increases significantly when extra delay
is introduced.

The most appealing property of the proposed algorithm is its numerical efficiency. The computation
times when using the standard numerical optimization approach is much longer than the one required
by the proposed energy-optimal path-tracking algorithm: a Matlab implementation of the energy-optimal
path-tracking control algorithm finds the optimal solution in 3-6 seconds, while the Nonlinear Program-
ming solver takes at least 5 minutes (and for some cases, more than 20 minutes) to find a convergent fuel-
optimal solution. The numerical efficiency of the algorithm allows the use of the proposed approach for
computing good initial guesses for more accurate optimal trajectory generation solvers. In such a scenario,
the semi-analytic solution provided by our approach can be further refined using more realistic, higher-
fidelity aircraft models incorporating all effects neglected here, if needed. Previous results have shown a
great increase in terms of numerical robustness and convergence of such trajectory generation solvers using
this approach.21, 23
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Figure 9. Minimum fuel consumption v.s. flight time.

VI. Conclusions

The paper applies the energy-optimal speed optimization method in Ref. [25] to improve the fuel econ-
omy of a fixed-wing aircraft following a given three-dimensional landing path with fixed time-of-arrival
(TOA). As verified by the numerical optimization results, such a flight optimization approach is computa-
tionally efficient, hence is suitable for onboard real-time flight optimization. Furthermore, using the pro-
posed method, the relation between the time-of-arrival and the corresponding minimum fuel consumption
can be quantitatively determined for any given aircraft type and flight path, which can assist the planning
of more fuel efficient flight schedules and landing paths. Although the discussions in this paper focus on
the descent and approach phases of flight, the same approach will also apply to other short term operations,
such as take-off and climb phases, when the change of the aircraft’s mass is negligible.
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